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Orestis Plevrakis

In this lecture, we will see some more examples of convex sets and we will prove the separating
hyperplane theorem.

1 Examples of Convex Sets

1.1 Balls

Let x0 ∈ Rn and r > 0. We define the open ball with center x0 and radius r as

B(x0, r) := {x ∈ Rn | ∥x− x0∥ < r}

The closed ball is defined as B(x0, r) := {x ∈ Rn | ∥x− x0∥ ≤ r}.

Proposition 1. Let x0 ∈ Rn and r > 0. Then, both B(x0, r), B(x0, r) are convex.

Proof. I give the proof for K := B(x0, r) (the proof for open balls is identical). Let x, y ∈ K and
θ ∈ [0, 1]. I will show that (1− θ)x+ θy ∈ K.

∥(1− θ)x+ θy − x0∥ = ∥(1− θ)x+ θy − ((1− θ)x0 + θx0)∥
= ∥(1− θ)(x− x0) + θ(y − x0)∥
≤ (1− θ)∥x− x0∥+ θ∥y − x0∥ ≤ (1− θ)r + θr = r

1.2 Ellipsoids

Last time we saw that ellipsoids are sets of the form {x ∈ Rn | (x − x0)
⊤A(x − x0) ≤ 1}, where

x0 ∈ Rn, A ∈ Rn×n, A ≻ 0.

Proposition 2. Ellipsoids are convex.

Proof. We will use the following characterization of positive semi-definite matrices (PSD): a matrix
A ∈ Rn×n is PSD iff there exists a matrix Q ∈ Rn×n such that A = Q⊤Q (you will prove this at the
second homework). Now, fix an x0 ∈ Rn, an A ∈ Rn×n, A ≻ 0, a matrix Q as above, and consider
the corresponding ellipsoid E. Then, x ∈ E ↔ ∥Q(x − x0)∥ ≤ 1. Let x, y ∈ E and θ ∈ [0, 1]. The
proof now proceeds as the previous one:

∥Q ((1− θ)x+ θy − x0) ∥ = ∥Q ((1− θ)(x− x0) + θ(y − x0)) ∥
≤ (1− θ)∥Q(x− x0)∥+ θ∥Q(y − x0)∥ ≤ 1− θ + θ = 1
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1.3 Polyhedra

A polyhedron is defined as a set of the form {x ∈ Rn | ai · x ≤ bi, i = 1, . . . ,m}, for some
ai ∈ Rn, ai ̸= 0, bi ∈ R. In other words, a polyhedron is a finite intersection of halfspaces:
∩m
i=1{x ∈ Rn | ai · x ≤ bi}. Using the following proposition, we get that polyhedra are convex.

Proposition 3. Let K1,K2 convex sets in Rn. Then K1 ∩K2 is convex.

Proof. If x, y ∈ K1 ∩K2, then [x, y] ⊆ K1,K2, and thus [x, y] ⊆ K1 ∩K2.

In two dimensions, bounded polyhedra are convex polygons.

Figure 1: A 2d bounded polyhedron (convex polygon) on the left, and an unbounded on the right.

Here is an example of a three-dimensional polyhedron:

2 Separating Hyperplane Theorem

In the last lecture we mentioned the following theorem:

Theorem 4. Let K be a closed 1 convex set in Rn. Let x0 ∈ Rn such that x0 /∈ K. Then, there
exist nonzero a ∈ Rn, and b ∈ R such that

a · x0 > b

a · x < b, ∀x ∈ K

This theorem says that given a closed convex set K, and a point x0 outside it, there exists a
hyperplane that separates K from x0. We will first prove it for the case where K is also bounded
(i.e., K is compact), and after we will show how this extra assumption can be removed. Now,
whenever we want to show something non-trivial that holds in Rn, it is almost always a good idea
to try to show it first in dimensions 1, 2, or even 3. In these dimensions we can visualize what
is going on, and we can also use classical Euclidean geometry, making it easier to come up with
a solution. It happens often that the solution for such special cases reveals insights about how to
attack the general. This is what will happen here.

1A set is closed if it contains its boundary.
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2.1 Two dimensions

Before I go into the general case, I prove the following:

Theorem 5. Let K be a compact convex set in R2. Let x0 ∈ R2 such that x0 /∈ K. Then, there
exists a line L that separates K from x0.

Proof. In Problem 1, you had to prove a very similar theorem. Mimicking the proof2 for that one,
we consider a point x∗ ∈ K that is closest to x0, i.e.,

∥x0 − x∗∥ = inf{∥x0 − x∥ | x ∈ K} (1)

Such x∗ exists because K is compact and the function f : K → R defined as f(x) = ∥x0 − x∥
is continuous. Let xµ be the midpoint of the segment [x0, x∗]. We define L to be the line passing
through xµ that is perpendicular to [x0, x∗]. Now, we need to show why x0 and K lie on opposite

sides of L. There are several ways to prove this and all of them can be generalized to show the
theorem for Rn. Here is one way: Suppose there exists a point x ∈ K such that either x ∈ L or
x is on the same side of L as x0. This implies that the angle ϕ := ∠x0x∗x is acute (less that 90
degrees). Now that implies that the segment [x∗, x] intersects the interior of the circle with center
x0 and radius ∥x0 − x∗∥ (see Figure 2). However, since K is convex, we have [x∗, x] ⊆ K, so there
exists a point in K that is closer to x0 than x∗, contradiction.

Figure 2: In the left diagram, you see an illustration of the argument. In the right diagram, the
orange line is the tangent, and you can see why any halfline that starts from x∗ and forms acute
angle with [x∗, x0] will intersect (at least in its very beginning) the interior of the circle.

2.2 Proof of Theorem 4

I first prove the theorem assuming that K is bounded. The proof will simply be a direct translation
of the above geometric argument, to the language of linear algebra. Let x∗ ∈ K such that

2You can see Problem 1 and its solution in the course website.
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∥x0 − x∗∥ = inf{∥x0 − x∥ | x ∈ K} (observe that the existence of such x∗ will be the only place we
used compactness). We define

xµ :=
x0 + x∗

2
a := x0 − x∗

b := a · xµ

First, we show that a · x0 > b:

a · x0 − b = a · (x0 − xµ) =
∥x0 − x∗∥2

2
> 0

Now, suppose that there exists an x ∈ K, such that

a · x ≥ b (2)

Motivated by the two-dimensional proof, we want to use 2 to show that the angle between the
vectors x0 − x∗ and x− x∗ is acute, i.e., A := (x0 − x∗) · (x− x∗) > 0. Let’s show it:

a · x− b = a · (x− xµ) = (x0 − x∗) · (x− x∗ + x∗ − xµ) = A+ (x0 − x∗) · (x∗ − xµ)

By construction, x0 − x∗, x∗ − xµ have opposite directions. Here is the algebraic proof:
(x0 − x∗) · (x∗ − xµ) = −∥x0−x∗∥2

2 < 0. Thus, A > 0.

Now, by convexity, we have [x∗, x] ⊆ K. Again motivated by the two-dimensional proof, the
plan is to show that for small enough θ ∈ (0, 1), we have that ∥x0 − ((1− θ)x∗ + θx)∥ < ∥x0 − x∗∥.
3Here is the proof: for any θ ∈ [0, 1],

∥x0 − ((1− θ)x∗ + θx)∥2 = ∥(x0 − x∗)− θ(x− x∗)∥2 = ∥x0 − x∗∥2 − 2θA+ θ2∥x− x∗∥2

Now, −2θA+ θ2∥x− x∗∥2 = θ(−2A+ θ∥x− x∗∥2), and for small enough θ > 0, we have
−2A+ θ∥x− x∗∥2 < 0. 4

2.2.1 Removing the assumption that K is bounded

As you can observe, the only place where we used that K is bounded was to argue that

∃x∗ ∈ K, ∥x0 − x∗∥ = inf{∥x0 − x∥ | x ∈ K} (3)

I now show that 3 holds, even when K is unbounded. Consider an arbitrary point y ∈ K, and
let R := ∥x0 − y∥. Then, inf{∥x0 − x∥ | x ∈ K} = inf{∥x0 − x∥ | x ∈ K ∩ B(x0, R)}. But now,
K ∩ B(x0, R) is bounded, and is also closed (intersection of two closed sets is closed). Thus, since
continuous functions over compact sets attain their minimum value, we get 3.

3If it is unclear to you why we are looking at small values of θ ∈ (0, 1), revisit Section 3.1 in lecture 2.
4Intuitively, for small θ > 0, we have θ2 << θ which makes −2θA dominate over θ2∥x− x∗∥2.
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