Advanced Algorithms: Solution of Problem 3

Comment. By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

Exercise 1

Use Remark 6 from the notes of the 2 nd lecture.

Exercise 2

If g is convex, then for any $\theta \in[0,1]$,

$$
g((1-\theta) \cdot 0+\theta \cdot 1) \leq(1-\theta) g(0)+\theta g(1)
$$

Exercise 3

I start with a key special case ${ }^{1}$:
Special case: $A=I$
Here, $g(t)=-\ln \operatorname{det}((1-t) I+t B)$. As we saw in the previous homework, if the eigenvalues of B are $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $(1-t) I+t B$ are $1-t+t \lambda_{1}, \ldots, 1-t+t \lambda_{n}$. Since B is positive definite (PD), all λ_{i} are positive, and so all $1-t+t \lambda_{i}$ are positive too. Thus,

$$
g(t)=-\ln \left(\prod_{i=1}^{n}\left(1+t\left(\lambda_{i}-1\right)\right)\right)=-\sum_{i=1}^{n} \ln \left(1+t\left(\lambda_{i}-1\right)\right)
$$

And also

$$
g^{\prime}(t)=-\sum_{i=1}^{n} \frac{\lambda_{i}-1}{1+t\left(\lambda_{i}-1\right)}, \quad g^{\prime \prime}(t)=\sum_{i=1}^{n} \frac{\left(\lambda_{i}-1\right)^{2}}{\left(1+t\left(\lambda_{i}-1\right)\right)^{2}}
$$

which gives that $g^{\prime \prime}(t) \geq 0$, for all $t \in(0,1)$. Observe that for this proof, since t belongs in $(0,1)$, we only need that B is positive semidefinite (PSD). Can you see why?

The general case

How to use the special case to tackle the general? The first idea is to factor out A :

$$
\begin{aligned}
g(t)=-\ln \operatorname{det}((1-t) A+t B) & =-\ln \operatorname{det}\left(A\left((1-t) I+t A^{-1} B\right)\right) \\
& =-\ln \left(\operatorname{det}(A) \operatorname{det}\left((1-t) I+t A^{-1} B\right)\right) \\
& =-\ln \operatorname{det} A-\ln \operatorname{det}\left((1-t) I+t A^{-1} B\right)
\end{aligned}
$$

[^0]We can ignore the first term $-\ln \operatorname{det} A$, which will vanish after we take the derivative. The second term seems to be the same as in the special case, but with $A^{-1} B$ in the place of B. Are we done? No! In the proof for the special case, we heavily use the fact that B is PSD. However, $A^{-1} B$ is not necessarily symmetric! (which is a requirement for being PSD). In general, the product of symmetric matrices is not necessarily symmetric. OK, this attempt failed, but it taught us something: if we pull A outside, and leave in the place of B a PSD matrix, we are done. But, in Homework 2 (Problem 1.2), we saw that certain products of matrices are PSD:

Fact 1. Let $B, U \in \mathbb{R}^{n \times n}$, where $B \succcurlyeq 0$. Then, $U B U^{\top} \succcurlyeq 0$.
This combines perfectly with the other fact from Homework 2 (Problem 1.3):
Fact 2. If $A \in \mathbb{R}^{n \times n}$, such that $A \succcurlyeq 0$, then there exists $V \in \mathbb{R}^{n \times n}$ such that $A=V V^{\top}$.
Let's use Fact 2 for the matrix A in our problem. We write $A=V V^{\top}$. Since A is PD , it is invertible (why?), and thus V is invertible (why?). We are ready to do a factorization that will work for us:

$$
\begin{aligned}
g(t)=-\ln \operatorname{det}((1-t) A+t B) & =-\ln \operatorname{det}\left((1-t) V V^{\top}+t B\right) \\
& =-\ln \operatorname{det}\left(V\left((1-t) I+t V^{-1} B\left(V^{\top}\right)^{-1}\right) V^{\top}\right)
\end{aligned}
$$

Since $\left(V^{\top}\right)^{-1}=\left(V^{-1}\right)^{\top}$ and $\operatorname{det}(V)=\operatorname{det}\left(V^{\top}\right)$, we have

$$
g(t)=-\ln \left((\operatorname{det}(V))^{2} \operatorname{det}\left((1-t) I+t V^{-1} B\left(V^{-1}\right)^{\top}\right)\right)=-2 \ln \operatorname{det}(V)-\ln \operatorname{det}((1-t) I+t M)
$$

where $M=V^{-1} B\left(V^{-1}\right)^{\top} \succcurlyeq 0$, from Fact 1 . Now, we can simply repeat the steps from the special case, and we are done.

[^0]: ${ }^{1}$ Another instructive special case is when both A and B are diagonal.

