Linear Algebra Background and Convex Sets

Orestis Plevrakis

In this lecture we will cover some background on linear algebra and analytic geometry, along
with an introduction to convex sets.

1 Linear Algebra Background

Notation. Let 2,y € R". Their inner product is defined as x -y := > " ; x;y;. We often view
vectors as column matrices, and thus we may write 2"y instead of 2 - y. The norm of z is ||z| :=
vz - x. We denote by S™*" the set of all real n x n symmetric matrices.

1.1 Spectral Theorem

Theorem 1. Let A € S™*™. Then, A is diagonalizable. Furthermore,
1. All the eigenvalues of A are real.

2. A has an eigenbasis ui,us, ..., u, € R™ such that the u;’s are pairwise orthogonal and each
has norm one, i.e., A has an orthonormal eigenbasis.

Remark 2. Let A € S™*", and let uq,us,...,u, an orthonormal eigenbasis and A1, Ao, ..., A, the
corresponding eigenvalues. Let A := diag(A1, Ao,..., \y) and U := [ug,ug, ..., uy], i.e., u; is the
ith column of U. Then, A = UAU ', and since the u;’s are orthonormal, we have that U'U = I,
which gives that U= = U .

Remark 3. A real, square and invertible matrix V' for which we have V=1 = VT is called orthogonal
matrix. The reason is that the matrix equations V'V = VV'T = I directly imply that both the set
of rows and the set of columns of V' are orthonormal.

1.2 Positive (Semi)-definite Matrices

Definition 4. Let A € S™*™. If all the eigenvalues of A are nonnegative, we say that A is positive
semidefinite (PSD), and we write A 3= 0. If all the eigenvalues of A are positive, we say that A is
positive definite (PD), and we write A > 0.

Theorem 5. Let A € S™*™. Then, the following are equivalent:
1. A=0
2. Forallz € R™, 2T Az > 0.

Proof. First, we prove that 2 — 1. Suppose A is not PSD. From the Spectral Theorem, A has at
least one negative eigenvalue A. Let u be a corresponding eigenvector. Then, u' Au = u' (\u) =
Allul|? < 0, contradiction.



We now prove that 1 — 2. Let uq,...,u, an orthonormal eigenbasis, and let A1,..., A, > 0
the corresponding eigenvalues. Let x € R™. Then, we can write x as a linear combination of the
eigenvectors: z = >, a;u;. Thus, Az = """ | Niaju;, and

n n n
' Az = (Z aiui> . <Z /\iaiui> = Z )\ia?
i=1 i=1 i=1
where the last equality follows from the fact that wq,...,u, are orthonormal.
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Remark 6. The analog of this theorem for PD matrices is that for A € S™*", we have A > 0 <
r € R"\ {0}, " Az > 0. The proof is completely analogous.

Remark 7. For a fixed A € §"*" the function of z — 2" Az is called quadratic form.

2 Ellipsoids

The three dimensional analog of an ellipse is the ellipsoid:

In this section, we will develop the analog of the above shape for R", where n can be greater
than 3. These high dimensional ellipsoids will be key geometric objects for obtaining a polynomial
time algorithm for convex optimization. To develop the analog, we first need to see what are the
algebraic expressions that describe the 2d ellipses and 3d ellipsoids.

e Axis-aligned ellipse: consider the axis-aligned ellipse below with axis-lengths a, b:
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e Non axis-aligned ellipse: consider the example below, where the axes are along two orthonor-
mal vectors uq, us:
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To derive the algebraic expression for this ellipse, note that 1 can be read as follows:

(length of projection on 1st axis)? N (length of projection on 2nd axis)? <1
a? b2 -

For the ellipse with axes along u;,ug, the lengths of the projections of a point z are |x - u|,
(zup)?

|z - ug|, and thus = is in the ellipse iff =2 + (‘T%)Q <1

By analogy, the 3d ellipsoid with axes given by an orthonormal set of vectors ui, us, us and
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axis-lengths a, b, ¢ is defined by the inequality (‘T';Zl) + (x':f) + (1'2”23) < 1. This is the resulting

shape:

The discussion up to now focused on ellipses and ellipsoids centered at the origin. To get the
algebraic expression for an ellipse/ellipsoid centered at some point xg, we replace = at the
above inequalities with = — xo (why?).

At this point, the generalization to R™ is natural: for a given orthonormal basis u1, us, ..., uy
(the axes), positive numbers ay, as, ..., a, (axis-lengths), and point z( (center), the set
n 2
((z — o) - ui)
E:{xeR” yo ez )y 2)
i=1 i

is called an ellipsoid. Now, the sum in 2 can be written compactly using matrices: let U :=
[ur, ug, ..., uy), A :=diag(1/a1,1/as,...,1/ay,). Then,

n —x0) - us 2
3 W — AU @~ 2o)]? = (AUT (2~ 20)) (AU (2~ 20))
=1 4
= (z —x0) UANTAU T (z — x)
= (x — 20) "UA*U " (2 — o)



In the middle, we have a symmetric matrix A := UA2U ", which appears in its eigenvalue
decomposition. Since A2 = diag(1/a?,...,1/a2), we have that A is positive definite! Observe
that since we started with an arbitrary orthonormal basis ui, ..., u, and with arbitrary axis-
lengths a1, ..., a,, we end with an arbitrary positive definite matrix A. We have essentially
proven the proposition below:

Proposition 8. A set E is an ellipsoid in R" iff E = {x € R" | (z — z9) " A(z — z9) < 1},
for some positive definite matriz A, and some xg € R".

3 Convex Sets

3.1 Lines and Line Segments

Before we define convexity, we remember the definition of a line in R™: a line connecting two points
x,y € R™ is defined to be the set {z + 6(y — x) | § € R}. This definition comes from generalizing
the algebraic expression for the line on the plane and in space. Here is why: consider a line in space
connecting two different points z,y € R3. Using vectors, a point z is on the line iff @ = (7)6 + 6’@,
for some 6 € R (see left figure below). Using the corespondance between points and vectors, the
last equation is equivalent to z = x 4+ 6(y — x). Furthermore, from our reasoning follows that as 6
moves from 0 to 1, the point z moves from = to y (see right figure below).
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From the discussion above, we see that the natural way to define the line segment connecting
two points z,y € R™ is [z, y] :={z +0(y —x) [ 0 € [0,1]} = {(1 =)z + 0y [ 0 [0, 1]}

3.2 Convex Sets

Definition 9. A set K in R" is convex if for any x,y € K, we have [z,y] C K.

The sets below are examples of convex and non-convex sets on the plane:
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Some more examples of convex sets on the plane are single points, line segments, and convex
polygons:
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We now move to examples of convex sets in R™.

3.3 Hyperplanes

A hyperplane is a set { € R" | a-z = b}, for some a € R", a # 0 and b € R. Hyperplanes generalize
planes in R? and lines in R?. I remind you why this is the case: consider a plane in R3 with normal
vector a and a point xg on it. Then, a point x belongs to the plane iff a- (z —z) = 0 <> a-x = a- xp,
and b := a - xg. We showed that every plane is a set {x € R" | a -z = b}, for some a € R", a # 0
and b € R. We also need to show that every such set is a plane. First of all, such a set is always
nonempty (why?). Let z¢ a point in it. Then, from the previous argument, the set is precisely the
plane with normal vector a, that contains xg.

N a

For the case of lines on the plane the same reasoning applies (the vector a will be a normal vector
to the line).

Proposition 10. Hyperplanes are conve.
Proof. Let x,y points of a hyperplane with parameters a,b. Let (1 — 0)x + 0y (where 6 € [0,1]) an
arbitrary point on [z,y]. Then, a- ((1 —0)x +0y) = (1 —0)a-z+0a-y=D>. O

3.4 Halfspaces

A halfspace is aset {x € R" | a-x < b}, where a € R™,a # 0 and b € R. It generalizes 3d halfspaces
and 2d halfplanes. Here is why: consider a 3d plane; a halspace is everything that is not above the
plane:



We see in the picture that a point z is above the plane iff a - (x — z¢) > 0. The argument for 2d
halfplanes is identical (a 2d halfplane is everything that is not above a line in R?).

Proposition 11. Halfspaces are convex.

The proof is same as before, so I omit it.

In the next class we will see more examples of convex sets in R™ such as balls, ellipsoids and
polyhedra. Now, we move on the most fundamental theorem for convex sets.
3.5 Separating Hyperplane Theorem

The following theorem says that given a closed convex set K, and a point xg outside it, there exists
a hyperplane that separates K from . Below is an illustration in R2.
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Theorem 12. Let K be a closed ! convex set in R™. Let xg € R™ such that g ¢ K. Theren, there
exist nonzero a € R™, and b € R such that

a-xog>b
a-x<b VreK

Remark 13. The assumption that K is closed is necessary (why?).

We will prove this theorem in the next class. In the problem posed for next week, you will prove
a two-dimensional version of this theorem. The proof for this special case will reveal the key idea
for proving the general theorem!

We end this lecture with a reminder from Analysis that will be helpful in subsequent classes:

LA set is closed if it contains its boundary.



Theorem 14. Let A C R™ compact 2, and f : A — R continuous. Then, f attains its mazimum
and minimum values inside A.

2Compact means closed and bounded. Bounded means that there exists a ball that contains the set.



	Linear Algebra Background
	Spectral Theorem
	Positive (Semi)-definite Matrices

	Ellipsoids
	Convex Sets
	Lines and Line Segments
	Convex Sets
	Hyperplanes 
	Halfspaces
	Separating Hyperplane Theorem


