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Motivation

Our motivation is to investigate the complexity of algebraic

problems, e.g:

The common root of a system of polynomials.

The permanent or determinant of an n × n matrix.

Problems that arise in computational geometry, numeric analysis

etc. that involve operations (+,×,÷) in some �eld F.
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Preliminaries

We are refering to some �eld F, such as the real or the

complex numbers.

The input to our problems will be (x1, x2 . . . , xn) ∈ Fn of size

n.

But can we implement real numbers in computers?

We are looking mostly for lower bounds, so we can consider

stronger, unrealistic models.

We will now de�ne appropriate models to measure complexity

of these problems .
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Straight-Line Programs

De�nition

An algebraic straight line program of length T with input variables

x1, x2, . . . , xn ∈ F and built-in constants c1, c2, . . . , ck ∈ F is a

sequence of T statements of the form yi = zi1OP zi2 for

i = 1, 2, . . . ,T where OP is one of the �eld operations × or + and

each zi1, zi2 is either an input variable, or a built-in constant, or

some yj for j < i .
For every setting of values to the input variables, the straight line

computation consists of executing these simple statements in order

and �nd the values y1, y2, . . . , yT . The output of the computation

is the value yT .
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Straight-Line Programs

They look like programs without any branching or loops, just

simple assignments.

A straight line program for the equation

f (x1, x2, x3) = (x1 + x2)2(x3 + 4) + 2x2 would be :

y1 = x1 + x2

y2 = y1 × y1

y3 = x3 + 4

y4 = y3 × y2

y5 = x2 + x2

y6 = y4 + y5
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Straight-Line Programs

The asymptotic complexity is the length of the shortest family

of algebraic straight-line programs that compute a family of

functions {fn} where fn is a function of n variables.

Straight-line programs over {0, 1} are equivalent to Boolean

circuits.

Functions computable by polynomial length straight-line

programs:

Fast Fourier Transformation , Matrix Multiplication,

Determinant.
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Straight-Line Programs

Every straight line program computes a polynomial of degree

related to its length.

Proposition

The output of a straight line program of length T with variables

x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree at most 2T .

We can reach degree 2Tonly if we quadrate a single variable T

times.

What if we allow division (÷)?

Strassen proved that if a program uses division we can

transform it to an equivalent program that does not uses this

operator and has similar size.
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Blum-Shub-Smale Model

Generalization of a Turing Machine where each cell can hold

an element from a �eld F.
Shift and Branch states. Branch tests check only for equallity,

not inequality.

If we allow inequallity tests we could decide every language in

P/poly.

Computation states associated with a hard-wired function f
that computes and stores f (a) for some value a.
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Algebraic Circuits

An algebraic circuit is de�ned by analogy with a Boolean circuit.

The inputs nodes accept values from F and the internal nodes, the

gates, are labeled with one operation {+,×}. The circuit has one

output gate and each gate has fan-in 2.

f (x1, x2, x3) = (x1 + x2)2(x3 + 4) + 2x2
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Algebraic Circuits

De�nitions

1 The size of the circuit is the number of operational gates.

2 The depth of the circuit is length of the longest path.

Straight-line programs and algebraic circuits are equivalent:

Proposition

Let f : Fn → F. If f has an algebraic straight-line program of size S

then it has an algebraic circuit of size 3S. If f is computable by an

algebraic circuit of size S then it is computable by an algebraic

straight-line program of length S.
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The analogues of P and NP

De�nition (Valiant 1979)

A family of polynomials {pn} over F has polynomially bounded

degree if ∃c constant, ∀n ∈ N the degree of pn is at most cnc .

The class AlgP/poly (or VP) contains all polynomially

bounded degree families {pn} of polynomials that are

computable by algebraic circuits of polynomial size.

The class AlgNP/poly (or VNP) is the class of polynomially

bounded degree families {pn} that are de�nable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em)

where gm ∈ AlgP/poly and m is polynomial in n.
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On VNP

On the de�nition of VNP.

The idea is to de�ne VNP similar to NP.

A ∈ NP if exists B ∈ P such that x ∈ A ⇐⇒ ∃e such that

(x , e) ∈ B.

+ is the algebraic analog of Boolean OR.

The de�nition of NP involves ∃e∈{0,1}m−n that means∨
e∈{0,1}m−n and the algebraic analog is

∑
e∈{0,1}m−n .
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Reductions

De�nition (Projection reduction)

A function f (x1, x2, . . . , xn) is a projection of a function

g(y1, y2, . . . , ym) if there is a mapping σ from {y1, y2, . . . , ym} to
{0, 1, x1, x2, . . . , xn} such that

f (x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(ym)).
We say that f is projection-reducable to g if f is a projection of g .

Example

f (x1, x2) = x1 + x2 is projection reducible to

g(y1, y2, y3) = y2
1
y3 + y2 since f (x1, x2) = g(1, x1, x2).

If we have g we just hardwire its inputs to 0, 1 or xi and we can

compute f .
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Determinant and Permanent

De�nition

Determinant of an n × n matrix X = (Xi ,j) is de�ned:

det(X ) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Xi ,σ(i)

Permanent is de�ned:

perm(X ) =
∑
σ∈Sn

n∏
i=1

Xi ,σ(i)

where Sn is the set of all n! permutations on {1, 2, . . . , n} and
sgn(σ) = {−1, 1} is the signature of σ.
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Completeness

Theorem (Completeness of determinant and permanent (Valiant

1979))

Every polynomial family {pn} over any �eld F that is

computable by a circuit if size u is projection reducible to the

determinant function on u + 2 variables.

Every polynomial family {pn} in VNP is projection reducible

to the permanent function with polynomially more variables.

In other words, deteminant ∈ VP and

permanent ∈ VNP− complete.

Obviously VP ⊆ VNP and is an open question if VP = VNP

or not. It is believed that are not equal.
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VP=VNP implications

If one show that permanent has polynomial size algebraic

circuits will prove that VP =VNP.

Conjecture (Valiant )

The n × n permanent cannot be obtained as a projection of the

m ×m determinant where m = 2O(log2n).

The Cook reduction is a projection reduction and we know

that VP
?
= VNP must be answered before P

?
= NP.

If equality is proven would imply that the polynomial hierarchy

collapses to the second level.

Under GRY: VP = VNP =⇒ P/poly = NP/poly.

Also, if VP = VNP over Q then P#P ⊂ P/poly.
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Computation Trees

We will introduce a more powerful model, the algebraic

computation trees.

These are augmented straight-line programs with division and

branching when a variable yi is greater than zero or not.

You can use the model to solve decision problems on real

inputs f : Rn → {0, 1}.
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Computation Trees

De�nition (Algebraic Computation Tree over R)
It is a binary tree on input vector (x1, x2, . . . , xn) ∈ Rn for a

function f where each of the nodes is one of the following:

Leaf labeled �Accept� or �Reject�.

Computational node yv = yuOP yw , where yi = xj or yk<i and

OP = {+,−,×,÷,√}.
Branch node with out degree 2 upon a condition of the type

yv = 0, yv ≥ 0 or yv ≤ 0.
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Computation Trees

De�nition (Algebraic Computation Tree over

R (contd))

The computation follows a single path from

the root to a leaf evaluating functions at

internal nodes. It reaches an �Accept� i�

f (x1, x2, . . . , xn) = 1. The complexity is

measured using the following costs.

+,− are free.

×,÷,√ and branch nodes are charged

one unit cost.

The depth of the tree is the maximum

cost of any path in it.
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The power of the model

Algebraic computation trees are much stronger than real life

programs. A depth d algebraic computation tree would yield a

classical algorithm of size 2d since a tree can have 2d nodes. We

are going to use this model to investigate lower bounds.

Theorem (Meyer auf der Heide 1988)

The real-number version of SUBSET SUM can be solved using an

algebraic computation tree of depth O(n5).

De�nition (Algebraic computation tree complexity)

Let f : Rn → {0, 1}, the algebraic computation tree complexity of

f is:

AC (f ) = min
∀tree T computes f

{depth of T}
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Topological method

We will try to prove lower bounds for this model.

Using the topology of the sets f −1(0) and f −1(1). Speci�cally,
the number of connected components.

We say W ⊆ Rn is connected if ∀x , y ∈W there is a path

from x to y inside W . A connected component of W is a

maximal connected subset of W . By #(W ) we denote the

number of connected components of W .

Theorem (M.Ben-Or 1983)

For every f : Rn → {0, 1},

AC (f ) = Ω
(
log
(
max

{
#(f −1(1), #(Rn \ f −1(1)

})
− n
)
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Lower Bounds

Proving lower bounds for the problem Element

Distinctness: Given n numbers x1, x2, . . . , xn determine

whether they are all distinct. Equivalently, determine if∏
i 6=j(xi − xj) 6= 0.

The next and Ben-Or's theorems prove the lower bound:

Ω(nlogn).

Theorem

Let W =
{

(x1, x2, . . . , xn) |
∏

i 6=j(xi − xj) 6= 0
}
. Then #(W ) ≥ n!

Since logn! = Ω(nlogn) this proves the lower bound.
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Element Distinctness Lower Bounds

Proof.

For each permutation σ let:

Wσ =
{

(x1, x2, . . . , xn) | xσ(1) < xσ(2) < · · · < xσ(n)
}

Wσ is the set of all tuples (x1, x2, . . . , xn) which respect the order

given by σ and Wσ ⊆W . It su�ces to prove that for all σ′ 6= σ
the sets Wσ′ and Wσ are not connected.

For any distinct permutations σ and σ′ there exist two distinct

1 ≤ i , j ≤ n such that:

σ−1(i) < σ−1(j) =⇒ Xj − Xi > 0

σ′−1(i) > σ′−1(j) =⇒ Xj − Xi < 0
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Element Distinctness Lower Bounds

Proof.

These two points belong to Wσ and Wσ′ respectively. Lets try �nd

a path from one to the other. This path must pass from a point z
that make the term Xi − Xj = 0 . Since both are subsets of W this

would violate Xi − Xj 6= 0. So this point cannot belong to either

Wσ or Wσ′ and these are not connected.

Thus all distinct permutations are not connected and

#(W ) ≥ n!.

From Ben-Or's theorem this implies that the lower bound for

Element Distinctness is Ω(nlogn).
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S.Arora, B.Barak, "Computational Complexity, A Modern

Approach"

M.Sudan, Lectures notes on Algebra and Computation
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