Advanced Algorithms: Solution of Problem 1

Comment. By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

Exercise 1

Caution: what follows is a process of discovering the alternative definition of L_{*}, not a formal proof of the equivalence.

The simplest examples

We can often get an insight by considering the simplest examples. What is the simplest convex compact set $K \subseteq \mathbb{R}^{2}$? A single point! In this case, let \widetilde{L} be the line that passes through P and is perpendicular to the segment ${ }^{1}[P, K]$. Then, $L_{*}=\widetilde{L}$. To see why, take another line L^{\prime} passing through P but not through K, and let P^{\prime} be the projection of K on L^{\prime} :

Since the triangle $\triangle P P^{\prime} K$ is right, we have $d\left(L^{\prime}, K\right)<d(\widetilde{L}, K)$.
Let's consider a K that is slightly more interesting: a line segment $\left[A_{1}, A_{2}\right]$.

In case you didn't solve Problem 1, I strongly encourage you to stop reading and try to do Exercise 1 , assuming K is a line segment.

[^0]At this point, you have probably come up with the following:
Proposition 1. Let P_{*} be the point in $\left[A_{1}, A_{2}\right]$ that is closest to P. If P_{*} is strictly between A_{1}, A_{2}, then L_{*} is the line passing through P that is parallel to the segment. If $P_{*}=A_{i}$, then L_{*} is the line passing through P that is perpendicular to $\left[P, A_{i}\right]$.

The proof is left as an exercise. Here is an illustration of the proposition:

The general case

Even though the sets K that we studied were super-simple, they motivate the following: for a general convex, compact set $K \subseteq \mathbb{R}^{2}$, and point P outside of K, consider a point $P_{*} \in K$ that is closest to P, i.e.,

$$
\begin{equation*}
\left\|P-P_{*}\right\|=\inf \left\{\left\|P-P^{\prime}\right\| \mid P^{\prime} \in K\right\} \tag{1}
\end{equation*}
$$

Such P_{*} exists because K is compact and the function $f: K \rightarrow \mathbb{R}$ defined as $f\left(P^{\prime}\right)=\left\|P-P^{\prime}\right\|$ is continuous (see the theorem from Analysis stated at the hint). Now, which line is L_{*} ? The line \widetilde{L} passing through P that is perpendicular to $\left[P, P_{*}\right]$ seems to be a reasonable candidate for L_{*} :

It can be proven that $L_{*}=\widetilde{L}$, which gives us the alternative definition. Although I will not prove this equality here, I will provide intuition about why it holds.

Intuition. First of all, from the last figure, it looks like $d(\widetilde{L}, K)=\left\|P-P_{*}\right\|$ (which again, can be proven to be true). Now, this equality directly implies that $L_{*}=\widetilde{L}$. Here is why: consider another line L^{\prime} passing through P, without intersecting K.

Let P^{\prime} be the projection of P_{*} on L^{\prime}. Then, $d\left(L^{\prime}, P_{*}\right)=\left\|P^{\prime}-P_{*}\right\|<\left\|P-P_{*}\right\|$. Now, since $d\left(L^{\prime}, K\right) \leq d\left(L^{\prime}, P_{*}\right)$, we have $d\left(L^{\prime}, K\right)<d(\widetilde{L}, K)$.

Exercise 2

The alternative definition we found for Exercise 1 tells us how to construct a line L satisfying the requirements of the theorem. Let P_{*} be a point in K that is closest to P, i.e., P_{*} satisfies 1 . Let L be the line passing through P that is perpendicular to $\left[P, P_{*}\right]$. Suppose $L \cap K \neq \emptyset$, and let $P^{\prime} \in L \cap K$. Since K is convex, we have $\left[P_{*}, P^{\prime}\right] \subseteq K$. Also, the angle $\angle P^{\prime} P P_{*}$ is right. Consider the altitude $P P^{\prime \prime}$ in the triangle $\triangle P^{\prime} P P_{*}$. Since $P^{\prime \prime} \in K$ and $\left\|P^{\prime \prime}-P\right\|<\left\|P_{*}-P\right\|$, we have a contradiction.

[^0]: ${ }^{1}$ Remember that for two points A, B, we use $[A, B]$ to denote the line segment connecting A and B.

