Advanced Algorithms: Solution of Problem 4

Comment. By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

I will give two solutions.

Solution 1

We will employ the $2^{\text {nd }}$ and the $4^{\text {th }}$ strategy (special cases and formulating questions).

Special case: Quadratics

Let $f(x)=\left(x-x_{*}\right)^{\top} A\left(x-x_{*}\right)$ for some $A \succcurlyeq 0, x_{*} \in \mathbb{R}^{n}$. The point x_{*} is the minimum (why?). Note that $\nabla f(x)=2 A\left(x-x_{*}\right), \nabla^{2} f(x)=2 A$. The condition of β-smoothness means that $\lambda_{\max }(2 A) \leq \beta$, i.e., $\lambda_{\max }(A) \leq \beta / 2$. The GD update is $x_{t+1}=x_{t}-\frac{1}{\beta} 2 A\left(x_{t}-x_{*}\right)$, and thus

$$
\begin{equation*}
\left\|x_{t+1}-x_{*}\right\|=\left\|\left(x_{t}-x_{*}\right)-\frac{2}{\beta} A\left(x_{t}-x_{*}\right)\right\|=\left\|\left(I-\frac{2}{\beta} A\right)\left(x_{t}-x_{*}\right)\right\| \leq\left\|I-\frac{2}{\beta} A\right\|_{2}\left\|x_{t}-x_{*}\right\| \tag{1}
\end{equation*}
$$

where the last step follows from HW2, Problem 1.5. The matrix $M:=I-\frac{2}{\beta} A$ is symmetric, so from HW2, Problem 1.6, we have $\|M\|_{2}=\max \left(\left|\lambda_{\max }(M)\right|,\left|\lambda_{\min }(M)\right|\right)$. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A. We know that all $\lambda_{i} \in[0, \beta / 2]$. Now, from HW2, Problem 1.1, the eigenvalues of M are $1-\frac{2}{\beta} \lambda_{1}, \ldots, 1-\frac{2}{\beta} \lambda_{n}$. Since $\lambda_{i} \in[0, \beta / 2]$ implies that $\left|1-\frac{2}{\beta} \lambda_{i}\right| \leq 1$, we are done.

The General Case

Here $x_{t+1}=x_{t}-\frac{1}{\beta} \nabla f\left(x_{t}\right)$ and

$$
\left\|x_{t+1}-x_{*}\right\|=\left\|\left(x_{t}-x_{*}\right)-\frac{1}{\beta} \nabla f\left(x_{t}\right)\right\|
$$

Now we need to ask

- Q: What was the key fact that allowed us to solve the special case?
- A: First of all, we had

$$
\begin{equation*}
\nabla f\left(x_{t}\right)=B\left(x_{t}-x_{*}\right) \tag{2}
\end{equation*}
$$

where B was a matrix, and thus we could factorize. Second, we had bounds on the eigenvalues of B.

- Q: Do we know an analog of (2) for general functions?
- A: Yes! The fundamental theorem of calculus (FTC):

$$
\begin{equation*}
\forall x, y, \quad \nabla f(y)-\nabla f(x)=\int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau(y-x) \tag{3}
\end{equation*}
$$

where $x_{\tau}:=(1-\tau) x+\tau y$. For $y=x_{t}$ and $x=x_{*}$, we get $\nabla f\left(x_{t}\right)=\int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau\left(x_{t}-x_{*}\right)$.
So now, we get

$$
\begin{aligned}
\left\|x_{t+1}-x_{*}\right\|=\left\|\left(x_{t}-x_{*}\right)-\frac{1}{\beta} \int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau\left(x_{t}-x_{*}\right)\right\| & =\left\|\left(I-\frac{1}{\beta} \int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau\right)\left(x_{t}-x_{*}\right)\right\| \\
& \leq\left\|I-\frac{1}{\beta} \int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau\right\|_{2}\left\|x_{t}-x_{*}\right\|
\end{aligned}
$$

and observe that the matrix $H:=\int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau$ is symmetric (why?). Now, if we show that all eigenvalues of H lie inside the interval $[0, \beta]$, we can just repeat the steps of the special case and finish the proof.

Claim 1. All the eigenvalues of H lie inside the interval $[0, \beta]$.
Proof. From HW2, Problem 1.4, it suffices to show that for all $v \in \mathbb{R}^{n}$ with $\|v\|=1$, we have $v^{\top} H v \in[0, \beta]$. But, $v^{\top} \int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau v=\int_{0}^{1} v^{\top} \nabla^{2} f\left(x_{\tau}\right) v d \tau$. This is because

$$
\begin{aligned}
v^{\top} \int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau v & =\sum_{i, j}\left(\int_{0}^{1} \nabla^{2} f\left(x_{\tau}\right) d \tau\right)_{i j} v_{i} v_{j}=\sum_{i, j} \int_{0}^{1} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{\tau}\right) d \tau v_{i} v_{j} \\
& =\int_{0}^{1} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(x_{\tau}\right) v_{i} v_{j} d \tau=\int_{0}^{1} v^{\top} \nabla^{2} f\left(x_{\tau}\right) v d \tau
\end{aligned}
$$

From convexity and β-smoothness, $v^{\top} \nabla^{2} f\left(x_{\tau}\right) v \in[0, \beta]$, for all unit vectors v. This completes the proof.

Thus, we have proven that $\left\|x_{t+1}-x_{*}\right\| \leq\left\|x_{t}-x_{*}\right\|$.
Note. One more special case that could point you towards using FTC is the case $n=1$. There, $x_{t+1}=x_{t}-\frac{1}{\beta} f^{\prime}\left(x_{t}\right)$. The convexity and β-smoothness mean that $0 \leq f^{\prime \prime}(x) \leq \beta$ for all x. We need to connect f^{\prime} and $f^{\prime \prime}$. How to do it? FTC!

The techniques we just saw are very important and worth knowing. However, there is a shorter solution:

Solution 2

The convexity criterion: $f(y) \geq f(x)+\nabla f(x) \cdot(y-x)$ has an important consequence: for $y=x_{*}$, we get

$$
\begin{equation*}
(-\nabla f(x)) \cdot\left(x_{*}-x\right) \geq f(x)-f\left(x_{*}\right) \tag{4}
\end{equation*}
$$

If $f(x)>f\left(x_{*}\right)$, we have $(-\nabla f(x)) \cdot\left(x_{*}-x\right)>0$ which means that this angle is acute:

and this implies that if we start from x and we take a small enough step in the direction of $-\nabla f(x)$, we will get closer to x_{*}. The question now is, is the step $\eta=1 / \beta$ small enough? Back to GD,

$$
\left\|x_{t+1}-x_{*}\right\|^{2}=\left\|x_{t}-\frac{1}{\beta} \nabla f\left(x_{t}\right)-x_{*}\right\|^{2}=\left\|x_{t}-x_{*}\right\|^{2}-\frac{2}{\beta} \nabla f\left(x_{t}\right) \cdot\left(x_{t}-x_{*}\right)+\frac{1}{\beta^{2}}\left\|\nabla f\left(x_{t}\right)\right\|^{2}
$$

So, it suffices to prove that $-\frac{2}{\beta} \nabla f\left(x_{t}\right) \cdot\left(x_{t}-x_{*}\right)+\frac{1}{\beta^{2}}\left\|\nabla f\left(x_{t}\right)\right\|^{2} \leq 0$, i.e.,

$$
\left(-\nabla f\left(x_{t}\right)\right) \cdot\left(x_{*}-x_{t}\right) \geq \frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2}
$$

From (4), it suffices to show that $f\left(x_{t}\right)-f\left(x_{*}\right) \geq \frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2}$. But, we know that $f\left(x_{t+1}\right)-f\left(x_{t}\right) \leq$ $-\frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2}$, and since $f\left(x_{t+1}\right) \geq f\left(x_{*}\right)$ we are done. Note that the last argument says that since in the next step, the value decreases by $G_{t}:=\frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2}$, the maximum possible decrease: $f\left(x_{t}\right)-f\left(x_{*}\right)$ will be at least G_{t}.

