The
Complexity of TheoremProving Procedures (by Stephen A. Cook)

Emmanouil Lardas

Introduction
Main Resuits
Discussion
Further

Results

References

Outline of the Presentation

(1) Introduction
(2) Main Results
(3) Discussion
4) Further Results
(5) References

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

Introduction and Basic Concepts

- We are interested in recoginition problems. Specifically, the difficulty of recognizing sets of strings.

Introduction and Basic Concepts

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results

- We are interested in recoginition problems. Specifically, the difficulty of recognizing sets of strings.
- For this purpose, a concept of "difficulty" that is based on a certain kind of reduction (called P-reduction, P for polynomial) is introduced.

Introduction and Basic Concepts

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further

Results

- We are interested in recoginition problems. Specifically, the difficulty of recognizing sets of strings.
- For this purpose, a concept of "difficulty" that is based on a certain kind of reduction (called P-reduction, P for polynomial) is introduced.
- What does it mean for a set of strings S to be reducible to a set of strings T ?

Introduction and Basic Concepts

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further Results

- We are interested in recoginition problems. Specifically, the difficulty of recognizing sets of strings.
- For this purpose, a concept of "difficulty" that is based on a certain kind of reduction (called P-reduction, P for polynomial) is introduced.
- What does it mean for a set of strings S to be reducible to a set of strings T ?
- It means that if we had an oracle that could instantly respond to any query about whether or not a given string is in T, then we would be able to recognize S in polynomial time, deterministically.

Introduction and Basic Concepts

- We are interested in recoginition problems. Specifically, the difficulty of recognizing sets of strings.
- For this purpose, a concept of "difficulty" that is based on a certain kind of reduction (called P -reduction, P for polynomial) is introduced.
- What does it mean for a set of strings S to be reducible to a set of strings T ?
- It means that if we had an oracle that could instantly respond to any query about whether or not a given string is in T, then we would be able to recognize S in polynomial time, deterministically.
- It is assumed that all strings contain characters from a fixed, finite alphabet Σ, which is unspecified, but large enough to contain every necessary character.

Notation

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

- We will be talking about formulas in propositional calculus, which means we will need infinite propositional sumbols (atoms). They will be represented as strings by a member of Σ, followed by the binary representation of a number.

Notation

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further Results

- We will be talking about formulas in propositional calculus, which means we will need infinite propositional sumbols (atoms). They will be represented as strings by a member of Σ, followed by the binary representation of a number.
- We will also be using the symbols \neg, \wedge, \vee, with their usual meanings.

Notation

The

- We will be talking about formulas in propositional calculus, which means we will need infinite propositional sumbols (atoms). They will be represented as strings by a member of Σ, followed by the binary representation of a number.
- We will also be using the symbols \neg, \wedge, \vee, with their usual meanings.
- We also define the set \{tautologies\} of all strings that represent tautologies.

Basic Definitions

Definition

A query machine is a multitape Turing machine with a distinguished tape called the query tape and three distinguished states called the query state, yes state, and no state, respectively. If M is a query machine and T is a set of strings, then a T-computation of M is a computation of M in which initially M is in the initial state and has an input string w on its input tape and each time M assumes the query state there is a string u on the query tape and the next state M assumes is the yes state if $u \in T$ and the no state if $u \notin T$. We think of an "oracle", which knows T, placing M in the yes state or no state.

The

Basic Definitions

Definition

A set S of strings is P -reducible (P for polynomial) to a set T of strings iff there is some query machine M and a polynomial $Q(n)$ such that, for each input string w, the T-computation of M with input w halts within $Q(|w|)$ steps, where $|w|$ is the length of w, and ends in an accepting state iff $w \in S$.

The

- This relation is transitive.

Definition

Further

Results

Basic Definitions

A set S of strings is P -reducible (P for polynomial) to a set T of strings iff there is some query machine M and a polynomial $Q(n)$ such that, for each input string w, the T-computation of M with input w halts within $Q(|w|)$ steps, where $|w|$ is the length of w, and ends in an accepting state iff $w \in S$.

The

Basic Definitions

Definition

A set S of strings is P -reducible (P for polynomial) to a set T of strings iff there is some query machine M and a polynomial $Q(n)$ such that, for each input string w, the T-computation of M with input w halts within $Q(|w|)$ steps, where $|w|$ is the length of w, and ends in an accepting state iff $w \in S$.

- This relation is transitive.
- The relation of two sets of strings being P-reducible to each other is an equivalence relation.

Basic Definitions

The

Definition

A set S of strings is P -reducible (P for polynomial) to a set T of strings iff there is some query machine M and a polynomial $Q(n)$ such that, for each input string w, the T-computation of M with input w halts within $Q(|w|)$ steps, where $|w|$ is the length of w, and ends in an accepting state iff $w \in S$.

- This relation is transitive.
- The relation of two sets of strings being P-reducible to each other is an equivalence relation.
- The equivalence class of a set of strings S is denoted by $\operatorname{deg}(S)$ (the polynomial degree of difficulty of S).

Basic Definitions

The

Definition

A set S of strings is P -reducible (P for polynomial) to a set T of strings iff there is some query machine M and a polynomial $Q(n)$ such that, for each input string w, the T-computation of M with input w halts within $Q(|w|)$ steps, where $|w|$ is the length of w, and ends in an accepting state iff $w \in S$.

- This relation is transitive.
- The relation of two sets of strings being P-reducible to each other is an equivalence relation.
- The equivalence class of a set of strings S is denoted by $\operatorname{deg}(S)$ (the polynomial degree of difficulty of S).
- $\mathcal{L}_{*}=\operatorname{deg}(\emptyset)$ is the class of sets of strings for which membership can be decided in polynomial time.

The
Complexity of Theorem-
Proving
Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Basic Definitions

Some interesting problems (i.e. sets of strings):

- \{subgraph pairs\}

Introduction
Main Results
Discussion
Further
Results
References

Basic Definitions

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

Some interesting problems (i.e. sets of strings):

- \{subgraph pairs\}
- \{isomorphic graphpairs\}

Basic Definitions

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results
References

Some interesting problems (i.e. sets of strings):

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes\}

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

Basic Definitions

Some interesting problems (i.e. sets of strings):

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes\}
- \{DNF tautologies $\}$

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results
References

Basic Definitions

Some interesting problems (i.e. sets of strings):

- \{subgraph pairs\}
- \{isomorphic graphpairs\}
- \{primes\}
- \{DNF tautologies\}
- D_{3}

Main Results

```
The
Complexity of
    Theorem-
    Proving
    Procedures
(by Stephen
    A. Cook)
Emmanouil
    Lardas
Introduction
Main Results
```


Theorem

```
If a set \(S\) of strings is accepted by some nondeterministic Turing machine within polynomial time, then \(S\) is \(P\)-reducible to \(\{\) DNF tautologies \(\}\).
```

The

Main Results

Theorem

If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to \{DNF tautologies\}.

Corollary

Each of the previous sets is P-reducible to $\{$ DNF tautologies $\}$.

The
Complexity of TheoremProving Procedures (by Stephen A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

Main Results

Proof of the Theorem:

What we have: Nondeterministic Turing machine M, which accepts S in time $Q(n)$, and input w.

Main Results

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Proof of the Theorem:

What we have: Nondeterministic Turing machine M, which accepts S in time $Q(n)$, and input w.
What we want: A formula in DNF such that the input is in S iff the formula is not a tautology.

Main Results

The

Proof of the Theorem:

What we have: Nondeterministic Turing machine M, which accepts S in time $Q(n)$, and input w.
What we want: A formula in DNF such that the input is in S iff the formula is not a tautology.
Method: We will define a formula $A(w)$ in CNF, which is satisfiable iff M accepts w. Then $\neg A(w)$ can be put in DNF using De Morgan's laws and $w \in S$ iff $A(w)$ is not a tautology.

The
Complexity of Theorem-
Proving
Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results
References

Main Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

Main Results

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)

Main Results

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)

The

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)
- Time: $T=Q(n)$, where $n=|w|$

Main Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)
- Time: $T=Q(n)$, where $n=|w|$
- Proposition symbols $(s, t \in\{1, \ldots, T\})$:

Main Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)
- Time: $T=Q(n)$, where $n=|w|$
- Proposition symbols $(s, t \in\{1, \ldots, T\})$:
- $P_{s, t}^{i}(i \in\{1, \ldots, I\})$, for the symbols in the tape squares

Main Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)
- Time: $T=Q(n)$, where $n=|w|$
- Proposition symbols $(s, t \in\{1, \ldots, T\})$:
- $P_{s, t}^{i}(i \in\{1, \ldots, /\})$, for the symbols in the tape squares
- $Q_{t}^{i}(i \in\{1, \ldots, r\})$, for the states

Main Results

Notation (some small changes have been made to the notation of the paper, in an attempt to make it more consistent):

- Tape alphabet: $\left\{\sigma_{1}, \ldots, \sigma_{l}\right\}$ (σ_{1} is the blank symbol)
- States: $\left\{q_{1}, \ldots, q_{r}\right\}$ (q_{1} and q_{r} are the starting state and accepting state, respectively)
- Time: $T=Q(n)$, where $n=|w|$
- Proposition symbols $(s, t \in\{1, \ldots, T\})$:
- $P_{s, t}^{i}(i \in\{1, \ldots, /\})$, for the symbols in the tape squares
- $Q_{t}^{i}(i \in\{1, \ldots, r\})$, for the states
- $S_{s, t}$, for the Turing machine head position

The
Complexity of Theorem-
Proving Procedures (by Stephen A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

Main Results

The formula:

- $A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$, where:

The
Complexity of Theorem-
Proving Procedures (by Stephen A. Cook)

Emmanouil

 LardasIntroduction
Main Results
Discussion
Further

Results

References

Main Results

The formula:

- $A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$, where:
- $B=\bigwedge_{t=1}^{T} B_{t}$

The
Complexity of Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further

Results

Main Results

The formula:

- $A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$, where:
- $B=\bigwedge_{t=1}^{T} B_{t}$

$$
\text { - } B_{t}=\left(\bigvee_{s=1}^{T} S_{s, t}\right) \wedge\left(\begin{array}{c}
\bigvee_{\substack{ \\
s_{1}, s_{2} \in\{1, \ldots, T\} \\
s_{1} \neq s_{2}}}^{V}\left(\neg S_{s_{1}, t} \vee \neg S_{s_{2}, t}\right)
\end{array}\right)
$$

The
Complexity of Theorem-
Proving
Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion

Main Results

The formula:

- $A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$, where:
- $B=\bigwedge_{t=1}^{T} B_{t}$

$$
\text { - } B_{t}=\left(\bigvee_{s=1}^{T} S_{s, t}\right) \wedge\left(\begin{array}{c}
\bigvee_{\substack{ \\
s_{1}, s_{2} \in\{1, \ldots, T\} \\
s_{1} \neq s_{2}}}^{V}\left(\neg S_{s_{1}, t} \vee \neg S_{s_{2}, t}\right)
\end{array}\right)
$$

- $C=\bigwedge_{s, t=1}^{T} C_{s, t}$

Main Results

The
Complexity of Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil

Lardas

Introduction
Main Results
Discussion
Further
Results
References

The formula:

- $A(w)=B \wedge C \wedge D \wedge E \wedge F \wedge G \wedge H \wedge I$, where:

$$
\text { - } B=\bigwedge_{t=1}^{T} B_{t}
$$

$$
\text { - } B_{t}=\left(\bigvee_{s=1}^{T} S_{s, t}\right) \wedge\left(\begin{array}{c}
\bigvee_{\substack{ \\
s_{1}, s_{2} \in\{1, \ldots, T\} \\
s_{1} \neq s_{2}}}^{V}\left(\neg S_{s_{1}, t} \vee \neg S_{s_{2}, t}\right)
\end{array}\right)
$$

$$
\text { - } C=\bigwedge_{s, t=1}^{T} C_{s, t}
$$

$$
\text { - } C_{s, t}=\left(\bigvee_{i=1}^{\prime} P_{s, t}^{i}\right) \wedge\left(\begin{array}{c}
\underset{\substack{i_{1}, i_{2} \in\{1, \ldots, l\} \\
i_{1} \neq i_{2}}}{\bigvee}\left(\neg P_{s, t}^{i_{1}} \vee \neg P_{s, t}^{i_{2}}\right)
\end{array}\right)
$$

The
Complexity of Theorem-
Proving
Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further

Results

References

Main Results

$$
\text { - } D=\bigwedge_{t=1}^{T} D_{t}
$$

$$
\text { - } D_{t}=\left(\bigvee_{i=1}^{r} Q_{t}^{i}\right) \wedge\left(\underset{\substack{i_{1}, i_{2} \in\{1, \ldots, r\} \\ i_{1} \neq i_{2}}}{V}\left(\neg Q_{t}^{i_{1}} \vee \neg Q_{t}^{i_{2}}\right)\right)
$$

Main Results

The
Complexity of
Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results

| Discussion |
| :--- |$\quad \bullet D=\bigwedge_{t=1}^{T} D_{t}$

Further
Results

Main Results

Main Results

The
Complexity of
Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further Results

References

- $D=\bigwedge_{t=1}^{T} D_{t}$
- $D_{t}=\left(\bigvee_{i=1}^{r} Q_{t}^{i}\right) \wedge\left(\underset{\substack{ \\i_{1}, i_{2} \in\{1, \ldots, r\} \\ i_{1} \neq i_{2}}}{ }\left(\neg Q_{t}^{i_{1}} \vee \neg Q_{t}^{i_{2}}\right)\right)$
- $E=Q_{1}^{1} \wedge S_{1}^{1} \wedge \bigwedge_{s=1}^{n} P_{s, 1}^{i_{s}} \wedge \bigwedge_{s=n+1}^{T} P_{s, 1}^{1}\left(\right.$ ómou $\left.w=\sigma_{i_{1}} \cdots \sigma_{i_{n}}\right)$
- $F=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{\prime} F_{i, j}^{t}$
- $F_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee P_{s, t+1}^{k}\right)$ (where σ_{k} is the symbol given by M 's transition function at $\left(q_{i}, \sigma_{j}\right)$)

The
Complexity of Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Main Results

- $G=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} G_{i, j}^{t}$
- $G_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right.$) (where q_{k} is the state given by M 's transition function at $\left(q_{i}, \sigma_{j}\right)$)

The
Complexity of Theorem-
Proving
Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Main Results

- $G=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} G_{i, j}^{t}$
- $G_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right.$) (where q_{k} is the state given by M 's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $H=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} H_{i, j}^{t}$

Main Results

The
Complexity of TheoremProving Procedures (by Stephen A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further Results

- $G=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} G_{i, j}^{t}$
- $G_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right.$) (where q_{k} is the state given by M 's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $H=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} H_{i, j}^{t}$
- $H_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee S_{k, t}^{k}\right.$) (where k is the tape cell to which M's head must move, according to M's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$

Main Results

The
Complexity of TheoremProving Procedures (by Stephen A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further Results

References

- $G=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} G_{i, j}^{t}$
- $G_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right.$) (where q_{k} is the state given by M 's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $H=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} H_{i, j}^{t}$
- $H_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee S_{k, t}^{k}\right.$) (where k is the tape cell to which M's head must move, according to M's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $I=\bigvee_{t=1}^{T} Q_{t}^{r}$

Main Results

The
Complexity of Theorem-
Proving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further Results

References

- $G=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{\prime} G_{i, j}^{t}$
- $G_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee Q_{t+1}^{k}\right)$ (where q_{k} is the state given by M 's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $H=\bigwedge_{t=1}^{T} \bigwedge_{i=1}^{r} \bigwedge_{j=1}^{l} H_{i, j}^{t}$
- $H_{i, j}^{t}=\bigwedge_{s=1}^{T}\left(\neg Q_{t}^{i} \vee \neg S_{s, t} \vee \neg P_{s, t}^{j} \vee S_{k, t}^{k}\right.$) (where k is the tape cell to which M's head must move, according to M's transition function at $\left.\left(q_{i}, \sigma_{j}\right)\right)$
- $I=\bigvee_{t=1}^{T} Q_{t}^{r}$

Note: There appears to be a slight omission, regarding the nondeterministic nature of M (it has a transition relation, not function). However, this should not affect the correctness of the results.

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\{$ DNF tautologies $\}, D_{3}$, \{subgraph pairs $\}$.

Steps of the proof:

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\{$ DNF tautologies $\}, D_{3}$, \{subgraph pairs $\}$.

Steps of the proof:

- By the corollary to the first Theorem, each of the sets is P-reducible to \{DNF tautologies $\}$.

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\{$ DNF tautologies $\}, D_{3}$, \{subgraph pairs $\}$.

Steps of the proof:

- By the corollary to the first Theorem, each of the sets is P-reducible to \{DNF tautologies\}.
- Obviously, \{DNF tautologies\} is P-reducible to \{tautologies\}.

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\{$ DNF tautologies $\}, D_{3}$, \{subgraph pairs $\}$.

Steps of the proof:

- By the corollary to the first Theorem, each of the sets is P-reducible to \{DNF tautologies\}.
- Obviously, \{DNF tautologies\} is P-reducible to \{tautologies\}.
- It remains to show the following:

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\left\{\right.$ DNF tautologies\}, D_{3}, \{subgraph pairs\}.

Steps of the proof:

- By the corollary to the first Theorem, each of the sets is P-reducible to \{DNF tautologies\}.
- Obviously, \{DNF tautologies\} is P-reducible to \{tautologies\}.
- It remains to show the following:
- \{DNF tautologies $\}$ is P-reducible to D_{3}.

Main Results

The

Theorem

The following sets are P-reducible to each other in pairs (and hence they have the same polynomial degree of difficulty): \{tautologies\}, $\left\{\right.$ DNF tautologies\}, D_{3}, \{subgraph pairs\}.

Steps of the proof:

- By the corollary to the first Theorem, each of the sets is P-reducible to \{DNF tautologies\}.
- Obviously, \{DNF tautologies\} is P-reducible to \{tautologies\}.
- It remains to show the following:
- \{DNF tautologies $\}$ is P-reducible to D_{3}.
- D_{3} is P-reducible to \{subgraph pairs\}.

Discussion

The
Complexity of TheoremProving Procedures (by Stephen

- The above results at the time seemed to suggest that the sets we were examining are difficult to recognize.

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

Discussion

The
Complexity of TheoremProving Procedures (by Stephen

- The above results at the time seemed to suggest that the sets we were examining are difficult to recognize.
- In fact, they seemed to suggest that searching for a polynomial algorithm may be fruitless.

Discussion

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Resuits
Discussion
Further
Results
References

- The above results at the time seemed to suggest that the sets we were examining are difficult to recognize.
- In fact, they seemed to suggest that searching for a polynomial algorithm may be fruitless.
- Of course, this concept of difficulty is what we now know as NP-hardness.

Discussion

The

- The above results at the time seemed to suggest that the sets we were examining are difficult to recognize.
- In fact, they seemed to suggest that searching for a polynomial algorithm may be fruitless.
- Of course, this concept of difficulty is what we now know as NP-hardness.
- It was also noted that it had not been possible up to then to add \{isomorphic graphpairs\} and \{primes\} to the list of the above Theorem.

Extensions to the Predicate Calculus

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results
References

- We can extend our notation, by including symbols for the universal and existential quantifiers.

Extensions to the Predicate Calculus

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

- We can extend our notation, by including symbols for the universal and existential quantifiers.
- We can also accommodate infinite predicate and function symbols, as we did with infinite variables.

Extensions to the Predicate Calculus

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results
References

- We can extend our notation, by including symbols for the universal and existential quantifiers.
- We can also accommodate infinite predicate and function symbols, as we did with infinite variables.
- Our alphabet is still finite.

The
Complexity of Theorem-
Proving
Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Resuits
Discussion
Further
Results
References

Extensions to the Predicate Calculus

- Satisfiability in the predicate calculus is undecidable.

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction
Main Results
Discussion
Further
Results

Extensions to the Predicate Calculus

- Satisfiability in the predicate calculus is undecidable.
- However, we want to consider processes which operate on formulas of the predicate calculus and terminate iff their input is unsatisfiable.

Extensions to the Predicate Calculus

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further

Results

- Satisfiability in the predicate calculus is undecidable.
- However, we want to consider processes which operate on formulas of the predicate calculus and terminate iff their input is unsatisfiable.
- We can't have a recursive function as an upper bound for the termination times of such a process.

The

Extensions to the Predicate Calculus

- Satisfiability in the predicate calculus is undecidable.
- However, we want to consider processes which operate on formulas of the predicate calculus and terminate iff their input is unsatisfiable.
- We can't have a recursive function as an upper bound for the termination times of such a process.
- The Herbrand Theorem states briefly that a formula A is unsatisfiable iff some conjunction of substitution instances of the functional form $f n(A)$ of A is truth functionally inconsistent.

Extensions to the Predicate Calculus

- Satisfiability in the predicate calculus is undecidable.
- However, we want to consider processes which operate on formulas of the predicate calculus and terminate iff their input is unsatisfiable.
- We can't have a recursive function as an upper bound for the termination times of such a process.
- The Herbrand Theorem states briefly that a formula A is unsatisfiable iff some conjunction of substitution instances of the functional form $f n(A)$ of A is truth functionally inconsistent.
- We can make a natural ordering of these substitution instances and simply check ever-increasing in size conjunctions of such substitution instances.

Extensions to the Predicate Calculus

- Satisfiability in the predicate calculus is undecidable.
- However, we want to consider processes which operate on formulas of the predicate calculus and terminate iff their input is unsatisfiable.
- We can't have a recursive function as an upper bound for the termination times of such a process.
- The Herbrand Theorem states briefly that a formula A is unsatisfiable iff some conjunction of substitution instances of the functional form $f n(A)$ of A is truth functionally inconsistent.
- We can make a natural ordering of these substitution instances and simply check ever-increasing in size conjunctions of such substitution instances.
- If we ever get one that is truth functionally inconsistent, we terminate.

Extensions to the Predicate Calculus

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil Lardas

Introduction

Main Results
Discussion
Further
Results
References

We can order the substitution instances A_{1}, A_{2}, \ldots Then, we have the following definition:

Extensions to the Predicate Calculus

The

We can order the substitution instances A_{1}, A_{2}, \ldots Then, we have the following definition:

Definition

If A is unsatisfiable, then $\phi(A)$ is the least k such that $A_{1} \wedge A_{2} \wedge \ldots \wedge A_{k}$ is truth-functionally inconsistent. If A is satisfiable, then $\phi(A)$ is undefined.

Efficiency of Theorem Proving Procedures

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results

- If we call a process that operates as described previously Q, then there is a recursive $T(k)$ such that for all k and all formulas A, if the length of A is at most k and $\phi(A) \leq k$, then Q will terminate within $T(k)$ steps.

Efficiency of Theorem Proving Procedures

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Results
Discussion
Further
Results
References

- If we call a process that operates as described previously Q, then there is a recursive $T(k)$ such that for all k and all formulas A, if the length of A is at most k and $\phi(A) \leq k$, then Q will terminate within $T(k)$ steps.
- As a result, $T(k)$ is a proposed as a measure of the efficiency of Q.

Efficiency of Theorem Proving Procedures

Definition

Given a machine M_{Q} and recursive function $T_{Q}(k)$, we will say M_{Q} is of type Q and runs within time $T_{Q}(k)$ provided that, when M_{Q} starts with a predicate formula A written on its tape, M_{Q} halts if and only if A is unsatisfiable and for all k, if $\phi(A) \leq k$ and $|A| \leq \log _{2} k$, then M_{Q} halts within $T_{Q}(k)$ steps. In this case we will also say that $T_{Q}(k)$ is of type Q. Here $|A|$ is the length of A.

Efficiency of Theorem Proving Procedures

The

Theorem

A) For any $T_{Q}(k)$ of type Q,

$$
\frac{T_{Q}(k)}{\frac{\sqrt{k}}{\log ^{2} k}}
$$

is unbounded.
B) There is a $T_{Q}(k)$ of type Q, such that

$$
T_{Q}(k) \leq k 2^{k \log ^{2} k}
$$

Efficiency of Theorem Proving Procedures

The

Theorem

If a set S of strings is accepted by a nondeterministic machine within time $T(n)=2^{n}$ and if $T_{Q}(k)$ is an honest (i.e. real-time countable) function of type Q, then there is a constant K, such that S can be recognized by a deterministic machine within time $T_{Q}\left(K 8^{n}\right)$.

The
Complexity of TheoremProving Procedures (by Stephen
A. Cook)

Emmanouil
Lardas

Introduction
Main Resuits
Discussion
Further
Results
References

References

ETephen A. Cook. The Complexity of Theorem-Proving Procedures. Paper presented at the meeting of the STOC, 1971.

Thank you for your time!

Thank you!

The
Complexity of
Theorem-
Proving
Procedures
(by Stephen
A. Cook)
\section*{Emmanouil}
Lardas
Introduction
Main Results
Discussion
Further
Results
References

