# Advanced Algorithms: Solution of Problem 1

**Comment.** By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

### Exercise 1

Caution: what follows is a process of discovering the alternative definition of  $L_*$ , not a formal proof of the equivalence.

#### The simplest examples

We can often get an insight by considering the *simplest* examples. What is the simplest convex compact set  $K \subseteq \mathbb{R}^2$ ? A single point! In this case, let  $\tilde{L}$  be the line that passes through P and is perpendicular to the segment<sup>1</sup> [P, K]. Then,  $L_* = \tilde{L}$ . To see why, take another line L' passing through P but not through K, and let P' be the projection of K on L':



Since the triangle riangle PP'K is right, we have  $d(L', K) < d(\widetilde{L}, K)$ .

Let's consider a K that is slightly more interesting: a line segment  $[A_1, A_2]$ .



In case you didn't solve Problem 1, I strongly encourage you to stop reading and try to do Exercise 1, assuming K is a line segment.

<sup>&</sup>lt;sup>1</sup>Remember that for two points A, B, we use [A, B] to denote the line segment connecting A and B.

At this point, you have probably come up with the following:

**Proposition 1.** Let  $P_*$  be the point in  $[A_1, A_2]$  that is closest to P. If  $P_*$  is strictly between  $A_1, A_2$ , then  $L_*$  is the line passing through P that is parallel to the segment. If  $P_* = A_i$ , then  $L_*$  is the line passing through P that is perpendicular to  $[P, A_i]$ .

The proof is left as an exercise. Here is an illustration of the proposition:



#### The general case

Even though the sets K that we studied were super-simple, they motivate the following: for a general convex, compact set  $K \subseteq \mathbb{R}^2$ , and point P outside of K, consider a point  $P_* \in K$  that is closest to P, i.e.,

$$||P - P_*|| = \inf\{||P - P'|| \mid P' \in K\}$$
(1)

Such  $P_*$  exists because K is compact and the function  $f: K \to \mathbb{R}$  defined as f(P') = ||P - P'|| is continuous (see the theorem from Analysis stated at the hint). Now, which line is  $L_*$ ? The line  $\widetilde{L}$  passing through P that is perpendicular to  $[P, P_*]$  seems to be a reasonable candidate for  $L_*$ :



It can be proven that  $L_* = \tilde{L}$ , which gives us the alternative definition. Although I will not prove this equality here, I will provide intuition about why it holds.

**Intuition.** First of all, from the last figure, it looks like  $d(\tilde{L}, K) = ||P - P_*||$  (which again, can be proven to be true). Now, this equality directly implies that  $L_* = \tilde{L}$ . Here is why: consider another line L' passing through P, without intersecting K.



Let P' be the projection of  $P_*$  on L'. Then,  $d(L', P_*) = ||P' - P_*|| < ||P - P_*||$ . Now, since  $d(L', K) \le d(L', P_*)$ , we have  $d(L', K) < d(\widetilde{L}, K)$ .

## Exercise 2

The alternative definition we found for Exercise 1 tells us how to construct a line L satisfying the requirements of the theorem. Let  $P_*$  be a point in K that is closest to P, i.e.,  $P_*$  satisfies 1. Let L be the line passing through P that is perpendicular to  $[P, P_*]$ . Suppose  $L \cap K \neq \emptyset$ , and let  $P' \in L \cap K$ . Since K is convex, we have  $[P_*, P'] \subseteq K$ . Also, the angle  $\angle P'PP_*$  is right. Consider the altitude PP'' in the triangle  $\triangle P'PP_*$ . Since  $P'' \in K$  and  $\|P'' - P\| < \|P_* - P\|$ , we have a contradiction.

