Advanced Algorithms: Solution of Problem 4

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

I will give two solutions.

Solution 1

We will employ the 2°¢ and the 4" strategy (special cases and formulating questions).

Special case: Quadratics

Let f(z) = (z—z.) " A(z—=,) for some A = 0, . € R". The point x, is the minimum (why?). Note
that Vf(z) = 2A(x — ), V2 f(z) = 2A. The condition of S-smoothness means that Apax(24) < 8,
i.e., Amax(A4) < /2. The GD update is z441 = ¢ — %QA(:L} — x,), and thus
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where the last step follows from HW2, Problem 1.5. The matrix M := [ — %A is symmetric, so from
HW?2, Problem 1.6, we have ||M || = max(|Amax(M)|, [Amin(M)]). Let A1, ..., A, be the eigenvalues
of A. We know that all A\; € [0,5/2]. Now, from HW2, Problem 1.1, the eigenvalues of M are

1— %)\1, 1= %)\n. Since A; € [0, 3/2] implies that ‘1 — %)\i
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<1, we are done.

The General Case

Here x441 = 21 — %Vf(:zt) and

(20— 7) — ;w(m

zt+1 — 24l =

Now we need to ask
e QQ: What was the key fact that allowed us to solve the special case?
e A: First of all, we had
Vf(xt) = B(a; — ) (2)

where B was a matrix, and thus we could factorize. Second, we had bounds on the eigenvalues
of B.

e Q: Do we know an analog of (2) for general functions?



e A: Yes! The fundamental theorem of calculus (FTC):
Vz,y, Vf(y) / VA f(x,)dr(y — x) (3)

where z; := (1 — 1)z + 7y. For y = x; and = = x,, we get Vf(xy) fo V2 f(z,)dT (2 — ).
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and observe that the matrix H := fol V2 f(z,)dr is symmetric (why?). Now, if we show that all
eigenvalues of H lie inside the interval [0, 8], we can just repeat the steps of the special case and
finish the proof.

So now, we get

(xt — x4) — ;/01 VA f(2,)dT (21 — 24)
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Claim 1. All the eigenvalues of H lie inside the interval [0, 3].

Proof. From HW2, Problem 1.4, it suffices to show that for all v € R™ with ||v|| = 1, we have
v ' Hv € [0,5]. But, v’ fol VA f(x,)dr v = fol v'V2f(x,) v dr. This is because
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/0 Vo f(zr)dr v = </ Ve f(z, dT)i Vv = E / 8:62830] (x7)dT viv;
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From convexity and 3-smoothness, v V2f(z,) v € [0, ], for all unit vectors v. This completes the
proof. O

Thus, we have proven that ||xi11 — x| < ||ze — 2]

Note. One more special case that could point you towards using FTC is the case n = 1. There,
Tpr1 = Ty — %f’(l’t). The convexity and S-smoothness mean that 0 < f”(z) < f8 for all z. We need
to connect f’ and f”. How to do it? FTC!

The techniques we just saw are very important and worth knowing. However, there is a shorter
solution:



Solution 2

The convexity criterion: f(y) > f(x) + Vf(x) - (y — ) has an important consequence: for y = z,
we get

(=Vf(2)) - (2 —2) = f(2) = f() (4)

If f(z) > f(x), we have (=Vf(x)) - (z« — ) > 0 which means that this angle is acute:
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and this implies that if we start from x and we take a small enough step in the direction of —Vf(z),
we will get closer to z,.. The question now is, is the step n = 1/ small enough? Back to GD,

lzess — zall? = [z - ;me) — 2a]? = [z — a2 — ;wm) (- ) + ;nv,f(wt)w

So, it suffices to prove that —%Vf(:nt) (e —xi) + ﬂ%HVf(xt)Hz <0, ie.,
1
(=Vf () - (0 — 1) > %HVJC(%)H2

From (4), it suffices to show that f(z;)— f(z.) > %HVf(xt)HQ But, we know that f(xy11)— f(z:) <
—%HVf(xt)HQ, and since f(xi41) > f(x«) we are done. Note that the last argument says that

since in the next step, the value decreases by G} := %HV]’ (z¢)]|?, the maximum possible decrease:
f(z) — f(xy) will be at least Gy.



