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Introduction and Basic Concepts

We are interested in recoginition problems. Specifically,
the difficulty of recognizing sets of strings.

For this purpose, a concept of “difficulty” that is based on
a certain kind of reduction (called P-reduction, P for
polynomial) is introduced.

What does it mean for a set of strings S to be reducible to
a set of strings T?

It means that if we had an oracle that could instantly
respond to any query about whether or not a given string
is in T , then we would be able to recognize S in
polynomial time, deterministically.

It is assumed that all strings contain characters from a
fixed, finite alphabet Σ, which is unspecified, but large
enough to contain every necessary character.
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Notation

We will be talking about formulas in propositional calculus,
which means we will need infinite propositional sumbols
(atoms). They will be represented as strings by a member
of Σ, followed by the binary representation of a number.

We will also be using the symbols ¬,∧,∨, with their usual
meanings.

We also define the set {tautologies} of all strings that
represent tautologies.
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Basic Definitions

Definition

A query machine is a multitape Turing machine with a
distinguished tape called the query tape and three distinguished
states called the query state, yes state, and no state,
respectively. If M is a query machine and T is a set of strings,
then a T -computation of M is a computation of M in which
initially M is in the initial state and has an input string w on
its input tape and each time M assumes the query state there
is a string u on the query tape and the next state M assumes is
the yes state if u ∈ T and the no state if u /∈ T . We think of
an “oracle”, which knows T , placing M in the yes state or no
state.
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Basic Definitions

Definition

A set S of strings is P-reducible (P for polynomial) to a set T
of strings iff there is some query machine M and a polynomial
Q(n) such that, for each input string w , the T -computation of
M with input w halts within Q(|w |) steps, where |w | is the
length of w , and ends in an accepting state iff w ∈ S .

This relation is transitive.

The relation of two sets of strings being P-reducible to
each other is an equivalence relation.

The equivalence class of a set of strings S is denoted by
deg(S) (the polynomial degree of difficulty of S).

L∗ = deg(∅) is the class of sets of strings for which
membership can be decided in polynomial time.
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Basic Definitions

Some interesting problems (i.e. sets of strings):

{subgraph pairs}
{isomorphic graphpairs}
{primes}
{DNF tautologies}
D3
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Main Results

Theorem

If a set S of strings is accepted by some nondeterministic
Turing machine within polynomial time, then S is P-reducible
to {DNF tautologies}.

Corollary

Each of the previous sets is P-reducible to {DNF tautologies}.
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Main Results

Proof of the Theorem:

What we have: Nondeterministic Turing machine M, which
accepts S in time Q(n), and input w .
What we want: A formula in DNF such that the input is in S
iff the formula is not a tautology.
Method: We will define a formula A(w) in CNF, which is
satisfiable iff M accepts w . Then ¬A(w) can be put in DNF
using De Morgan’s laws and w ∈ S iff A(w) is not a tautology.
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Main Results

Notation (some small changes have been made to the notation
of the paper, in an attempt to make it more consistent):

Tape alphabet: {σ1, . . . , σl} (σ1 is the blank symbol)

States: {q1, . . . , qr} (q1 and qr are the starting state and
accepting state, respectively)

Time: T = Q(n), where n = |w |
Proposition symbols (s, t ∈ {1, . . . ,T}):

P i
s,t (i ∈ {1, . . . , l}), for the symbols in the tape squares

Q i
t (i ∈ {1, . . . , r}), for the states

Ss,t , for the Turing machine head position
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Main Results

The formula:

A(w) = B ∧ C ∧ D ∧ E ∧ F ∧ G ∧ H ∧ I , where:

B =
T∧
t=1

Bt

Bt =

(
T∨
s=1

Ss,t

)
∧

 ∨
s1, s2 ∈ {1, . . . ,T}

s1 ̸= s2

(¬Ss1,t ∨ ¬Ss2,t)


C =

T∧
s,t=1

Cs,t

Cs,t =

(
l∨

i=1

P i
s,t

)
∧

 ∨
i1, i2 ∈ {1, . . . , l}

i1 ̸= i2

(¬P i1
s,t ∨ ¬P i2

s,t)


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T∧
t=1

Bt

Bt =

(
T∨
s=1

Ss,t

)
∧

 ∨
s1, s2 ∈ {1, . . . ,T}

s1 ̸= s2

(¬Ss1,t ∨ ¬Ss2,t)



C =
T∧

s,t=1
Cs,t

Cs,t =

(
l∨

i=1

P i
s,t

)
∧

 ∨
i1, i2 ∈ {1, . . . , l}

i1 ̸= i2

(¬P i1
s,t ∨ ¬P i2

s,t)


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D =
T∧
t=1

Dt

Dt =

(
r∨

i=1

Q i
t

)
∧

 ∨
i1, i2 ∈ {1, . . . , r}

i1 ̸= i2

(¬Q i1
t ∨ ¬Q i2

t )


E = Q1

1 ∧ S1
1 ∧

n∧
s=1

P is
s,1 ∧

T∧
s=n+1

P1
s,1 (όπου w = σi1 · · ·σin)

F =
T∧
t=1

r∧
i=1

l∧
j=1

F t
i ,j

F t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Pk

s,t+1

)
(where σk is the

symbol given by M’s transition function at (qi , σj))
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G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

G =
T∧
t=1

r∧
i=1

l∧
j=1

G t
i ,j

G t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Qk

t+1

)
(where qk is the

state given by M’s transition function at (qi , σj))

H =
T∧
t=1

r∧
i=1

l∧
j=1

Ht
i ,j

H t
i,j =

T∧
s=1

(
¬Q i

t ∨ ¬Ss,t ∨ ¬P j
s,t ∨ Sk

k,t

)
(where k is the

tape cell to which M’s head must move, according to M’s
transition function at (qi , σj))

I =
∨T

t=1Q
r
t

Note: There appears to be a slight omission, regarding the
nondeterministic nature of M (it has a transition relation, not
function). However, this should not affect the correctness of
the results.



The
Complexity of
Theorem-
Proving

Procedures
(by Stephen
A. Cook)

Emmanouil
Lardas

Introduction

Main Results

Discussion

Further
Results

References

Main Results

Theorem

The following sets are P-reducible to each other in pairs (and
hence they have the same polynomial degree of difficulty):
{tautologies}, {DNF tautologies},D3, {subgraph pairs}.

Steps of the proof:

By the corollary to the first Theorem, each of the sets is
P-reducible to {DNF tautologies}.
Obviously, {DNF tautologies} is P-reducible to
{tautologies}.
It remains to show the following:

{DNF tautologies} is P-reducible to D3.
D3 is P-reducible to {subgraph pairs}.
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Discussion

The above results at the time seemed to suggest that the
sets we were examining are difficult to recognize.

In fact, they seemed to suggest that searching for a
polynomial algorithm may be fruitless.

Of course, this concept of difficulty is what we now know
as NP-hardness.

It was also noted that it had not been possible up to then
to add {isomorphic graphpairs} and {primes} to the list of
the above Theorem.
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Extensions to the Predicate Calculus

We can extend our notation, by including symbols for the
universal and existential quantifiers.

We can also accommodate infinite predicate and function
symbols, as we did with infinite variables.

Our alphabet is still finite.
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Extensions to the Predicate Calculus

Satisfiability in the predicate calculus is undecidable.

However, we want to consider processes which operate on
formulas of the predicate calculus and terminate iff their
input is unsatisfiable.

We can’t have a recursive function as an upper bound for
the termination times of such a process.

The Herbrand Theorem states briefly that a formula A is
unsatisfiable iff some conjunction of substitution instances
of the functional form fn(A) of A is truth functionally
inconsistent.

We can make a natural ordering of these substitution
instances and simply check ever-increasing in size
conjunctions of such substitution instances.

If we ever get one that is truth functionally inconsistent,
we terminate.
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instances and simply check ever-increasing in size
conjunctions of such substitution instances.

If we ever get one that is truth functionally inconsistent,
we terminate.
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Extensions to the Predicate Calculus

We can order the substitution instances A1,A2, . . .. Then, we
have the following definition:

Definition

If A is unsatisfiable, then ϕ(A) is the least k such that
A1 ∧ A2 ∧ . . . ∧ Ak is truth-functionally inconsistent. If A is
satisfiable, then ϕ(A) is undefined.
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Efficiency of Theorem Proving Procedures

If we call a process that operates as described previously
Q, then there is a recursive T (k) such that for all k and
all formulas A, if the length of A is at most k and
ϕ(A) ≤ k , then Q will terminate within T (k) steps.

As a result, T (k) is a proposed as a measure of the
efficiency of Q.
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Efficiency of Theorem Proving Procedures

Definition

Given a machine MQ and recursive function TQ(k), we will say
MQ is of type Q and runs within time TQ(k) provided that,
when MQ starts with a predicate formula A written on its tape,
MQ halts if and only if A is unsatisfiable and for all k, if
ϕ(A) ≤ k and |A| ≤ log2 k , then MQ halts within TQ(k) steps.
In this case we will also say that TQ(k) is of type Q. Here |A|
is the length of A.
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Efficiency of Theorem Proving Procedures

Theorem

A) For any TQ(k) of type Q,

TQ(k)√
k

log2 k

is unbounded.

B) There is a TQ(k) of type Q, such that

TQ(k) ≤ k2k log2 k .
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Efficiency of Theorem Proving Procedures

Theorem

If a set S of strings is accepted by a nondeterministic machine
within time T (n) = 2n and if TQ(k) is an honest (i.e. real-time
countable) function of type Q, then there is a constant K, such
that S can be recognized by a deterministic machine within
time TQ(K8n).
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Thank you!

Thank you for your time!
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