
Calculus Background and Convex Functions

Orestis Plevrakis

In this lecture we will do a review of some topics from Calculus, and we will define convex
functions.

1 Calculus

Definition 1. Let f : A → R, where A is an open subset of Rn. We say that f is C1 if all the
partial derivatives ∂f

∂xi
(x) exist in A and are continuous functions. We say that f is C2 if it is C1,

and also all the partial derivatives ∂2f
∂xixj

(x) exist in A and are continuous functions.

As you have seen, the gradient of f is

∇f(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
and also the Hessian matrix ∇2f(x) ∈ Rn×n has entries

∇2f(x) :=
∂2f

∂xixj
(x)

Clearly, ∇f(x) and ∇2f(x) are defined wherever the corresponding partial derivatives are defined.
From your Calculus class, you know that if f is C2, then ∇2f(x) ∈ Sn×n (Clairaut’s theorem).

1.1 Simple functions

Here are the simplest multivariate functions:

• Linear: f(x) = c⊤x, for some c ∈ Rn.

• Affine: f(x) = c⊤x+ b, for some c ∈ Rn, b ∈ R.

Observe that in both cases ∇f(x) = c, ∇2f(x) = 0 (zero matrix). Also, affine functions are exactly
the polynomials of degree at most one. Here are all the polynomials of degree at most 2:

• Quadratic functions: f(x) = x⊤Ax+ c⊤x+ b, for some A ∈ Sn×n, c ∈ Rn, b ∈ R. To see why
these are all the polynomials of degree at most 2, we expand the quadratic form:

x⊤Ax =
∑
i

xi
∑
j

Aijxj =
∑
i,j

Aijxixj =
∑
i

Aiix
2
i + 2

∑
i<j

Aijxixj

Furthermore, ∇f(x) = 2Ax+ c and ∇2f(x) = 2A (check this!).
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1.2 Restriction on a line

One of the most important techniques for analyzing multivariate functions is to take their restrictions
on lines. These restrictions are functions of one variable, and so we can employ on them all the
known machinery. Formally, let A ⊆ Rn open, f : A → R. Let x0 be a point in A and v a vector in
Rn. We define g(t) := f(x0 + tv) where the domain of g is dom(g) = {t ∈ R | x0 + tv ∈ A}, which
is an open set (why?).

We will study the derivatives of g. Let t ∈ dom(g).

• From chain rule, if f is C1 then g is C1 and g′(t) = ∇f(x0 + tv) · v. For t = 0, we get

d

dt
f(x0 + tv)

∣∣∣∣
t=0

= g′(0) = ∇f(x0) · v (1)

• If f is C2, then g is C2 and

g′′(t) =

(∑
i

∂f

∂xi
(x0 + tv)vi

)′

=
∑
i

vi∇
(
∂f

∂xi

)
(x0 + tv) · v

=
∑
i

vi
∑
j

∂2f

∂xixj
(x0 + tv) vj =

∑
i,j

∂2f

∂xixj
(x0 + tv)vivj = v⊤∇2f(x0 + tv)v

For t = 0, we get

d2

dt2
f(x0 + tv)

∣∣∣∣
t=0

= g′′(0) = v⊤∇2f(x0)v (2)

Equations 1 and 2 show us how the gradient and the Hessian matrix encode all the first and second
“directional derivatives”.

1.3 Fundamental Theorem of Calculus

This is the fundamental theorem of Calculus for functions of one variable: let f : I → R, where
I ⊆ R is a bounded interval, f is differentiable and has continuous derivative. Let x, y ∈ I. Then,
f(y) − f(x) =

∫ y
x f ′(u)du =

∫ 1
0 f ′(xt)dt (y − x), where xt := (1 − t)x + ty (in the last step I used

change of variables: t = (u − x)/(y − x)). For multivariate functions, the theorem generalizes as
follows:

Theorem 2. Let A ⊆ Rn open, and f : A → R. Let x, y ∈ A such that [x, y] ⊆ A.

• If f is C1, then f(y)− f(x) =
∫ 1
0 ∇f(xt)dt · (y − x).
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• If f is C2, then we also have ∇f(y)−∇f(x) =
∫ 1
0 ∇2f(xt)dt (y − x)

where xt := (1− t)x+ ty,∫ 1

0
∇f(xt)dt :=

(∫ 1

0

∂f

∂x1
(xt)dt, . . . ,

∫ 1

0

∂f

∂xn
(xt)dt

)
and

∫ 1
0 ∇2f(xt)dt is an n×n matrix whose (i, j) entry is defined as

(∫ 1
0 ∇2f(xt)dt

)
ij
:=
∫ 1
0

∂2f
∂xixj

(xt)dt.

Proof. Suppose f is C1. Let g(t) := f(x + t(y − x)), t ∈ [0, 1]. From chain rule, we have that g is
differentiable, g′ is continuous and g′(t) = ∇f(x+ t(y − x)) · (y − x), and so

f(y)− f(x) = g(1)− g(0) =

∫ 1

0
g′(t)dt =

∫ 1

0
∇f(xt) · (y − x)dt =

∫ 1

0
∇f(xt)dt · (y − x)

If f is C2, we can apply the first part of the theorem to ∂f
∂xi

:

∂f

∂xi
(y)− ∂f

∂xi
(x) =

∫ 1

0
∇
(
∂f

∂xi

)
(xt)dt · (y − x) =

∫ 1

0
∇2f(xt)i dt · (y − x)

where ∇2f(xt)i is the ith row of ∇2f(xt). This gives the second part.

1.4 Fermat’s theorem and tangent hyperplane

Definition 3. Let A ⊆ Rn, f : A → R, and x0 ∈ A.

• We say that x0 is a local minimum if there exists ϵ > 0 such that f(x) ≥ f(x0), for all
x ∈ B(x0, ϵ).

• We say that x0 is a local maximum if there exists ϵ > 0 such that f(x) ≤ f(x0), for all
x ∈ B(x0, ϵ).

Theorem 4. Let A ⊆ Rn open, f : A → R, x0 ∈ A. Suppose f is C1. If x0 is local minimum or
local maximum, then ∇f(x0) = 0.

Proof. Suppose x0 is local minimum (for local maximum the proof is identical). Let v ∈ Rn. Since
A is open, there exists δ > 0 such that g(t) = f(x0 + tv) is well-defined for all t ∈ (−δ, δ). Since
f is C1, we have that g is differentiable. Also, t = 0 is local minimum for g. Thus, from Fermat’s
theorem for functions of one variable, we get that g′(0) = 0, and so ∇f(x0) · v = 0. By choosing
v = ∇f(x0), we are done.

1.4.1 Geometric interpretation

The geometric interpretation of Fermat’s theorem for n = 1 is known: if x0 is a local extremum,
then the tangent line of the graph of f at the point (x0, f(x0)) is parallel to the x axis:
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The interpretation for general n is the following: if x0 is a local extremum, then the “tangent
hyperplane” of the “graph of f ” at (x0, f(x0)) is “parallel” to the hyperplane {(x, 0) | x ∈ Rn} ⊆
Rn+1. Note that I put “ ” around the undefined terms. We will define them now, and right after
we will verify the correctness of the above statement.

• Parallel hyperplanes: we say that two hyperplanes are parallel if they have parallel normal
vectors.

• Graph of a function f : we define it as Gf := {(x, f(x)) | x ∈ dom(f)} ⊆ Rn+1.

• Tangent hyperplane: the hyperplane tangent tangent on Gf at (x0, f(x0)) is

H := {(x, f(x0) +∇f(x0) · (x− x0)) | x ∈ Rn}

To see why this is true, check the relevant note at the course website.

Now that we defined everything, let’s verify our statement: if x0 is a local extremum, then Fermat’s
theorem says that ∇f(x0) = 0, and so the tangent hyperplane of Gf at (x0, f(x0)) is {(x, f(x0)) | x ∈
Rn}, which is parallel to {(x, 0) | x ∈ Rn} since they are both normal to (0, . . . , 0, 1).

2 Convex functions

Definition 5. Let f : K → R, where K is a convex subset of Rn. We say that f is convex if for
any x, y ∈ K we have

∀θ ∈ [0, 1], f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) (3)

Geometric interpretation. Let’s fix two points x, y ∈ K. We will now show that 3 means that
the chord connecting (x, f(x)) and (y, f(y)) is above Gf .
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Figure 1: Geometric interpretation for n = 1.

In Rn+1, the chord is

{(1− θ)(x, f(x)) + θ(y, f(y)) | θ ∈ [0, 1]} = {((1− θ)x+ θy, (1− θ)f(x) + θf(y)) | θ ∈ [0, 1]}

and the corresponding part of the graph of f is {((1− θ)x+ θy, f((1− θ)x+ θy)) | θ ∈ [0, 1]}, and
so 3 exactly says that the chord is above the graph.
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