
Advanced Algorithms: Solution of Problem 4

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

I will give two solutions.

Solution 1

We will employ the 2nd and the 4th strategy (special cases and formulating questions).

Special case: Quadratics

Let f(x) = (x−x∗)
⊤A(x−x∗) for some A ≽ 0, x∗ ∈ Rn. The point x∗ is the minimum (why?). Note

that ∇f(x) = 2A(x− x∗),∇2f(x) = 2A. The condition of β-smoothness means that λmax(2A) ≤ β,
i.e., λmax(A) ≤ β/2. The GD update is xt+1 = xt − 1

β2A(xt − x∗), and thus

∥xt+1 − x∗∥ =

∥∥∥∥(xt − x∗)−
2

β
A(xt − x∗)

∥∥∥∥ =

∥∥∥∥(I − 2

β
A

)
(xt − x∗)

∥∥∥∥ ≤
∥∥∥∥I − 2

β
A

∥∥∥∥
2

∥xt − x∗∥ (1)

where the last step follows from HW2, Problem 1.5. The matrix M := I− 2
βA is symmetric, so from

HW2, Problem 1.6, we have ∥M∥2 = max(|λmax(M)|, |λmin(M)|). Let λ1, . . . , λn be the eigenvalues
of A. We know that all λi ∈ [0, β/2]. Now, from HW2, Problem 1.1, the eigenvalues of M are
1− 2

βλ1, . . . , 1− 2
βλn. Since λi ∈ [0, β/2] implies that

∣∣∣1− 2
βλi

∣∣∣ ≤ 1, we are done.

The General Case

Here xt+1 = xt − 1
β∇f(xt) and

∥xt+1 − x∗∥ =

∥∥∥∥(xt − x∗)−
1

β
∇f(xt)

∥∥∥∥
Now we need to ask

• Q: What was the key fact that allowed us to solve the special case?

• A: First of all, we had

∇f(xt) = B(xt − x∗) (2)

where B was a matrix, and thus we could factorize. Second, we had bounds on the eigenvalues
of B.

• Q: Do we know an analog of (2) for general functions?
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• A: Yes! The fundamental theorem of calculus (FTC):

∀x, y, ∇f(y)−∇f(x) =
∫ 1

0
∇2f(xτ )dτ(y − x) (3)

where xτ := (1− τ)x+ τy. For y = xt and x = x∗, we get ∇f(xt) =
∫ 1
0 ∇2f(xτ )dτ (xt − x∗).

So now, we get

∥xt+1 − x∗∥ =

∥∥∥∥(xt − x∗)−
1

β

∫ 1

0
∇2f(xτ )dτ(xt − x∗)

∥∥∥∥ =

∥∥∥∥(I − 1

β

∫ 1

0
∇2f(xτ )dτ

)
(xt − x∗)

∥∥∥∥
≤

∥∥∥∥I − 1

β

∫ 1

0
∇2f(xτ )dτ

∥∥∥∥
2

∥xt − x∗∥

and observe that the matrix H :=
∫ 1
0 ∇2f(xτ )dτ is symmetric (why?). Now, if we show that all

eigenvalues of H lie inside the interval [0, β], we can just repeat the steps of the special case and
finish the proof.

Claim 1. All the eigenvalues of H lie inside the interval [0, β].

Proof. From HW2, Problem 1.4, it suffices to show that for all v ∈ Rn with ∥v∥ = 1, we have
v⊤Hv ∈ [0, β]. But, v⊤

∫ 1
0 ∇2f(xτ )dτ v =

∫ 1
0 v⊤∇2f(xτ ) v dτ . This is because

v⊤
∫ 1

0
∇2f(xτ )dτ v =

∑
i,j

(∫ 1

0
∇2f(xτ )dτ

)
ij

vivj =
∑
i,j

∫ 1

0

∂2f

∂xi∂xj
(xτ )dτ vivj

=

∫ 1

0

∑
i,j

∂2f

∂xi∂xj
(xτ ) vivjdτ =

∫ 1

0
v⊤∇2f(xτ ) v dτ

From convexity and β-smoothness, v⊤∇2f(xτ ) v ∈ [0, β], for all unit vectors v. This completes the
proof.

Thus, we have proven that ∥xt+1 − x∗∥ ≤ ∥xt − x∗∥.

Note. One more special case that could point you towards using FTC is the case n = 1. There,
xt+1 = xt − 1

β f
′(xt). The convexity and β-smoothness mean that 0 ≤ f ′′(x) ≤ β for all x. We need

to connect f ′ and f ′′. How to do it? FTC!

The techniques we just saw are very important and worth knowing. However, there is a shorter
solution:
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Solution 2

The convexity criterion: f(y) ≥ f(x) +∇f(x) · (y − x) has an important consequence: for y = x∗,
we get

(−∇f(x)) · (x∗ − x) ≥ f(x)− f(x∗) (4)

If f(x) > f(x∗), we have (−∇f(x)) · (x∗ − x) > 0 which means that this angle is acute:

and this implies that if we start from x and we take a small enough step in the direction of −∇f(x),
we will get closer to x∗. The question now is, is the step η = 1/β small enough? Back to GD,

∥xt+1 − x∗∥2 = ∥xt −
1

β
∇f(xt)− x∗∥2 = ∥xt − x∗∥2 −

2

β
∇f(xt) · (xt − x∗) +

1

β2
∥∇f(xt)∥2

So, it suffices to prove that − 2
β∇f(xt) · (xt − x∗) +

1
β2 ∥∇f(xt)∥2 ≤ 0, i.e.,

(−∇f(xt)) · (x∗ − xt) ≥
1

2β
∥∇f(xt)∥2

From (4), it suffices to show that f(xt)−f(x∗) ≥ 1
2β∥∇f(xt)∥

2. But, we know that f(xt+1)−f(xt) ≤
− 1

2β∥∇f(xt)∥
2, and since f(xt+1) ≥ f(x∗) we are done. Note that the last argument says that

since in the next step, the value decreases by Gt :=
1
2β∥∇f(xt)∥

2, the maximum possible decrease:
f(xt)− f(x∗) will be at least Gt.
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