Linear Algebra Background and Convex Sets

Orestis Plevrakis

In this lecture we will cover some background on linear algebra and analytic geometry, along with an introduction to convex sets.

1 Linear Algebra Background

Notation. Let $x, y \in \mathbb{R}^{n}$. Their inner product is defined as $x \cdot y:=\sum_{i=1}^{n} x_{i} y_{i}$. We often view vectors as column matrices, and thus we may write $x^{\top} y$ instead of $x \cdot y$. The norm of x is $\|x\|:=$ $\sqrt{x \cdot x}$. We denote by $S^{n \times n}$ the set of all real $n \times n$ symmetric matrices.

1.1 Spectral Theorem

Theorem 1. Let $A \in S^{n \times n}$. Then, A is diagonalizable. Furthermore,

1. All the eigenvalues of A are real.
2. A has an eigenbasis $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}$ such that the u_{i} 's are pairwise orthogonal and each has norm one, i.e., A has an orthonormal eigenbasis.

Remark 2. Let $A \in S^{n \times n}$, and let $u_{1}, u_{2}, \ldots, u_{n}$ an orthonormal eigenbasis and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ the corresponding eigenvalues. Let $\Lambda:=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and $U:=\left[u_{1}, u_{2}, \ldots, u_{n}\right]$, i.e., u_{i} is the $i^{\text {th }}$ column of U. Then, $A=U \Lambda U^{-1}$, and since the u_{i} 's are orthonormal, we have that $U^{\top} U=I$, which gives that $U^{-1}=U^{\top}$.

Remark 3. A real, square and invertible matrix V for which we have $V^{-1}=V^{\top}$ is called orthogonal matrix. The reason is that the matrix equations $V^{\top} V=V V^{\top}=I$ directly imply that both the set of rows and the set of columns of V are orthonormal.

1.2 Positive (Semi)-definite Matrices

Definition 4. Let $A \in S^{n \times n}$. If all the eigenvalues of A are nonnegative, we say that A is positive semidefinite (PSD), and we write $A \succcurlyeq 0$. If all the eigenvalues of A are positive, we say that A is positive definite (PD), and we write $A \succ 0$.

Theorem 5. Let $A \in S^{n \times n}$. Then, the following are equivalent:

1. $A \succcurlyeq 0$
2. For all $x \in \mathbb{R}^{n}, x^{\top} A x \geq 0$.

Proof. First, we prove that $2 \rightarrow 1$. Suppose A is not PSD. From the Spectral Theorem, A has at least one negative eigenvalue λ. Let u be a corresponding eigenvector. Then, $u^{\top} A u=u^{\top}(\lambda u)=$ $\lambda\|u\|^{2}<0$, contradiction.

We now prove that $1 \rightarrow 2$. Let u_{1}, \ldots, u_{n} an orthonormal eigenbasis, and let $\lambda_{1}, \ldots, \lambda_{n} \geq 0$ the corresponding eigenvalues. Let $x \in \mathbb{R}^{n}$. Then, we can write x as a linear combination of the eigenvectors: $x=\sum_{i=1}^{n} a_{i} u_{i}$. Thus, $A x=\sum_{i=1}^{n} \lambda_{i} a_{i} u_{i}$, and

$$
x^{\top} A x=\left(\sum_{i=1}^{n} a_{i} u_{i}\right) \cdot\left(\sum_{i=1}^{n} \lambda_{i} a_{i} u_{i}\right)=\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}
$$

where the last equality follows from the fact that u_{1}, \ldots, u_{n} are orthonormal.

Remark 6. The analog of this theorem for PD matrices is that for $A \in S^{n \times n}$, we have $A \succ 0 \leftrightarrow$ $x \in \mathbb{R}^{n} \backslash\{0\}, x^{\top} A x>0$. The proof is completely analogous.

Remark 7. For a fixed $A \in S^{n \times n}$, the function of $x \mapsto x^{\top} A x$ is called quadratic form.

2 Ellipsoids

The three dimensional analog of an ellipse is the ellipsoid:

In this section, we will develop the analog of the above shape for \mathbb{R}^{n}, where n can be greater than 3. These high dimensional ellipsoids will be key geometric objects for obtaining a polynomial time algorithm for convex optimization. To develop the analog, we first need to see what are the algebraic expressions that describe the 2 d ellipses and 3d ellipsoids.

- Axis-aligned ellipse: consider the axis-aligned ellipse below with axis-lengths a, b :

We know that a point x is inside the ellipse iff

$$
\begin{equation*}
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1 \tag{1}
\end{equation*}
$$

- Non axis-aligned ellipse: consider the example below, where the axes are along two orthonormal vectors u_{1}, u_{2} :

To derive the algebraic expression for this ellipse, note that 1 can be read as follows:

$$
\frac{\left(\text { length of projection on 1st axis) }{ }^{2}\right.}{a^{2}}+\frac{\text { (length of projection on 2nd axis) }^{2}}{b^{2}} \leq 1
$$

For the ellipse with axes along u_{1}, u_{2}, the lengths of the projections of a point x are $\left|x \cdot u_{1}\right|$, $\left|x \cdot u_{2}\right|$, and thus x is in the ellipse iff $\frac{\left(x \cdot u_{1}\right)^{2}}{a^{2}}+\frac{\left(x \cdot u_{2}\right)^{2}}{b^{2}} \leq 1$

- By analogy, the 3d ellipsoid with axes given by an orthonormal set of vectors u_{1}, u_{2}, u_{3} and axis-lengths a, b, c is defined by the inequality $\frac{\left(x \cdot u_{1}\right)^{2}}{a^{2}}+\frac{\left(x \cdot u_{2}\right)^{2}}{b^{2}}+\frac{\left(x \cdot u_{3}\right)^{2}}{c^{2}} \leq 1$. This is the resulting shape:

The discussion up to now focused on ellipses and ellipsoids centered at the origin. To get the algebraic expression for an ellipse/ellipsoid centered at some point x_{0}, we replace x at the above inequalities with $x-x_{0}$ (why?).

- At this point, the generalization to \mathbb{R}^{n} is natural: for a given orthonormal basis $u_{1}, u_{2}, \ldots, u_{n}$ (the axes), positive numbers $a_{1}, a_{2}, \ldots, a_{n}$ (axis-lengths), and point x_{0} (center), the set

$$
\begin{equation*}
E=\left\{x \in \mathbb{R}^{n} \left\lvert\, \sum_{i=1}^{n} \frac{\left(\left(x-x_{0}\right) \cdot u_{i}\right)^{2}}{a_{i}^{2}} \leq 1\right.\right\} \tag{2}
\end{equation*}
$$

is called an ellipsoid. Now, the sum in 2 can be written compactly using matrices: let $U:=$ $\left[u_{1}, u_{2}, \ldots, u_{n}\right], \Lambda:=\operatorname{diag}\left(1 / a_{1}, 1 / a_{2}, \ldots, 1 / a_{n}\right)$. Then,

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{\left(\left(x-x_{0}\right) \cdot u_{i}\right)^{2}}{a_{i}^{2}}=\left\|\Lambda U^{\top}\left(x-x_{0}\right)\right\|^{2} & =\left(\Lambda U^{\top}\left(x-x_{0}\right)\right)^{\top}\left(\Lambda U^{\top}\left(x-x_{0}\right)\right) \\
& =\left(x-x_{0}\right)^{\top} U \Lambda^{\top} \Lambda U^{\top}\left(x-x_{0}\right) \\
& =\left(x-x_{0}\right)^{\top} U \Lambda^{2} U^{\top}\left(x-x_{0}\right)
\end{aligned}
$$

In the middle, we have a symmetric matrix $A:=U \Lambda^{2} U^{\top}$, which appears in its eigenvalue decomposition. Since $\Lambda^{2}=\operatorname{diag}\left(1 / a_{1}^{2}, \ldots, 1 / a_{n}^{2}\right)$, we have that A is positive definite! Observe that since we started with an arbitrary orthonormal basis u_{1}, \ldots, u_{n} and with arbitrary axislengths a_{1}, \ldots, a_{n}, we end with an arbitrary positive definite matrix A. We have essentially proven the proposition below:

Proposition 8. A set E is an ellipsoid in \mathbb{R}^{n} iff $E=\left\{x \in \mathbb{R}^{n} \mid\left(x-x_{0}\right)^{\top} A\left(x-x_{0}\right) \leq 1\right\}$, for some positive definite matrix A, and some $x_{0} \in \mathbb{R}^{n}$.

3 Convex Sets

3.1 Lines and Line Segments

Before we define convexity, we remember the definition of a line in \mathbb{R}^{n} : a line connecting two points $x, y \in \mathbb{R}^{n}$ is defined to be the set $\{x+\theta(y-x) \mid \theta \in \mathbb{R}\}$. This definition comes from generalizing the algebraic expression for the line on the plane and in space. Here is why: consider a line in space connecting two different points $x, y \in \mathbb{R}^{3}$. Using vectors, a point z is on the line iff $\overrightarrow{O z}=\overrightarrow{O x}+\theta \overrightarrow{x y}$, for some $\theta \in \mathbb{R}$ (see left figure below). Using the corespondance between points and vectors, the last equation is equivalent to $z=x+\theta(y-x)$. Furthermore, from our reasoning follows that as θ moves from 0 to 1 , the point z moves from x to y (see right figure below).

From the discussion above, we see that the natural way to define the line segment connecting two points $x, y \in \mathbb{R}^{n}$ is $[x, y]:=\{x+\theta(y-x) \mid \theta \in[0,1]\}=\{(1-\theta) x+\theta y \mid \theta \in[0,1]\}$

3.2 Convex Sets

Definition 9. A set K in \mathbb{R}^{n} is convex if for any $x, y \in K$, we have $[x, y] \subseteq K$.
The sets below are examples of convex and non-convex sets on the plane:

Some more examples of convex sets on the plane are single points, line segments, and convex polygons:

We now move to examples of convex sets in \mathbb{R}^{n}.

3.3 Hyperplanes

A hyperplane is a set $\left\{x \in \mathbb{R}^{n} \mid a \cdot x=b\right\}$, for some $a \in \mathbb{R}^{n}, a \neq 0$ and $b \in \mathbb{R}$. Hyperplanes generalize planes in \mathbb{R}^{3} and lines in \mathbb{R}^{2}. I remind you why this is the case: consider a plane in \mathbb{R}^{3} with normal vector a and a point x_{0} on it. Then, a point x belongs to the plane iff $a \cdot\left(x-x_{0}\right)=0 \leftrightarrow a \cdot x=a \cdot x_{0}$, and $b:=a \cdot x_{0}$. We showed that every plane is a set $\left\{x \in \mathbb{R}^{n} \mid a \cdot x=b\right\}$, for some $a \in \mathbb{R}^{n}, a \neq 0$ and $b \in \mathbb{R}$. We also need to show that every such set is a plane. First of all, such a set is always nonempty (why?). Let x_{0} a point in it. Then, from the previous argument, the set is precisely the plane with normal vector a, that contains x_{0}.

For the case of lines on the plane the same reasoning applies (the vector a will be a normal vector to the line).

Proposition 10. Hyperplanes are convex.
Proof. Let x, y points of a hyperplane with parameters a, b. Let $(1-\theta) x+\theta y$ (where $\theta \in[0,1]$) an arbitrary point on $[x, y]$. Then, $a \cdot((1-\theta) x+\theta y)=(1-\theta) a \cdot x+\theta a \cdot y=b$.

3.4 Halfspaces

A halfspace is a set $\left\{x \in \mathbb{R}^{n} \mid a \cdot x \leq b\right\}$, where $a \in \mathbb{R}^{n}, a \neq 0$ and $b \in \mathbb{R}$. It generalizes 3d halfspaces and 2 d halfplanes. Here is why: consider a 3d plane; a halspace is everything that is not above the plane:

We see in the picture that a point x is above the plane iff $a \cdot\left(x-x_{0}\right)>0$. The argument for 2 d halfplanes is identical (a 2 d halfplane is everything that is not above a line in \mathbb{R}^{2}).

Proposition 11. Halfspaces are convex.
The proof is same as before, so I omit it.
In the next class we will see more examples of convex sets in \mathbb{R}^{n} such as balls, ellipsoids and polyhedra. Now, we move on the most fundamental theorem for convex sets.

3.5 Separating Hyperplane Theorem

The following theorem says that given a closed convex set K, and a point x_{0} outside it, there exists a hyperplane that separates K from x_{0}. Below is an illustration in \mathbb{R}^{2}.

Theorem 12. Let K be a closed ${ }^{1}$ convex set in \mathbb{R}^{n}. Let $x_{0} \in \mathbb{R}^{n}$ such that $x_{0} \notin K$. Theren, there exist nonzero $a \in \mathbb{R}^{n}$, and $b \in \mathbb{R}$ such that

$$
\begin{aligned}
& a \cdot x_{0}>b \\
& a \cdot x<b, \quad \forall x \in K
\end{aligned}
$$

Remark 13. The assumption that K is closed is necessary (why?).
We will prove this theorem in the next class. In the problem posed for next week, you will prove a two-dimensional version of this theorem. The proof for this special case will reveal the key idea for proving the general theorem!

We end this lecture with a reminder from Analysis that will be helpful in subsequent classes:

[^0]Theorem 14. Let $A \subseteq \mathbb{R}^{n}$ compact 2, and $f: A \rightarrow \mathbb{R}$ continuous. Then, f attains its maximum and minimum values inside A.

[^1]
[^0]: ${ }^{1} \mathrm{~A}$ set is closed if it contains its boundary.

[^1]: ${ }^{2}$ Compact means closed and bounded. Bounded means that there exists a ball that contains the set.

