
Advanced Algorithms: Solution of Problem 3

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

Exercise 1

Use Remark 6 from the notes of the 2nd lecture.

Exercise 2

If g is convex, then for any θ ∈ [0, 1],

g((1− θ) · 0 + θ · 1) ≤ (1− θ)g(0) + θg(1)

Exercise 3

I start with a key special case1:

Special case: A = I

Here, g(t) = − ln det((1− t)I + tB). As we saw in the previous homework, if the eigenvalues of B
are λ1, . . . , λn, then the eigenvalues of (1 − t)I + tB are 1 − t + tλ1, . . . , 1 − t + tλn. Since B is
positive definite (PD), all λi are positive, and so all 1− t+ tλi are positive too. Thus,

g(t) = − ln

(
n∏

i=1

(1 + t(λi − 1))

)
= −

n∑
i=1

ln(1 + t(λi − 1))

And also

g′(t) = −
n∑

i=1

λi − 1

1 + t(λi − 1)
, g′′(t) =

n∑
i=1

(λi − 1)2

(1 + t(λi − 1))2

which gives that g′′(t) ≥ 0, for all t ∈ (0, 1). Observe that for this proof, since t belongs in (0, 1),
we only need that B is positive semidefinite (PSD). Can you see why?

The general case

How to use the special case to tackle the general? The first idea is to factor out A:

g(t) = − ln det((1− t)A+ tB) = − ln det
(
A
(
(1− t)I + tA−1B

))
= − ln

(
det(A) det

(
(1− t)I + tA−1B

))
= − ln detA− ln det((1− t)I + tA−1B)

1Another instructive special case is when both A and B are diagonal.
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We can ignore the first term − ln detA, which will vanish after we take the derivative. The second
term seems to be the same as in the special case, but with A−1B in the place of B. Are we done?
No! In the proof for the special case, we heavily use the fact that B is PSD. However, A−1B is not
necessarily symmetric! (which is a requirement for being PSD). In general, the product of symmetric
matrices is not necessarily symmetric. OK, this attempt failed, but it taught us something : if we pull
A outside, and leave in the place of B a PSD matrix, we are done. But, in Homework 2 (Problem
1.2), we saw that certain products of matrices are PSD:

Fact 1. Let B,U ∈ Rn×n, where B ≽ 0. Then, UBU⊤ ≽ 0.

This combines perfectly with the other fact from Homework 2 (Problem 1.3):

Fact 2. If A ∈ Rn×n, such that A ≽ 0, then there exists V ∈ Rn×n such that A = V V ⊤.

Let’s use Fact 2 for the matrix A in our problem. We write A = V V ⊤. Since A is PD, it is
invertible (why?), and thus V is invertible (why?). We are ready to do a factorization that will
work for us:

g(t) = − ln det((1− t)A+ tB) = − ln det((1− t)V V ⊤ + tB)

= − ln det
(
V
(
(1− t)I + tV −1B(V ⊤)−1

)
V ⊤
)

Since (V ⊤)−1 = (V −1)⊤ and det(V ) = det(V ⊤), we have

g(t) = − ln
(
(det(V ))2 det

(
(1− t)I + tV −1B(V −1)⊤

))
= −2 ln det(V )− ln det ((1− t)I + tM)

where M = V −1B(V −1)⊤ ≽ 0, from Fact 1. Now, we can simply repeat the steps from the special
case, and we are done.
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