
Linear Algebra Background and Convex Sets

Orestis Plevrakis

In this lecture we will cover some background on linear algebra and analytic geometry, along
with an introduction to convex sets.

1 Linear Algebra Background

Notation. Let x, y ∈ Rn. Their inner product is defined as x · y :=
∑n

i=1 xiyi. We often view
vectors as column matrices, and thus we may write x⊤y instead of x · y. The norm of x is ∥x∥ :=√
x · x. We denote by Sn×n the set of all real n× n symmetric matrices.

1.1 Spectral Theorem

Theorem 1. Let A ∈ Sn×n. Then, A is diagonalizable. Furthermore,

1. All the eigenvalues of A are real.

2. A has an eigenbasis u1, u2, . . . , un ∈ Rn such that the ui’s are pairwise orthogonal and each
has norm one, i.e., A has an orthonormal eigenbasis.

Remark 2. Let A ∈ Sn×n, and let u1, u2, . . . , un an orthonormal eigenbasis and λ1, λ2, . . . , λn the
corresponding eigenvalues. Let Λ := diag(λ1, λ2, . . . , λn) and U := [u1, u2, . . . , un], i.e., ui is the
ith column of U . Then, A = UΛU−1, and since the ui’s are orthonormal, we have that U⊤U = I,
which gives that U−1 = U⊤.

Remark 3. A real, square and invertible matrix V for which we have V −1 = V ⊤ is called orthogonal
matrix. The reason is that the matrix equations V ⊤V = V V ⊤ = I directly imply that both the set
of rows and the set of columns of V are orthonormal.

1.2 Positive (Semi)-definite Matrices

Definition 4. Let A ∈ Sn×n. If all the eigenvalues of A are nonnegative, we say that A is positive
semidefinite (PSD), and we write A ≽ 0. If all the eigenvalues of A are positive, we say that A is
positive definite (PD), and we write A ≻ 0.

Theorem 5. Let A ∈ Sn×n. Then, the following are equivalent:

1. A ≽ 0

2. For all x ∈ Rn, x⊤Ax ≥ 0.

Proof. First, we prove that 2 → 1. Suppose A is not PSD. From the Spectral Theorem, A has at
least one negative eigenvalue λ. Let u be a corresponding eigenvector. Then, u⊤Au = u⊤(λu) =
λ∥u∥2 < 0, contradiction.
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We now prove that 1 → 2. Let u1, . . . , un an orthonormal eigenbasis, and let λ1, . . . , λn ≥ 0
the corresponding eigenvalues. Let x ∈ Rn. Then, we can write x as a linear combination of the
eigenvectors: x =

∑n
i=1 aiui. Thus, Ax =

∑n
i=1 λiaiui, and

x⊤Ax =

(
n∑

i=1

aiui

)
·

(
n∑

i=1

λiaiui

)
=

n∑
i=1

λia
2
i

where the last equality follows from the fact that u1, . . . , un are orthonormal.

Remark 6. The analog of this theorem for PD matrices is that for A ∈ Sn×n, we have A ≻ 0 ↔
x ∈ Rn \ {0}, x⊤Ax > 0. The proof is completely analogous.

Remark 7. For a fixed A ∈ Sn×n, the function of x 7→ x⊤Ax is called quadratic form.

2 Ellipsoids

The three dimensional analog of an ellipse is the ellipsoid :

In this section, we will develop the analog of the above shape for Rn, where n can be greater
than 3. These high dimensional ellipsoids will be key geometric objects for obtaining a polynomial
time algorithm for convex optimization. To develop the analog, we first need to see what are the
algebraic expressions that describe the 2d ellipses and 3d ellipsoids.

• Axis-aligned ellipse: consider the axis-aligned ellipse below with axis-lengths a, b:

We know that a point x is inside the ellipse iff

x21
a2

+
x22
b2

≤ 1 (1)

• Non axis-aligned ellipse: consider the example below, where the axes are along two orthonor-
mal vectors u1, u2:
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To derive the algebraic expression for this ellipse, note that 1 can be read as follows:

(length of projection on 1st axis)2

a2
+

(length of projection on 2nd axis)2

b2
≤ 1

For the ellipse with axes along u1, u2, the lengths of the projections of a point x are |x · u1|,
|x · u2|, and thus x is in the ellipse iff (x·u1)2

a2
+ (x·u2)2

b2
≤ 1

• By analogy, the 3d ellipsoid with axes given by an orthonormal set of vectors u1, u2, u3 and
axis-lengths a, b, c is defined by the inequality (x·u1)2

a2
+ (x·u2)2

b2
+ (x·u3)2

c2
≤ 1. This is the resulting

shape:

The discussion up to now focused on ellipses and ellipsoids centered at the origin. To get the
algebraic expression for an ellipse/ellipsoid centered at some point x0, we replace x at the
above inequalities with x− x0 (why?).

• At this point, the generalization to Rn is natural: for a given orthonormal basis u1, u2, . . . , un
(the axes), positive numbers a1, a2, . . . , an (axis-lengths), and point x0 (center), the set

E =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

((x− x0) · ui)2

a2i
≤ 1

}
(2)

is called an ellipsoid. Now, the sum in 2 can be written compactly using matrices: let U :=
[u1, u2, . . . , un], Λ := diag(1/a1, 1/a2, . . . , 1/an). Then,

n∑
i=1

((x− x0) · ui)2

a2i
= ∥ΛU⊤(x− x0)∥2 =

(
ΛU⊤(x− x0)

)⊤ (
ΛU⊤(x− x0)

)
= (x− x0)

⊤UΛ⊤ΛU⊤(x− x0)

= (x− x0)
⊤UΛ2U⊤(x− x0)
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In the middle, we have a symmetric matrix A := UΛ2U⊤, which appears in its eigenvalue
decomposition. Since Λ2 = diag(1/a21, . . . , 1/a

2
n), we have that A is positive definite! Observe

that since we started with an arbitrary orthonormal basis u1, . . . , un and with arbitrary axis-
lengths a1, . . . , an, we end with an arbitrary positive definite matrix A. We have essentially
proven the proposition below:

Proposition 8. A set E is an ellipsoid in Rn iff E =
{
x ∈ Rn | (x− x0)

⊤A(x− x0) ≤ 1
}
,

for some positive definite matrix A, and some x0 ∈ Rn.

3 Convex Sets

3.1 Lines and Line Segments

Before we define convexity, we remember the definition of a line in Rn: a line connecting two points
x, y ∈ Rn is defined to be the set {x + θ(y − x) | θ ∈ R}. This definition comes from generalizing
the algebraic expression for the line on the plane and in space. Here is why: consider a line in space
connecting two different points x, y ∈ R3. Using vectors, a point z is on the line iff

−→
Oz =

−→
Ox+ θ−→xy,

for some θ ∈ R (see left figure below). Using the corespondance between points and vectors, the
last equation is equivalent to z = x+ θ(y − x). Furthermore, from our reasoning follows that as θ
moves from 0 to 1, the point z moves from x to y (see right figure below).

From the discussion above, we see that the natural way to define the line segment connecting
two points x, y ∈ Rn is [x, y] := {x+ θ(y − x) | θ ∈ [0, 1]} = {(1− θ)x+ θy | θ ∈ [0, 1]}

3.2 Convex Sets

Definition 9. A set K in Rn is convex if for any x, y ∈ K, we have [x, y] ⊆ K.

The sets below are examples of convex and non-convex sets on the plane:
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Some more examples of convex sets on the plane are single points, line segments, and convex
polygons:

We now move to examples of convex sets in Rn.

3.3 Hyperplanes

A hyperplane is a set {x ∈ Rn | a ·x = b}, for some a ∈ Rn, a ̸= 0 and b ∈ R. Hyperplanes generalize
planes in R3 and lines in R2. I remind you why this is the case: consider a plane in R3 with normal
vector a and a point x0 on it. Then, a point x belongs to the plane iff a ·(x−x0) = 0 ↔ a ·x = a ·x0,
and b := a · x0. We showed that every plane is a set {x ∈ Rn | a · x = b}, for some a ∈ Rn, a ̸= 0
and b ∈ R. We also need to show that every such set is a plane. First of all, such a set is always
nonempty (why?). Let x0 a point in it. Then, from the previous argument, the set is precisely the
plane with normal vector a, that contains x0.

For the case of lines on the plane the same reasoning applies (the vector a will be a normal vector
to the line).

Proposition 10. Hyperplanes are convex.

Proof. Let x, y points of a hyperplane with parameters a, b. Let (1− θ)x+ θy (where θ ∈ [0, 1]) an
arbitrary point on [x, y]. Then, a · ((1− θ)x+ θy) = (1− θ)a · x+ θa · y = b.

3.4 Halfspaces

A halfspace is a set {x ∈ Rn | a ·x ≤ b}, where a ∈ Rn, a ̸= 0 and b ∈ R. It generalizes 3d halfspaces
and 2d halfplanes. Here is why: consider a 3d plane; a halspace is everything that is not above the
plane:
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We see in the picture that a point x is above the plane iff a · (x− x0) > 0. The argument for 2d
halfplanes is identical (a 2d halfplane is everything that is not above a line in R2).

Proposition 11. Halfspaces are convex.

The proof is same as before, so I omit it.

In the next class we will see more examples of convex sets in Rn such as balls, ellipsoids and
polyhedra. Now, we move on the most fundamental theorem for convex sets.

3.5 Separating Hyperplane Theorem

The following theorem says that given a closed convex set K, and a point x0 outside it, there exists
a hyperplane that separates K from x0. Below is an illustration in R2.

Theorem 12. Let K be a closed 1 convex set in Rn. Let x0 ∈ Rn such that x0 /∈ K. Theren, there
exist nonzero a ∈ Rn, and b ∈ R such that

a · x0 > b

a · x < b, ∀x ∈ K

Remark 13. The assumption that K is closed is necessary (why?).

We will prove this theorem in the next class. In the problem posed for next week, you will prove
a two-dimensional version of this theorem. The proof for this special case will reveal the key idea
for proving the general theorem!

We end this lecture with a reminder from Analysis that will be helpful in subsequent classes:
1A set is closed if it contains its boundary.
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Theorem 14. Let A ⊆ Rn compact 2, and f : A → R continuous. Then, f attains its maximum
and minimum values inside A.

2Compact means closed and bounded. Bounded means that there exists a ball that contains the set.
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