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Background-Motivation

• Algebraic Complexity Theory was a very hot research topic during

late 70s with a focus on arithmetic algorithms

• However previous to this paper no general lower bound method had

been provided for algorithms that involve arithmetical operations

and comparisons

• Nowadays among various general methods for obtaining lower

complexity bounds for this model, one of the most efficient uses

homotopy invariants, Euler characteristic and Betti numbers, as

arguments for the bounding functions.

• The history of this approach started probably in mid 70s with the

work of Dobkin and Lipton, and features prominent results such as

Ben-Or’s and later Yang’s.

3



Background-Motivation

• Algebraic Complexity Theory was a very hot research topic during

late 70s with a focus on arithmetic algorithms

• However previous to this paper no general lower bound method had

been provided for algorithms that involve arithmetical operations

and comparisons

• Nowadays among various general methods for obtaining lower

complexity bounds for this model, one of the most efficient uses

homotopy invariants, Euler characteristic and Betti numbers, as

arguments for the bounding functions.

• The history of this approach started probably in mid 70s with the

work of Dobkin and Lipton, and features prominent results such as

Ben-Or’s and later Yang’s.

3



Background-Motivation

• Algebraic Complexity Theory was a very hot research topic during

late 70s with a focus on arithmetic algorithms

• However previous to this paper no general lower bound method had

been provided for algorithms that involve arithmetical operations

and comparisons

• Nowadays among various general methods for obtaining lower

complexity bounds for this model, one of the most efficient uses

homotopy invariants, Euler characteristic and Betti numbers, as

arguments for the bounding functions.

• The history of this approach started probably in mid 70s with the

work of Dobkin and Lipton, and features prominent results such as

Ben-Or’s and later Yang’s.

3



Background-Motivation

• Algebraic Complexity Theory was a very hot research topic during

late 70s with a focus on arithmetic algorithms

• However previous to this paper no general lower bound method had

been provided for algorithms that involve arithmetical operations

and comparisons

• Nowadays among various general methods for obtaining lower

complexity bounds for this model, one of the most efficient uses

homotopy invariants, Euler characteristic and Betti numbers, as

arguments for the bounding functions.

• The history of this approach started probably in mid 70s with the

work of Dobkin and Lipton, and features prominent results such as

Ben-Or’s and later Yang’s.

3



Main Achievements

• This paper introduces a new topological method for obtaining lower

bounds for this general type of algorithms, formally described as

algebraic computation trees

• With this method it became possible to generalize, and present in a

uniform and easy way, almost all the known nonlinear lower bounds

for algebraic computations at that time

• Able to tackle a wide berth of previously untouchable problems such

as lower bounds for the complexity of constructions with a ruler and

compass in plane Euclidean geometry.

4



Introduction

Example. Element Distinctness

Given x1, . . . , xn ∈ R, is there a pair of indexes i , j such that

i ̸= j and xi = xj

Theorem 1.

Any algebraic computation tree that solves the n-element distinctness

problem must have complexity of at least Ω (nlogn).
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The Algebraic Computation Tree Model

The Membership Problem

Let W ⊂ Rn. Given x = (x1, . . . , xn) ∈ R⋉ determine if x ∈ W

Definition

the Algebraic Computation Tree is a binary tree T with a function that

assigns:

• To any leaf an output Accept or Reject

• To any vertex v with exactly one child an operational instruction of

the form fv := fv1 ◦ fv2 or fv := c ◦ fv1 or fv :=
√

fv1 where vi is a

predecessor of v in T ,or fvi ∈ x1, . . . , xn, ◦ ∈ {−,+,×, \} and c ∈ R

• To any vertex v with two children a test instruction of the form

fv1 > 0 or fv1 ≥ 0 or fv1 = 0 where v1 is a predecessor of v , or

fvi ∈ x1, . . . , xn
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The Algebraic Computation Tree Model

Definitions

• We say that the computation tree T solves the membership problem

for W if the answer returned is correct for every input x ∈ W

• Let cost (x ,T ) denote the number of vertices that an input x passes

through

• The complexity of T ,C (T ) = max
x∈W

cost(x ,T )

• Let C (W ) = min
T solves W

C (T )
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The Algebraic Computation Tree Model
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Counting Connected Components

Definitions

Let V ⊂ Rn be a set defined by the following polynomial equations

q1 (x1, . . . , xn) = 0, . . . , qm (x1, . . . , xn) = 0

p1 (x1, . . . , xn) > 0, . . . , ps (x1, . . . , xn) > 0 (1)

ps+1 (x1, . . . , xn) ≥ 0, . . . , ph (x1, . . . , xn) ≥ 0

where ∀i , j : pi , qj ∈ R[x1, . . . , xn] and d = max{2, deg (pi ) , deg (qj)}
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Counting Connected Components

Denote by #V the number of connected components of V has.

For any n, h, d ∈ Z we define

βd (n, h) = max{#V |V ⊂ Rn as defined by (1)}

Note that we do not bound the number of equations describing V
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Main Results



Counting Connected Components

Theorem

For d ≥ 2, βd (n, h) ≤ d (2d − 1)n+h−1
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Main Theorem

Theorem 3.

Let W ⊂ Rn by any set, and let T be a computation tree that solves

the membership problem for W. If N is the number of disjoint

connected components of W and h = C (T ), then

2h3n+h ≥ N

Theorem 4.

For any W ⊂ Rn

C (W ) ≥ logN

1 + log3
− log3

1 + log3
n ≈ 0.38logN − 0.61n

where N = max{#W ,#(Rn −W )}
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Main Theorem

Definitions

Let T be a computation tree and let M (x ,T ) denote the sum of the

costs of the operations along the path P (x). The multiplicative

complexity of T, M (T ), is the maximum of M (x ,T ) for any x ∈ Rn,

and the (multiplicative) complexity of W, M (W ), is the minimum

M (T ) for any algebraic computation tree

Theorem 5.

For any W ⊂ Rn,

M(W ) = Ω(logN − n)

where N = max{#W ,#(Rn −W )}
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Main Theorem

Definitions

A d-th order decision tree T for testing if x ∈ W ⊂ Rn, is a decision

tree where the functions allowed are polynomials of degree at most d,

each leaf of T contains the answer Accept or Reject, and for any

x ∈ Rn, T decides correctly if x ∈ W . Denote by Cd(W ) the minimum

height for any d-th order decision tree for the set W .

Theorem 6.

Let W ⊂ Rn be any set, and let T be a d-th order algebraic decision

tree that solves the membership problem for W. If N is the number of

disjoint connected components of W, and h is the height of T, then

2hβd (n, h) ≥ N

Thus for fixed d, Cd (W ) = Ω (logN − n)
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Applications
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