Advanced Algorithms: Solution of Homework 2

1. Consider the eigendecomposition: $A=U \Lambda U^{-1}$.

Then, $\lambda I+A=\lambda U U^{-1}+U \Lambda U^{-1}=U(\lambda I+\Lambda) U^{-1}$.
2. Let $x \in \mathbb{R}^{n}$. Then, $x^{\top} A B A^{\top} x=\left(A^{\top} x\right)^{\top} B\left(A^{\top} x\right) \geq 0$.
3. Suppose $A \succcurlyeq 0$. Then $A=U \Lambda U^{\top}$, where U is orthonormal, and Λ is diagonal with nonnegative diagonal entries. Let $V:=U \Lambda^{1 / 2} U^{\top}$ (V is symmetric and is called square root of A and denoted by $A^{1 / 2}$). We have $V V^{\top}=V^{2}=A$. Suppose now $A=V V^{\top}$ for some matrix V. Let $x \in \mathbb{R}^{n}$. We have $x^{\top} A x=x^{\top} V V^{\top} x=\left\|V^{\top} x\right\|^{2} \geq 0$.
4. Consider the eigendecomposition: $A=U \Lambda U^{\top}$. Since the map $x \mapsto U^{\top} x$ is an invertible map from the unit sphere onto itself, we have $\max _{\|x\|=1} x^{\top} U \Lambda U^{\top} x=\max _{\|x\|=1}\left(U^{\top} x\right)^{\top} \Lambda U^{\top} x=$ $\max _{\|y\|=1} y^{\top} \Lambda y$. The proof finishes by observing that for any $y \in \mathbb{R}^{n}$ such that $\|y\|=1$, we have $y^{\top} \Lambda y=\sum_{i=1}^{n} \lambda_{i} y_{i}^{2} \leq \lambda_{\max } \sum_{i=1}^{n} y_{i}^{2}=\lambda_{\text {max }}$. The proof for $\lambda_{\min }$ is identical.
5. Let $x \in \mathbb{R}^{n}$ nonzero. Then, $\|A x\|^{2}=x^{\top} A^{\top} A x=\|x\|^{2}(x /\|x\|)^{\top} A^{\top} A(x /\|x\|) \leq\|x\|^{2} \lambda_{\max }\left(A^{\top} A\right)$.
6. Consider the eigendecomposition: $A=U \Lambda U^{\top}$. Then, $A^{\top} A=A^{2}=U \Lambda^{2} U^{\top}$.

