Examples of Convex Sets and Separating Hyperplane Theorem

Orestis Plevrakis

In this lecture, we will see some more examples of convex sets and we will prove the separating hyperplane theorem.

1 Examples of Convex Sets

1.1 Balls

Let $x_{0} \in \mathbb{R}^{n}$ and $r>0$. We define the open ball with center x_{0} and radius r as

$$
B\left(x_{0}, r\right):=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|<r\right\}
$$

The closed ball is defined as $\overline{B\left(x_{0}, r\right)}:=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\| \leq r\right\}$.
Proposition 1. Let $x_{0} \in \mathbb{R}^{n}$ and $r>0$. Then, both $B\left(x_{0}, r\right), \overline{B\left(x_{0}, r\right)}$ are convex.
Proof. I give the proof for $K:=\overline{B\left(x_{0}, r\right)}$ (the proof for open balls is identical). Let $x, y \in K$ and $\theta \in[0,1]$. I will show that $(1-\theta) x+\theta y \in K$.

$$
\begin{aligned}
\left\|(1-\theta) x+\theta y-x_{0}\right\| & =\left\|(1-\theta) x+\theta y-\left((1-\theta) x_{0}+\theta x_{0}\right)\right\| \\
& =\left\|(1-\theta)\left(x-x_{0}\right)+\theta\left(y-x_{0}\right)\right\| \\
& \leq(1-\theta)\left\|x-x_{0}\right\|+\theta\left\|y-x_{0}\right\| \leq(1-\theta) r+\theta r=r
\end{aligned}
$$

1.2 Ellipsoids

Last time we saw that ellipsoids are sets of the form $\left\{x \in \mathbb{R}^{n} \mid\left(x-x_{0}\right)^{\top} A\left(x-x_{0}\right) \leq 1\right\}$, where $x_{0} \in \mathbb{R}^{n}, A \in \mathbb{R}^{n \times n}, A \succ 0$.

Proposition 2. Ellipsoids are convex.
Proof. We will use the following characterization of positive semi-definite matrices (PSD): a matrix $A \in \mathbb{R}^{n \times n}$ is PSD iff there exists a matrix $Q \in \mathbb{R}^{n \times n}$ such that $A=Q^{\top} Q$ (you will prove this at the second homework). Now, fix an $x_{0} \in \mathbb{R}^{n}$, an $A \in \mathbb{R}^{n \times n}, A \succ 0$, a matrix Q as above, and consider the corresponding ellipsoid E. Then, $x \in E \leftrightarrow\left\|Q\left(x-x_{0}\right)\right\| \leq 1$. Let $x, y \in E$ and $\theta \in[0,1]$. The proof now proceeds as the previous one:

$$
\begin{aligned}
\left\|Q\left((1-\theta) x+\theta y-x_{0}\right)\right\| & =\left\|Q\left((1-\theta)\left(x-x_{0}\right)+\theta\left(y-x_{0}\right)\right)\right\| \\
& \leq(1-\theta)\left\|Q\left(x-x_{0}\right)\right\|+\theta\left\|Q\left(y-x_{0}\right)\right\| \leq 1-\theta+\theta=1
\end{aligned}
$$

1.3 Polyhedra

A polyhedron is defined as a set of the form $\left\{x \in \mathbb{R}^{n} \mid a_{i} \cdot x \leq b_{i}, i=1, \ldots, m\right\}$, for some $a_{i} \in \mathbb{R}^{n}, a_{i} \neq 0, b_{i} \in \mathbb{R}$. In other words, a polyhedron is a finite intersection of halfspaces: $\cap_{i=1}^{m}\left\{x \in \mathbb{R}^{n} \mid a_{i} \cdot x \leq b_{i}\right\}$. Using the following proposition, we get that polyhedra are convex.

Proposition 3. Let K_{1}, K_{2} convex sets in \mathbb{R}^{n}. Then $K_{1} \cap K_{2}$ is convex.
Proof. If $x, y \in K_{1} \cap K_{2}$, then $[x, y] \subseteq K_{1}, K_{2}$, and thus $[x, y] \subseteq K_{1} \cap K_{2}$.
In two dimensions, bounded polyhedra are convex polygons.

Figure 1: A 2d bounded polyhedron (convex polygon) on the left, and an unbounded on the right.
Here is an example of a three-dimensional polyhedron:

2 Separating Hyperplane Theorem

In the last lecture we mentioned the following theorem:
Theorem 4. Let K be a closed ${ }^{1}$ convex set in \mathbb{R}^{n}. Let $x_{0} \in \mathbb{R}^{n}$ such that $x_{0} \notin K$. Then, there exist nonzero $a \in \mathbb{R}^{n}$, and $b \in \mathbb{R}$ such that

$$
\begin{aligned}
& a \cdot x_{0}>b \\
& a \cdot x<b, \forall x \in K
\end{aligned}
$$

This theorem says that given a closed convex set K, and a point x_{0} outside it, there exists a hyperplane that separates K from x_{0}. We will first prove it for the case where K is also bounded (i.e., K is compact), and after we will show how this extra assumption can be removed. Now, whenever we want to show something non-trivial that holds in \mathbb{R}^{n}, it is almost always a good idea to try to show it first in dimensions 1,2 , or even 3 . In these dimensions we can visualize what is going on, and we can also use classical Euclidean geometry, making it easier to come up with a solution. It happens often that the solution for such special cases reveals insights about how to attack the general. This is what will happen here.

[^0]
2.1 Two dimensions

Before I go into the general case, I prove the following:
Theorem 5. Let K be a compact convex set in \mathbb{R}^{2}. Let $x_{0} \in \mathbb{R}^{2}$ such that $x_{0} \notin K$. Then, there exists a line L that separates K from x_{0}.

Proof. In Problem 1, you had to prove a very similar theorem. Mimicking the proof ${ }^{2}$ for that one, we consider a point $x_{*} \in K$ that is closest to x_{0}, i.e.,

$$
\begin{equation*}
\left\|x_{0}-x_{*}\right\|=\inf \left\{\left\|x_{0}-x\right\| \mid x \in K\right\} \tag{1}
\end{equation*}
$$

Such x_{*} exists because K is compact and the function $f: K \rightarrow \mathbb{R}$ defined as $f(x)=\left\|x_{0}-x\right\|$ is continuous. Let x_{μ} be the midpoint of the segment $\left[x_{0}, x_{*}\right]$. We define L to be the line passing through x_{μ} that is perpendicular to $\left[x_{0}, x_{*}\right]$. Now, we need to show why x_{0} and K lie on opposite

sides of L. There are several ways to prove this and all of them can be generalized to show the theorem for \mathbb{R}^{n}. Here is one way: Suppose there exists a point $x \in K$ such that either $x \in L$ or x is on the same side of L as x_{0}. This implies that the angle $\phi:=\angle x_{0} x_{*} x$ is acute (less that 90 degrees). Now that implies that the segment $\left[x_{*}, x\right]$ intersects the interior of the circle with center x_{0} and radius $\left\|x_{0}-x_{*}\right\|$ (see Figure 2). However, since K is convex, we have $\left[x_{*}, x\right] \subseteq K$, so there exists a point in K that is closer to x_{0} than x_{*}, contradiction.

Figure 2: In the left diagram, you see an illustration of the argument. In the right diagram, the orange line is the tangent, and you can see why any halfline that starts from x_{*} and forms acute angle with $\left[x_{*}, x_{0}\right]$ will intersect (at least in its very beginning) the interior of the circle.

2.2 Proof of Theorem 4

I first prove the theorem assuming that K is bounded. The proof will simply be a direct translation of the above geometric argument, to the language of linear algebra. Let $x_{*} \in K$ such that

[^1]$\left\|x_{0}-x_{*}\right\|=\inf \left\{\left\|x_{0}-x\right\| \mid x \in K\right\}$ (observe that the existence of such x_{*} will be the only place we used compactness). We define
\[

$$
\begin{aligned}
x_{\mu} & :=\frac{x_{0}+x_{*}}{2} \\
a & :=x_{0}-x_{*} \\
b & :=a \cdot x_{\mu}
\end{aligned}
$$
\]

First, we show that $a \cdot x_{0}>b$:

$$
a \cdot x_{0}-b=a \cdot\left(x_{0}-x_{\mu}\right)=\frac{\left\|x_{0}-x_{*}\right\|^{2}}{2}>0
$$

Now, suppose that there exists an $x \in K$, such that

$$
\begin{equation*}
a \cdot x \geq b \tag{2}
\end{equation*}
$$

Motivated by the two-dimensional proof, we want to use 2 to show that the angle between the vectors $x_{0}-x_{*}$ and $x-x_{*}$ is acute, i.e., $A:=\left(x_{0}-x_{*}\right) \cdot\left(x-x_{*}\right)>0$. Let's show it:

$$
a \cdot x-b=a \cdot\left(x-x_{\mu}\right)=\left(x_{0}-x_{*}\right) \cdot\left(x-x_{*}+x_{*}-x_{\mu}\right)=A+\left(x_{0}-x_{*}\right) \cdot\left(x_{*}-x_{\mu}\right)
$$

By construction, $x_{0}-x_{*}, x_{*}-x_{\mu}$ have opposite directions. Here is the algebraic proof: $\left(x_{0}-x_{*}\right) \cdot\left(x_{*}-x_{\mu}\right)=-\frac{\left\|x_{0}-x_{*}\right\|^{2}}{2}<0$. Thus, $A>0$.

Now, by convexity, we have $\left[x_{*}, x\right] \subseteq K$. Again motivated by the two-dimensional proof, the plan is to show that for small enough $\theta \in(0,1)$, we have that $\left\|x_{0}-\left((1-\theta) x_{*}+\theta x\right)\right\|<\left\|x_{0}-x_{*}\right\|$. ${ }^{3}$ Here is the proof: for any $\theta \in[0,1]$,

$$
\left\|x_{0}-\left((1-\theta) x_{*}+\theta x\right)\right\|^{2}=\left\|\left(x_{0}-x_{*}\right)-\theta\left(x-x_{*}\right)\right\|^{2}=\left\|x_{0}-x_{*}\right\|^{2}-2 \theta A+\theta^{2}\left\|x-x_{*}\right\|^{2}
$$

Now, $-2 \theta A+\theta^{2}\left\|x-x_{*}\right\|^{2}=\theta\left(-2 A+\theta\left\|x-x_{*}\right\|^{2}\right)$, and for small enough $\theta>0$, we have $-2 A+\theta\left\|x-x_{*}\right\|^{2}<0 .{ }^{4}$

2.2.1 Removing the assumption that K is bounded

As you can observe, the only place where we used that K is bounded was to argue that

$$
\begin{equation*}
\exists x_{*} \in K,\left\|x_{0}-x_{*}\right\|=\inf \left\{\left\|x_{0}-x\right\| \mid x \in K\right\} \tag{3}
\end{equation*}
$$

I now show that 3 holds, even when K is unbounded. Consider an arbitrary point $y \in K$, and let $R:=\left\|x_{0}-y\right\|$. Then, $\inf \left\{\left\|x_{0}-x\right\| \mid x \in K\right\}=\inf \left\{\left\|x_{0}-x\right\| \mid x \in K \cap \overline{B\left(x_{0}, R\right)}\right\}$. But now, $K \cap \overline{B\left(x_{0}, R\right)}$ is bounded, and is also closed (intersection of two closed sets is closed). Thus, since continuous functions over compact sets attain their minimum value, we get 3 .

[^2]
[^0]: ${ }^{1} \mathrm{~A}$ set is closed if it contains its boundary.

[^1]: ${ }^{2}$ You can see Problem 1 and its solution in the course website.

[^2]: ${ }^{3}$ If it is unclear to you why we are looking at small values of $\theta \in(0,1)$, revisit Section 3.1 in lecture 2 .
 ${ }^{4}$ Intuitively, for small $\theta>0$, we have $\theta^{2} \ll \theta$ which makes $-2 \theta A$ dominate over $\theta^{2}\left\|x-x_{*}\right\|^{2}$.

