Advanced Algorithms: Solution of Homework 2

- 1. Consider the eigendecomposition: $A = U\Lambda U^{-1}$. Then, $\lambda I + A = \lambda U U^{-1} + U\Lambda U^{-1} = U(\lambda I + \Lambda)U^{-1}$.
- 2. Let $x \in \mathbb{R}^n$. Then, $x^{\top}ABA^{\top}x = (A^{\top}x)^{\top}B(A^{\top}x) \ge 0$.
- 3. Suppose $A \succeq 0$. Then $A = U\Lambda U^{\top}$, where U is orthonormal, and Λ is diagonal with nonnegative diagonal entries. Let $V := U\Lambda^{1/2}U^{\top}$ (V is symmetric and is called square root of A and denoted by $A^{1/2}$). We have $VV^{\top} = V^2 = A$. Suppose now $A = VV^{\top}$ for some matrix V. Let $x \in \mathbb{R}^n$. We have $x^{\top}Ax = x^{\top}VV^{\top}x = \|V^{\top}x\|^2 \ge 0$.
- 4. Consider the eigendecomposition: $A = U\Lambda U^{\top}$. Since the map $x \mapsto U^{\top}x$ is an invertible map from the unit sphere onto itself, we have $\max_{\|x\|=1} x^{\top} U\Lambda U^{\top}x = \max_{\|x\|=1} (U^{\top}x)^{\top}\Lambda U^{\top}x = \max_{\|y\|=1} y^{\top}\Lambda y$. The proof finishes by observing that for any $y \in \mathbb{R}^n$ such that $\|y\| = 1$, we have $y^{\top}\Lambda y = \sum_{i=1}^n \lambda_i y_i^2 \leq \lambda_{\max} \sum_{i=1}^n y_i^2 = \lambda_{max}$. The proof for λ_{\min} is identical.
- 5. Let $x \in \mathbb{R}^n$ nonzero. Then, $||Ax||^2 = x^\top A^\top A x = ||x||^2 (x/||x||)^\top A^\top A (x/||x||) \le ||x||^2 \lambda_{\max}(A^\top A)$.
- 6. Consider the eigendecomposition: $A = U\Lambda U^{\top}$. Then, $A^{\top}A = A^2 = U\Lambda^2 U^{\top}$.