Algebraic Computation

Tzovas Charilaos
MPLA
January 26, 2015

Motivation

Our motivation is to investigate the complexity of algebraic problems, e.g:

- The common root of a system of polynomials.
- The permanent or determinant of an $n \times n$ matrix.

Problems that arise in computational geometry, numeric analysis etc. that involve operations $(+, \times, \div)$ in some field \mathbb{F}.

Preliminaries

- We are refering to some field \mathbb{F}, such as the real or the complex numbers.
- The input to our problems will be $\left(x_{1}, x_{2} \ldots, x_{n}\right) \in \mathbb{F}^{n}$ of size n.
- But can we implement real numbers in computers?

Preliminaries

- We are refering to some field \mathbb{F}, such as the real or the complex numbers.
- The input to our problems will be $\left(x_{1}, x_{2} \ldots, x_{n}\right) \in \mathbb{F}^{n}$ of size n.
- But can we implement real numbers in computers?
- We are looking mostly for lower bounds, so we can consider stronger, unrealistic models.
- We will now define appropriate models to measure complexity of these problems.

Straight-Line Programs

Definition

An algebraic straight line program of length T with input variables $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}$ and built-in constants $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{F}$ is a sequence of T statements of the form $y_{i}=z_{i 1} O P z_{i 2}$ for $i=1,2, \ldots, T$ where $O P$ is one of the field operations \times or + and each $z_{i 1}, z_{i 2}$ is either an input variable, or a built-in constant, or some y_{j} for $j<i$.
For every setting of values to the input variables, the straight line computation consists of executing these simple statements in order and find the values $y_{1}, y_{2}, \ldots, y_{T}$. The output of the computation is the value y_{T}.

Straight-Line Programs

- They look like programs without any branching or loops, just simple assignments.
- A straight line program for the equation

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}\left(x_{3}+4\right)+2 x_{2} \text { would be : }
$$

$$
\begin{array}{r}
y_{1}=x_{1}+x_{2} \\
y_{2}=y_{1} \times y_{1} \\
y_{3}=x_{3}+4 \\
y_{4}=y_{3} \times y_{2} \\
y_{5}=x_{2}+x_{2} \\
y_{6}=y_{4}+y_{5}
\end{array}
$$

Straight-Line Programs

- The asymptotic complexity is the length of the shortest family of algebraic straight-line programs that compute a family of functions $\left\{f_{n}\right\}$ where f_{n} is a function of n variables.
- Straight-line programs over $\{0,1\}$ are equivalent to Boolean circuits.
- Functions computable by polynomial length straight-line programs:
- Fast Fourier Transformation, Matrix Multiplication, Determinant.

Straight-Line Programs

Every straight line program computes a polynomial of degree related to its length.

Proposition

The output of a straight line program of length T with variables $x_{1}, x_{2}, \ldots, x_{n}$ is a polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of degree at most 2^{T}.

We can reach degree 2^{T} only if we quadrate a single variable T times.

- What if we allow division (\div) ?

Straight-Line Programs

Every straight line program computes a polynomial of degree related to its length.

Proposition

The output of a straight line program of length T with variables $x_{1}, x_{2}, \ldots, x_{n}$ is a polynomial $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of degree at most 2^{T}.

We can reach degree 2^{T} only if we quadrate a single variable T times.

- What if we allow division (\div) ?
- Strassen proved that if a program uses division we can transform it to an equivalent program that does not uses this operator and has similar size.

Blum-Shub-Smale Model

- Generalization of a Turing Machine where each cell can hold an element from a field \mathbb{F}.
- Shift and Branch states. Branch tests check only for equallity, not inequality.
- If we allow inequallity tests we could decide every language in $\mathrm{P}_{\text {/poly }}$.
- Computation states associated with a hard-wired function f that computes and stores $f(a)$ for some value a.

Algebraic Circuits

An algebraic circuit is defined by analogy with a Boolean circuit. The inputs nodes accept values from \mathbb{F} and the internal nodes, the gates, are labeled with one operation $\{+, \times\}$. The circuit has one output gate and each gate has fan-in 2 .

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}\right)^{2}\left(x_{3}+4\right)+2 x_{2}
$$

Algebraic Circuits

Definitions

(1) The size of the circuit is the number of operational gates.
(2) The depth of the circuit is length of the longest path.

Straight-line programs and algebraic circuits are equivalent:

Proposition

Let $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$. If f has an algebraic straight-line program of size S then it has an algebraic circuit of size $3 S$. If f is computable by an algebraic circuit of size S then it is computable by an algebraic straight-line program of length S.

The analogues of P and NP

Definition (Valiant 1979)

A family of polynomials $\left\{p_{n}\right\}$ over \mathbb{F} has polynomially bounded degree if $\exists c$ constant, $\forall n \in \mathbb{N}$ the degree of p_{n} is at most $c n^{c}$.

- The class Alg P /poly (or VP) contains all polynomially bounded degree families $\left\{p_{n}\right\}$ of polynomials that are computable by algebraic circuits of polynomial size.
- The class AlgNP/poly (or VNP) is the class of polynomially bounded degree families $\left\{p_{n}\right\}$ that are definable as

$$
p_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{e \in\{0,1\}^{m-n}} g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}, e_{n+1}, \ldots, e_{m}\right)
$$

where $g_{m} \in \mathrm{AlgP}_{/ \text {poly }}$ and m is polynomial in n.

On VNP

On the definition of VNP.

- The idea is to define VNP similar to NP.
- $A \in \mathrm{NP}$ if exists $B \in \mathrm{P}$ such that $x \in A \Longleftrightarrow \exists e$ such that $(x, e) \in B$.
- + is the algebraic analog of Boolean OR.
- The definition of NP involves $\exists_{e \in\{0,1\}^{m-n}}$ that means $\bigvee_{e \in\{0,1\}^{m-n}}$ and the algebraic analog is $\sum_{e \in\{0,1\}^{m-n}}$.

Reductions

Definition (Projection reduction)

A function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a projection of a function $g\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ if there is a mapping σ from $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ to $\left\{0,1, x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g\left(\sigma\left(y_{1}\right), \sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m}\right)\right)$.
We say that f is projection-reducable to g if f is a projection of g.

Example

$f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ is projection reducible to
$g\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2} y_{3}+y_{2}$ since $f\left(x_{1}, x_{2}\right)=g\left(1, x_{1}, x_{2}\right)$.
If we have g we just hardwire its inputs to 0,1 or x_{i} and we can compute f.

Determinant and Permanent

Definition

Determinant of an $n \times n$ matrix $X=\left(X_{i, j}\right)$ is defined:

$$
\operatorname{det}(X)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} X_{i, \sigma(i)}
$$

Permanent is defined:

$$
\operatorname{perm}(X)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i, \sigma(i)}
$$

where S_{n} is the set of all n ! permutations on $\{1,2, \ldots, n\}$ and $\operatorname{sgn}(\sigma)=\{-1,1\}$ is the signature of σ.

Completeness

Theorem (Completeness of determinant and permanent (Valiant 1979))

- Every polynomial family $\left\{p_{n}\right\}$ over any field \mathbb{F} that is computable by a circuit if size u is projection reducible to the determinant function on $u+2$ variables.
- Every polynomial family $\left\{p_{n}\right\}$ in VNP is projection reducible to the permanent function with polynomially more variables.
- In other words, deteminant $\in \mathrm{VP}$ and permanent \in VNP - complete.
- Obviously VP \subseteq VNP and is an open question if VP $=$ VNP or not. It is believed that are not equal.

$\mathrm{VP}=\mathrm{VNP}$ implications

- If one show that permanent has polynomial size algebraic circuits will prove that VP $=\mathrm{VNP}$.

Conjecture (Valiant)

The $n \times n$ permanent cannot be obtained as a projection of the $m \times m$ determinant where $m=2^{O\left(\log ^{2} n\right)}$.

- The Cook reduction is a projection reduction and we know that VP $\stackrel{?}{=}$ VNP must be answered before $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$.
- If equality is proven would imply that the polynomial hierarchy collapses to the second level.
- Under GRY: VP $=\mathrm{VNP} \Longrightarrow \mathrm{P}_{/ \text {poly }}=\mathrm{NP}_{/ \text {poly }}$.
- Also, if VP $=$ VNP over \mathbb{Q} then $\mathrm{P}^{\# \mathrm{P}} \subset \mathrm{P}_{/ \text {poly }}$.

Computation Trees

- We will introduce a more powerful model, the algebraic computation trees.
- These are augmented straight-line programs with division and branching when a variable y_{i} is greater than zero or not.
- You can use the model to solve decision problems on real inputs $f: \mathbb{R}^{n} \rightarrow\{0,1\}$.

Computation Trees

Definition (Algebraic Computation Tree over \mathbb{R})

It is a binary tree on input vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ for a function f where each of the nodes is one of the following:

- Leaf labeled "Accept" or "Reject".
- Computational node $y_{v}=y_{u} O P y_{w}$, where $y_{i}=x_{j}$ or $y_{k<i}$ and $O P=\{+,-, \times, \div, \sqrt{ }\}$.
- Branch node with out degree 2 upon a condition of the type $y_{v}=0, y_{v} \geq 0$ or $y_{v} \leq 0$.

Computation Trees

Definition (Algebraic Computation Tree over \mathbb{R} (contd))

The computation follows a single path from the root to a leaf evaluating functions at internal nodes. It reaches an "Accept" iff $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$. The complexity is measured using the following costs.
-,+- are free.

- $\times, \div, \sqrt{ }$ and branch nodes are charged one unit cost.

- The depth of the tree is the maximum cost of any path in it.

The power of the model

Algebraic computation trees are much stronger than real life programs. A depth d algebraic computation tree would yield a classical algorithm of size 2^{d} since a tree can have 2^{d} nodes. We are going to use this model to investigate lower bounds.

Theorem (Meyer auf der Heide 1988)

The real-number version of SUBSET SUM can be solved using an algebraic computation tree of depth $O\left(n^{5}\right)$.

Definition (Algebraic computation tree complexity)
Let $f: \mathbb{R}^{n} \rightarrow\{0,1\}$, the algebraic computation tree complexity of f is:

$$
A C(f)=\min _{\forall \text { tree } T \text { computes } f}\{\text { depth of } T\}
$$

Topological method

- We will try to prove lower bounds for this model.
- Using the topology of the sets $f^{-1}(0)$ and $f^{-1}(1)$. Specifically, the number of connected components.
- We say $W \subseteq \mathbb{R}^{n}$ is connected if $\forall x, y \in W$ there is a path from x to y inside W. A connected component of W is a maximal connected subset of W. By $\#(W)$ we denote the number of connected components of W.

Theorem (M.Ben-Or 1983)

For every $f: \mathbb{R}^{n} \rightarrow\{0,1\}$,

$$
A C(f)=\Omega\left(\operatorname { l o g } \left(\max \left\{\#\left(f^{-1}(1), \#\left(\mathbb{R}^{n} \backslash f^{-1}(1)\right\}\right)-n\right)\right.\right.
$$

Lower Bounds

- Proving lower bounds for the problem Element Distinctness: Given n numbers $x_{1}, x_{2}, \ldots, x_{n}$ determine whether they are all distinct. Equivalently, determine if $\prod_{i \neq j}\left(x_{i}-x_{j}\right) \neq 0$.
- The next and Ben-Or's theorems prove the lower bound: $\Omega(n \log n)$.

Theorem

Let $W=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \prod_{i \neq j}\left(x_{i}-x_{j}\right) \neq 0\right\}$. Then $\#(W) \geq n!$
Since $\operatorname{logn}!=\Omega(n \log n)$ this proves the lower bound.

Element Distinctness Lower Bounds

Proof.

For each permutation σ let:

$$
W_{\sigma}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{\sigma(1)}<x_{\sigma(2)}<\cdots<x_{\sigma(n)}\right\}
$$

W_{σ} is the set of all tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ which respect the order given by σ and $W_{\sigma} \subseteq W$. It suffices to prove that for all $\sigma^{\prime} \neq \sigma$ the sets $W_{\sigma^{\prime}}$ and W_{σ} are not connected.
For any distinct permutations σ and σ^{\prime} there exist two distinct $1 \leq i, j \leq n$ such that:

$$
\begin{aligned}
\sigma^{-1}(i)<\sigma^{-1}(j) & \Longrightarrow X_{j}-X_{i}>0 \\
\sigma^{\prime-1}(i)>\sigma^{\prime-1}(j) & \Longrightarrow X_{j}-X_{i}<0
\end{aligned}
$$

Element Distinctness Lower Bounds

Proof.

These two points belong to W_{σ} and $W_{\sigma^{\prime}}$ respectively. Lets try find a path from one to the other. This path must pass from a point z that make the term $X_{i}-X_{j}=0$. Since both are subsets of W this would violate $X_{i}-X_{j} \neq 0$. So this point cannot belong to either W_{σ} or $W_{\sigma^{\prime}}$ and these are not connected.
Thus all distinct permutations are not connected and $\#(W) \geq n!$.

From Ben-Or's theorem this implies that the lower bound for Element Distinctness is $\Omega(n \operatorname{logn})$.

目 S.Arora, B.Barak, "Computational Complexity, A Modern Approach"
囦 M. Sudan, Lectures notes on Algebra and Computation

