Linear Algebra Background and Convex Sets

Orestis Plevrakis

In this lecture we will cover some background on linear algebra and analytic geometry, along with an introduction to convex sets.

1 Linear Algebra Background

Notation. Let $x, y \in \mathbb{R}^n$. Their inner product is defined as $x \cdot y := \sum_{i=1}^n x_i y_i$. We often view vectors as column matrices, and thus we may write $x^{\top}y$ instead of $x \cdot y$. The norm of x is $||x|| := \sqrt{x \cdot x}$. We denote by $S^{n \times n}$ the set of all real $n \times n$ symmetric matrices.

1.1 Spectral Theorem

Theorem 1. Let $A \in S^{n \times n}$. Then, A is diagonalizable. Furthermore,

- 1. All the eigenvalues of A are real.
- 2. A has an eigenbasis $u_1, u_2, \ldots, u_n \in \mathbb{R}^n$ such that the u_i 's are pairwise orthogonal and each has norm one, i.e., A has an orthonormal eigenbasis.

Remark 2. Let $A \in S^{n \times n}$, and let u_1, u_2, \ldots, u_n an orthonormal eigenbasis and $\lambda_1, \lambda_2, \ldots, \lambda_n$ the corresponding eigenvalues. Let $\Lambda := diag(\lambda_1, \lambda_2, \ldots, \lambda_n)$ and $U := [u_1, u_2, \ldots, u_n]$, i.e., u_i is the i^{th} column of U. Then, $A = U\Lambda U^{-1}$, and since the u_i 's are orthonormal, we have that $U^{\top}U = I$, which gives that $U^{-1} = U^{\top}$.

Remark 3. A real, square and invertible matrix V for which we have $V^{-1} = V^{\top}$ is called *orthogonal* matrix. The reason is that the matrix equations $V^{\top}V = VV^{\top} = I$ directly imply that both the set of rows and the set of columns of V are orthonormal.

1.2 Positive (Semi)-definite Matrices

Definition 4. Let $A \in S^{n \times n}$. If all the eigenvalues of A are nonnegative, we say that A is *positive semidefinite* (PSD), and we write $A \succeq 0$. If all the eigenvalues of A are positive, we say that A is *positive definite* (PD), and we write $A \succ 0$.

Theorem 5. Let $A \in S^{n \times n}$. Then, the following are equivalent:

- 1. $A \succeq 0$
- 2. For all $x \in \mathbb{R}^n$, $x^\top A x \ge 0$.

Proof. First, we prove that $2 \to 1$. Suppose A is not PSD. From the Spectral Theorem, A has at least one negative eigenvalue λ . Let u be a corresponding eigenvector. Then, $u^{\top}Au = u^{\top}(\lambda u) = \lambda ||u||^2 < 0$, contradiction.

We now prove that $1 \to 2$. Let u_1, \ldots, u_n an orthonormal eigenbasis, and let $\lambda_1, \ldots, \lambda_n \ge 0$ the corresponding eigenvalues. Let $x \in \mathbb{R}^n$. Then, we can write x as a linear combination of the eigenvectors: $x = \sum_{i=1}^n a_i u_i$. Thus, $Ax = \sum_{i=1}^n \lambda_i a_i u_i$, and

$$x^{\top}Ax = \left(\sum_{i=1}^{n} a_{i}u_{i}\right) \cdot \left(\sum_{i=1}^{n} \lambda_{i}a_{i}u_{i}\right) = \sum_{i=1}^{n} \lambda_{i}a_{i}^{2}$$

where the last equality follows from the fact that u_1, \ldots, u_n are orthonormal.

Remark 6. The analog of this theorem for PD matrices is that for $A \in S^{n \times n}$, we have $A \succ 0 \leftrightarrow x \in \mathbb{R}^n \setminus \{0\}, x^\top A x > 0$. The proof is completely analogous.

Remark 7. For a fixed $A \in S^{n \times n}$, the function of $x \mapsto x^{\top} A x$ is called *quadratic form*.

2 Ellipsoids

The three dimensional analog of an ellipse is the *ellipsoid*:

In this section, we will develop the analog of the above shape for \mathbb{R}^n , where *n* can be greater than 3. These high dimensional ellipsoids will be key geometric objects for obtaining a polynomial time algorithm for convex optimization. To develop the analog, we first need to see what are the algebraic expressions that describe the 2d ellipses and 3d ellipsoids.

• Axis-aligned ellipse: consider the axis-aligned ellipse below with axis-lengths a, b:

We know that a point x is inside the ellipse iff

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} \le 1 \tag{1}$$

• Non axis-aligned ellipse: consider the example below, where the axes are along two orthonormal vectors u_1, u_2 :

To derive the algebraic expression for this ellipse, note that 1 can be read as follows:

$$\frac{(\text{length of projection on 1st axis})^2}{a^2} + \frac{(\text{length of projection on 2nd axis})^2}{b^2} \le 1$$

For the ellipse with axes along u_1, u_2 , the lengths of the projections of a point x are $|x \cdot u_1|$, $|x \cdot u_2|$, and thus x is in the ellipse iff $\frac{(x \cdot u_1)^2}{a^2} + \frac{(x \cdot u_2)^2}{b^2} \leq 1$

• By analogy, the 3d ellipsoid with axes given by an orthonormal set of vectors u_1, u_2, u_3 and axis-lengths a, b, c is defined by the inequality $\frac{(x \cdot u_1)^2}{a^2} + \frac{(x \cdot u_2)^2}{b^2} + \frac{(x \cdot u_3)^2}{c^2} \leq 1$. This is the resulting shape:

The discussion up to now focused on ellipses and ellipsoids centered at the origin. To get the algebraic expression for an ellipse/ellipsoid centered at some point x_0 , we replace x at the above inequalities with $x - x_0$ (why?).

• At this point, the generalization to \mathbb{R}^n is natural: for a given orthonormal basis u_1, u_2, \ldots, u_n (the axes), positive numbers a_1, a_2, \ldots, a_n (axis-lengths), and point x_0 (center), the set

$$E = \left\{ x \in \mathbb{R}^n \ \left| \ \sum_{i=1}^n \frac{((x-x_0) \cdot u_i)^2}{a_i^2} \le 1 \right\} \right.$$
(2)

is called an ellipsoid. Now, the sum in 2 can be written compactly using matrices: let $U := [u_1, u_2, \ldots, u_n], \Lambda := diag(1/a_1, 1/a_2, \ldots, 1/a_n)$. Then,

$$\sum_{i=1}^{n} \frac{\left((x-x_{0}) \cdot u_{i}\right)^{2}}{a_{i}^{2}} = \|\Lambda U^{\top}(x-x_{0})\|^{2} = \left(\Lambda U^{\top}(x-x_{0})\right)^{\top} \left(\Lambda U^{\top}(x-x_{0})\right)$$
$$= (x-x_{0})^{\top} U \Lambda^{\top} \Lambda U^{\top}(x-x_{0})$$
$$= (x-x_{0})^{\top} U \Lambda^{2} U^{\top}(x-x_{0})$$

In the middle, we have a symmetric matrix $A := U\Lambda^2 U^{\top}$, which appears in its eigenvalue decomposition. Since $\Lambda^2 = diag(1/a_1^2, \ldots, 1/a_n^2)$, we have that A is positive definite! Observe that since we started with an arbitrary orthonormal basis u_1, \ldots, u_n and with arbitrary axislengths a_1, \ldots, a_n , we end with an arbitrary positive definite matrix A. We have essentially proven the proposition below:

Proposition 8. A set E is an ellipsoid in \mathbb{R}^n iff $E = \{x \in \mathbb{R}^n \mid (x - x_0)^\top A(x - x_0) \leq 1\}$, for some positive definite matrix A, and some $x_0 \in \mathbb{R}^n$.

3 Convex Sets

3.1 Lines and Line Segments

Before we define convexity, we remember the definition of a line in \mathbb{R}^n : a line connecting two points $x, y \in \mathbb{R}^n$ is defined to be the set $\{x + \theta(y - x) \mid \theta \in \mathbb{R}\}$. This definition comes from generalizing the algebraic expression for the line on the plane and in space. Here is why: consider a line in space connecting two different points $x, y \in \mathbb{R}^3$. Using vectors, a point z is on the line iff $\overrightarrow{Oz} = \overrightarrow{Ox} + \theta \overrightarrow{xy}$, for some $\theta \in \mathbb{R}$ (see left figure below). Using the correspondance between points and vectors, the last equation is equivalent to $z = x + \theta(y - x)$. Furthermore, from our reasoning follows that as θ moves from 0 to 1, the point z moves from x to y (see right figure below).

From the discussion above, we see that the natural way to define the line segment connecting two points $x, y \in \mathbb{R}^n$ is $[x, y] := \{x + \theta(y - x) \mid \theta \in [0, 1]\} = \{(1 - \theta)x + \theta y \mid \theta \in [0, 1]\}$

3.2 Convex Sets

Definition 9. A set K in \mathbb{R}^n is convex if for any $x, y \in K$, we have $[x, y] \subseteq K$.

The sets below are examples of convex and non-convex sets on the plane:

Some more examples of convex sets on the plane are single points, line segments, and convex polygons:

We now move to examples of convex sets in \mathbb{R}^n .

3.3 Hyperplanes

A hyperplane is a set $\{x \in \mathbb{R}^n \mid a \cdot x = b\}$, for some $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in \mathbb{R}$. Hyperplanes generalize planes in \mathbb{R}^3 and lines in \mathbb{R}^2 . I remind you why this is the case: consider a plane in \mathbb{R}^3 with normal vector a and a point x_0 on it. Then, a point x belongs to the plane iff $a \cdot (x - x_0) = 0 \leftrightarrow a \cdot x = a \cdot x_0$, and $b := a \cdot x_0$. We showed that every plane is a set $\{x \in \mathbb{R}^n \mid a \cdot x = b\}$, for some $a \in \mathbb{R}^n$, $a \neq 0$ and $b \in \mathbb{R}$. We also need to show that every such set is a plane. First of all, such a set is always nonempty (why?). Let x_0 a point in it. Then, from the previous argument, the set is precisely the plane with normal vector a, that contains x_0 .

For the case of lines on the plane the same reasoning applies (the vector a will be a normal vector to the line).

Proposition 10. Hyperplanes are convex.

Proof. Let x, y points of a hyperplane with parameters a, b. Let $(1 - \theta)x + \theta y$ (where $\theta \in [0, 1]$) an arbitrary point on [x, y]. Then, $a \cdot ((1 - \theta)x + \theta y) = (1 - \theta)a \cdot x + \theta a \cdot y = b$.

3.4 Halfspaces

A halfspace is a set $\{x \in \mathbb{R}^n \mid a \cdot x \leq b\}$, where $a \in \mathbb{R}^n, a \neq 0$ and $b \in \mathbb{R}$. It generalizes 3d halfspaces and 2d halfplanes. Here is why: consider a 3d plane; a halspace is everything that is not above the plane:

We see in the picture that a point x is above the plane iff $a \cdot (x - x_0) > 0$. The argument for 2d halfplanes is identical (a 2d halfplane is everything that is not above a line in \mathbb{R}^2).

Proposition 11. Halfspaces are convex.

The proof is same as before, so I omit it.

In the next class we will see more examples of convex sets in \mathbb{R}^n such as balls, ellipsoids and polyhedra. Now, we move on the most fundamental theorem for convex sets.

3.5 Separating Hyperplane Theorem

The following theorem says that given a closed convex set K, and a point x_0 outside it, there exists a hyperplane that separates K from x_0 . Below is an illustration in \mathbb{R}^2 .

Theorem 12. Let K be a closed ¹ convex set in \mathbb{R}^n . Let $x_0 \in \mathbb{R}^n$ such that $x_0 \notin K$. Theren, there exist nonzero $a \in \mathbb{R}^n$, and $b \in \mathbb{R}$ such that

$$a \cdot x_0 > b$$
$$a \cdot x < b, \ \forall x \in K$$

Remark 13. The assumption that K is closed is necessary (why?).

We will prove this theorem in the next class. In the problem posed for next week, you will prove a two-dimensional version of this theorem. The proof for this special case will reveal the key idea for proving the general theorem!

We end this lecture with a reminder from Analysis that will be helpful in subsequent classes:

¹A set is closed if it contains its boundary.

Theorem 14. Let $A \subseteq \mathbb{R}^n$ compact ², and $f : A \to \mathbb{R}$ continuous. Then, f attains its maximum and minimum values inside A.

²Compact means closed and bounded. Bounded means that there exists a ball that contains the set.