
Convex Functions: Properties, Examples and Gradient Descent

Orestis Plevrakis

1 Properties of Convex Functions

In the last lecture, we defined convex functions. The following two theorems give some equivalent
definitions.

Theorem 1. Let K be a convex subset of Rn and f : K → R. Then, f is convex if and only if
all its restrictions on lines are convex, i.e., for all x0 ∈ K, v ∈ Rn, we have that the univariate
function g(t) = f(x0 + tv), with domain dom(g) = {t ∈ R | x0 + tv ∈ K}, is convex.

Figure 1: Example of restriction on a line of a convex function.

The proof follows immediately from the definition.

Proof. First of all, we observe that for any x0 ∈ K, v ∈ Rn, the set {t ∈ R | x0 + tv ∈ K} is a
convex subset of R (why?), and so it is an interval1.

Suppose f is convex, and let x0 ∈ K, v ∈ Rn, g the corresponding restriction of f . Then, for
any t1, t2 ∈ dom(g) and θ ∈ [0, 1], we have

g((1− θ)t1 + θt2) = f (x0 + ((1− θ)t1 + θt2) v) = f ((1− θ)(x0 + t1v) + θ(x0 + t2v))

≤ (1− θ)f(x0 + t1v) + θf(x0 + t2v)

= (1− θ)g(t1) + θg(t2)

Suppose all the restrictions of f on lines are convex. Let x, y ∈ K, θ ∈ [0, 1]. Set x0 = x, v = y−x,
and let g(t) = f(x+ t(y − x)). Then,

f((1− θ)x+ θy) = g(θ) = g((1− θ) · 0 + θ · 1) ≤ (1− θ)g(0) + θg(1) = (1− θ)f(x) + θf(y)

Theorem 2. Let K be an open convex subset of Rn, and f : K → R.
1Note that R and singleton-sets are considered to be intervals.
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• If f is C1, then f is convex if and only if for all x, x0 ∈ K, f(x) ≥ f(x0) +∇f(x0) · (x− x0).

• If f is C2, then f is convex if and only if for all x ∈ K, ∇2f(x) ≽ 0.

Observe that for n = 1, the theorem is well-known: the first condition says that the tangent
lines are below the graph, and the second says that the second derivative is nonnegative. To prove
Theorem 2, we will take for granted that it holds for n = 1.2 The idea of the proof is to use Theorem
1 to reduce the problem in one dimension, where we know that the theorem holds.

Proof. Since K is convex, the domain of any restriction of f on a line is an interval. Since K is also
open, this interval will be open (why?).

• Suppose f is convex. Let x0, x ∈ K. Consider the function g(t) = f(x0 + t(x − x0)), with
dom(g) = {t ∈ R | x0 + t(x− x0) ∈ K}. From Theorem 1, g is convex, and so

g(1) ≥ g(0) + g′(0)(1− 0)

which gives that f(x) ≥ f(x0) + ∇f(x0) · (x − x0). Now, suppose that for all x, x0 ∈ K,
f(x) ≥ f(x0) + ∇f(x0) · (x − x0). Let z0 ∈ K, v ∈ Rn. We will show that the function
g(t) = f(z0+ tv), with domain dom(g) = {t ∈ R | z0+ tv ∈ K}, is convex. It suffices to prove
that for any t0, t ∈ dom(g),

g(t) ≥ g(t0) + g′(t0)(t− t0)

and by substituting:

f(z0 + tv) ≥ f(z0 + t0v) +∇f(z0 + t0v) · v (t− t0)

which is true. Since z0, v where chosen arbitrarily, Theorem 1 implies that f is convex.

• Suppose f is convex. Let x0 ∈ K, v ∈ Rn, and consider the restriction of f on the induced
line: g(t) = f(x0 + tv). Then, g is convex, and so 0 ≤ g′′(0) = v⊤∇2f(x0)v. Since v
was chosen arbitrarily, we get ∇2f(x0) ≽ 0. Now, suppose that for all x ∈ K, we have
that ∇2f(x) ≽ 0. Let x0 ∈ K, v ∈ Rn. Then, for any t such that x0 + tv ∈ K, we have
d2

dt2
f(x0 + tv) = v⊤∇2f(x0 + tv)v ≥ 0

2 The simplest convex functions

We revisit the simple multivariate functions from the previous lecture, to check whether they are
convex. First of all, the affine functions f(x) = c⊤x+ b are convex, since ∇2f(x) = 0 ≽ 0.

2If you are curious to see a proof that includes the n = 1 case, check these notes.
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Figure 2: The graphs of two-dimensional affine functions are planes.

Let’s look at the quadratic functions now: f(x) = x⊤Ax + c⊤x + b (remember that here A is
symmetric). In the previous lecture we also saw that ∇2f(x) = 2A, and so f is convex if and only
if A ≽ 0. To get a sense of how convex and non-convex quadratic functions look like, consider the
two-dimensional quadratic: f(x1, x2) = λ1x

2
1 + λ2x

2
2, which corresponds to diagonal A, c = 0 and

b = 0. Observe that f is convex if and only if λ1, λ2 ≥ 0. Here are figures of convex and non-convex
versions of f :

(a) 0 < λ1 < λ2 (b) λ1 < 0 < λ2

Figure 3: A convex and a non-convex example. The x1 axis is colored in red.

3 Operations that preserve convexity

The following theorem often enables us to quickly show that a function is convex.

Theorem 3. Let f, g : K → R convex functions. Then,

• f + g is convex.

• For any α ≥ 0, αf is convex.

• For any A ∈ Rn×m, b ∈ Rn, the function g(x) = f(Ax + b), defined on every x such that
Ax+ b ∈ K, is convex.

Notice that the third part says that the composition of an affine function with a convex function
is convex. Caution: it is not true in general that the composition of two convex functions is convex.

Proof. They all follow immediately from the definition. We prove the third. First of all, the domain
of g is convex (why?). Let x, y ∈ dom(g) and θ ∈ [0, 1]. We have

g((1− θ)x+ θy) = f(A((1− θ)x+ θy) + b) = f((1− θ)(Ax+ b) + θ(Ay + b))

≤ (1− θ)f(Ax+ b) + θf(Ay + b)
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4 Gradient Descent

A natural iterative algorithm for minimizing a (not necessarily convex) function f is the following:
in each step, choose the direction at which f decreases at a maximum rate. Then, make a small
step in that direction, and iterate. It is easy to see that for non-convex functions such an algorithm
can easily get stuck around local minima. So, let’s suppose that f is convex. How do we find the
steepest direction? Suppose that at step t, we are at point xt, and let v be a unit vector. The
directional derivative along v is d

dhf(xt + hv)
∣∣
h=0

= ∇f(xt) · v, and if ∇f(xt) ̸= 0, the derivative
is minimized at vt := − ∇f(xt)

∥∇f(xt)∥ , with minimum value d
dhf(xt + hvt)

∣∣
h=0

= −∥∇f(xt)∥. Thus, the
iteration is

xt+1 = xt + ηtvt

where ηt > 0 is the stepsize. How to choose ηt? From Theorem 1, g(h) = f(xt+hvt) is convex, and
the following pictures suggest that ηt should be larger, for larger |g′(0)|. Thus, a reasonable choice

is to set ηt proportional to |g′(0)|, which equals ∥∇f(xt)∥. So, we choose ηt = η∥∇f(xt)∥, for some
constant η > 0 independent of time. The resulting iteration is

xt+1 = xt − η∇f(xt)

and the algorithm is called Gradient Descent (GD).3

4.1 Smoothness

We want GD to decrease the value of the function in each iteration. This is not possible for every
convex function. Consider the one-dimensional example of f(x) = |x|. No matter how small η is,
if we are close enough to zero, the next step will increase the function. The problem here is not
the non-differentiability, as we can construct a “smoothed” |x|: The problem is that the derivative
changes too quickly, and this manifests in the second derivative of the smoothed version, which will
be very large for x close to zero. To exclude these problematic cases, we define as β-smooth those
univariate twice-differentiable convex functions f(x), that satisfy f ′′(x) ≤ β in their whole domain.
For multivariate functions:

Definition 4. Let f : K → R a C2 convex function, and let β > 0. We say that f is β-smooth, if
all its second directional derivatives along unit vectors are at most β, i.e., for all x0 ∈ K and unit
vectors v ∈ Rn, we have v⊤∇2f(x0)v ≤ β.

3There are variations of GD where η actually decreases with t, but we will not get into those.
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Figure 4: f(x) = |x| and its smoothed version.

In Problem 1 of the second homework, we saw that if A is symmetric, then its maximum
eigenvalue is given by the formula λmax(A) = max∥v∥=1 v

⊤Av. Thus, a C2 convex function f is
β-smooth if and only if for every x0 in its domain, we have λmax(∇2f(x0)) ≤ β. The following
theorem gives an equivalent definition.

Theorem 5. Let f : K → R be C2 and convex. Let β > 0. Then, f is β-smooth if any only if for
any x, y ∈ K, ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

We will not prove this theorem, but you can freely use it in the problems if you need to.

4.2 Taylor’s theorem

If a convex function is β-smooth, we can bound how much its graph deviates locally from its tangent
hyperplane. This can be deduced from Taylor’s theorem:

Theorem 6. Let f : K → R a C2 function, and let x0 ∈ K. Then, for every x ∈ K such that the
line segment [x0, x] ⊆ K, we have

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)

⊤∇2f(ξ)(x− x0)

for some ξ ∈ [x0, x].

Observe that in the above theorem, 1
2(x − x0)

⊤∇2f(ξ)(x − x0) is the error for approximating
f(x) with its linearization at x0. For β-smooth functions, the error is

1

2
∥x− x0∥2

(
x− x0

∥x− x0∥

)⊤
∇2f(ξ)

(
x− x0

∥x− x0∥

)
≤ β

2
∥x− x0∥2 (1)

4.3 Convergence of Gradient Descent

In this lecture and in the beginning of the next, we will prove this theorem:

Theorem 7. Let f : Rn → R a C2, convex, β-smooth function, which attains its minimum at a
x∗ ∈ Rn. Suppose we run Gradient Descent on f with η = 1/β, starting from a point x1 ∈ Rn.
Then, for any ϵ > 0, there exists a t0 = O(β∥x1 − x∗∥2/ϵ), such that for all t ≥ t0, we have
f(xt) ≤ f(x∗) + ϵ.

The iterations of Gradient Descent are given by xt+1 = xt − 1
β∇f(xt). The proof starts by

applying Theorem 6 together with inequality 1, to prove that f(xt) is decreasing:

f(xt+1) ≤ f(xt) +∇f(xt) · (xt+1 − xt) +
β

2
∥xt+1 − xt∥2
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Since xt+1 − xt = − 1
β∇f(xt), we get

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥2

6


	Properties of Convex Functions
	The simplest convex functions
	Operations that preserve convexity
	Gradient Descent
	Smoothness
	Taylor's theorem
	Convergence of Gradient Descent


