
Introduction
Algebraic Computation Models
Algebraic Computation Trees

Algebraic Computation

Tzovas Charilaos

MPLA

January 26, 2015

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Motivation

Motivation

Our motivation is to investigate the complexity of algebraic

problems, e.g:

The common root of a system of polynomials.

The permanent or determinant of an n × n matrix.

Problems that arise in computational geometry, numeric analysis

etc. that involve operations (+,×,÷) in some �eld F.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Motivation

Preliminaries

We are refering to some �eld F, such as the real or the

complex numbers.

The input to our problems will be (x1, x2 . . . , xn) ∈ Fn of size

n.

But can we implement real numbers in computers?

We are looking mostly for lower bounds, so we can consider

stronger, unrealistic models.

We will now de�ne appropriate models to measure complexity

of these problems .

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Motivation

Preliminaries

We are refering to some �eld F, such as the real or the

complex numbers.

The input to our problems will be (x1, x2 . . . , xn) ∈ Fn of size

n.

But can we implement real numbers in computers?

We are looking mostly for lower bounds, so we can consider

stronger, unrealistic models.

We will now de�ne appropriate models to measure complexity

of these problems .

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Straight-Line Programs

De�nition

An algebraic straight line program of length T with input variables

x1, x2, . . . , xn ∈ F and built-in constants c1, c2, . . . , ck ∈ F is a

sequence of T statements of the form yi = zi1OP zi2 for

i = 1, 2, . . . ,T where OP is one of the �eld operations × or + and

each zi1, zi2 is either an input variable, or a built-in constant, or

some yj for j < i .
For every setting of values to the input variables, the straight line

computation consists of executing these simple statements in order

and �nd the values y1, y2, . . . , yT . The output of the computation

is the value yT .

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Straight-Line Programs

They look like programs without any branching or loops, just

simple assignments.

A straight line program for the equation

f (x1, x2, x3) = (x1 + x2)2(x3 + 4) + 2x2 would be :

y1 = x1 + x2

y2 = y1 × y1

y3 = x3 + 4

y4 = y3 × y2

y5 = x2 + x2

y6 = y4 + y5

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Straight-Line Programs

The asymptotic complexity is the length of the shortest family

of algebraic straight-line programs that compute a family of

functions {fn} where fn is a function of n variables.

Straight-line programs over {0, 1} are equivalent to Boolean

circuits.

Functions computable by polynomial length straight-line

programs:

Fast Fourier Transformation , Matrix Multiplication,

Determinant.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Straight-Line Programs

Every straight line program computes a polynomial of degree

related to its length.

Proposition

The output of a straight line program of length T with variables

x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree at most 2T .

We can reach degree 2Tonly if we quadrate a single variable T

times.

What if we allow division (÷)?

Strassen proved that if a program uses division we can

transform it to an equivalent program that does not uses this

operator and has similar size.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Straight-Line Programs

Every straight line program computes a polynomial of degree

related to its length.

Proposition

The output of a straight line program of length T with variables

x1, x2, . . . , xn is a polynomial p(x1, x2, . . . , xn) of degree at most 2T .

We can reach degree 2Tonly if we quadrate a single variable T

times.

What if we allow division (÷)?

Strassen proved that if a program uses division we can

transform it to an equivalent program that does not uses this

operator and has similar size.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Blum-Shub-Smale Model

Generalization of a Turing Machine where each cell can hold

an element from a �eld F.
Shift and Branch states. Branch tests check only for equallity,

not inequality.

If we allow inequallity tests we could decide every language in

P/poly.

Computation states associated with a hard-wired function f
that computes and stores f (a) for some value a.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Algebraic Circuits

An algebraic circuit is de�ned by analogy with a Boolean circuit.

The inputs nodes accept values from F and the internal nodes, the

gates, are labeled with one operation {+,×}. The circuit has one

output gate and each gate has fan-in 2.

f (x1, x2, x3) = (x1 + x2)2(x3 + 4) + 2x2

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Algebraic Circuits

De�nitions

1 The size of the circuit is the number of operational gates.

2 The depth of the circuit is length of the longest path.

Straight-line programs and algebraic circuits are equivalent:

Proposition

Let f : Fn → F. If f has an algebraic straight-line program of size S

then it has an algebraic circuit of size 3S. If f is computable by an

algebraic circuit of size S then it is computable by an algebraic

straight-line program of length S.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

The analogues of P and NP

De�nition (Valiant 1979)

A family of polynomials {pn} over F has polynomially bounded

degree if ∃c constant, ∀n ∈ N the degree of pn is at most cnc .

The class AlgP/poly (or VP) contains all polynomially

bounded degree families {pn} of polynomials that are

computable by algebraic circuits of polynomial size.

The class AlgNP/poly (or VNP) is the class of polynomially

bounded degree families {pn} that are de�nable as

pn(x1, x2, . . . , xn) =
∑

e∈{0,1}m−n

gm(x1, x2, . . . , xn, en+1, . . . , em)

where gm ∈ AlgP/poly and m is polynomial in n.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

On VNP

On the de�nition of VNP.

The idea is to de�ne VNP similar to NP.

A ∈ NP if exists B ∈ P such that x ∈ A ⇐⇒ ∃e such that

(x , e) ∈ B.

+ is the algebraic analog of Boolean OR.

The de�nition of NP involves ∃e∈{0,1}m−n that means∨
e∈{0,1}m−n and the algebraic analog is

∑
e∈{0,1}m−n .

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Reductions

De�nition (Projection reduction)

A function f (x1, x2, . . . , xn) is a projection of a function

g(y1, y2, . . . , ym) if there is a mapping σ from {y1, y2, . . . , ym} to
{0, 1, x1, x2, . . . , xn} such that

f (x1, x2, . . . , xn) = g(σ(y1), σ(y2), . . . , σ(ym)).
We say that f is projection-reducable to g if f is a projection of g .

Example

f (x1, x2) = x1 + x2 is projection reducible to

g(y1, y2, y3) = y2
1
y3 + y2 since f (x1, x2) = g(1, x1, x2).

If we have g we just hardwire its inputs to 0, 1 or xi and we can

compute f .

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Determinant and Permanent

De�nition

Determinant of an n × n matrix X = (Xi ,j) is de�ned:

det(X ) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

Xi ,σ(i)

Permanent is de�ned:

perm(X ) =
∑
σ∈Sn

n∏
i=1

Xi ,σ(i)

where Sn is the set of all n! permutations on {1, 2, . . . , n} and
sgn(σ) = {−1, 1} is the signature of σ.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

Completeness

Theorem (Completeness of determinant and permanent (Valiant

1979))

Every polynomial family {pn} over any �eld F that is

computable by a circuit if size u is projection reducible to the

determinant function on u + 2 variables.

Every polynomial family {pn} in VNP is projection reducible

to the permanent function with polynomially more variables.

In other words, deteminant ∈ VP and

permanent ∈ VNP− complete.

Obviously VP ⊆ VNP and is an open question if VP = VNP

or not. It is believed that are not equal.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

Straight-Line Programs
Blum-Shub-Smale model
Algebraic Circuits

VP=VNP implications

If one show that permanent has polynomial size algebraic

circuits will prove that VP =VNP.

Conjecture (Valiant )

The n × n permanent cannot be obtained as a projection of the

m ×m determinant where m = 2O(log2n).

The Cook reduction is a projection reduction and we know

that VP
?
= VNP must be answered before P

?
= NP.

If equality is proven would imply that the polynomial hierarchy

collapses to the second level.

Under GRY: VP = VNP =⇒ P/poly = NP/poly.

Also, if VP = VNP over Q then P#P ⊂ P/poly.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Computation Trees

We will introduce a more powerful model, the algebraic

computation trees.

These are augmented straight-line programs with division and

branching when a variable yi is greater than zero or not.

You can use the model to solve decision problems on real

inputs f : Rn → {0, 1}.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Computation Trees

De�nition (Algebraic Computation Tree over R)
It is a binary tree on input vector (x1, x2, . . . , xn) ∈ Rn for a

function f where each of the nodes is one of the following:

Leaf labeled �Accept� or �Reject�.

Computational node yv = yuOP yw , where yi = xj or yk<i and

OP = {+,−,×,÷,√}.
Branch node with out degree 2 upon a condition of the type

yv = 0, yv ≥ 0 or yv ≤ 0.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Computation Trees

De�nition (Algebraic Computation Tree over

R (contd))

The computation follows a single path from

the root to a leaf evaluating functions at

internal nodes. It reaches an �Accept� i�

f (x1, x2, . . . , xn) = 1. The complexity is

measured using the following costs.

+,− are free.

×,÷,√ and branch nodes are charged

one unit cost.

The depth of the tree is the maximum

cost of any path in it.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

The power of the model

Algebraic computation trees are much stronger than real life

programs. A depth d algebraic computation tree would yield a

classical algorithm of size 2d since a tree can have 2d nodes. We

are going to use this model to investigate lower bounds.

Theorem (Meyer auf der Heide 1988)

The real-number version of SUBSET SUM can be solved using an

algebraic computation tree of depth O(n5).

De�nition (Algebraic computation tree complexity)

Let f : Rn → {0, 1}, the algebraic computation tree complexity of

f is:

AC (f ) = min
∀tree T computes f

{depth of T}

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Topological method

We will try to prove lower bounds for this model.

Using the topology of the sets f −1(0) and f −1(1). Speci�cally,
the number of connected components.

We say W ⊆ Rn is connected if ∀x , y ∈W there is a path

from x to y inside W . A connected component of W is a

maximal connected subset of W . By #(W ) we denote the

number of connected components of W .

Theorem (M.Ben-Or 1983)

For every f : Rn → {0, 1},

AC (f ) = Ω
(
log
(
max

{
#(f −1(1), #(Rn \ f −1(1)

})
− n
)

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Lower Bounds

Proving lower bounds for the problem Element

Distinctness: Given n numbers x1, x2, . . . , xn determine

whether they are all distinct. Equivalently, determine if∏
i 6=j(xi − xj) 6= 0.

The next and Ben-Or's theorems prove the lower bound:

Ω(nlogn).

Theorem

Let W =
{

(x1, x2, . . . , xn) |
∏

i 6=j(xi − xj) 6= 0
}
. Then #(W ) ≥ n!

Since logn! = Ω(nlogn) this proves the lower bound.

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Element Distinctness Lower Bounds

Proof.

For each permutation σ let:

Wσ =
{

(x1, x2, . . . , xn) | xσ(1) < xσ(2) < · · · < xσ(n)
}

Wσ is the set of all tuples (x1, x2, . . . , xn) which respect the order

given by σ and Wσ ⊆W . It su�ces to prove that for all σ′ 6= σ
the sets Wσ′ and Wσ are not connected.

For any distinct permutations σ and σ′ there exist two distinct

1 ≤ i , j ≤ n such that:

σ−1(i) < σ−1(j) =⇒ Xj − Xi > 0

σ′−1(i) > σ′−1(j) =⇒ Xj − Xi < 0

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

Element Distinctness Lower Bounds

Proof.

These two points belong to Wσ and Wσ′ respectively. Lets try �nd

a path from one to the other. This path must pass from a point z
that make the term Xi − Xj = 0 . Since both are subsets of W this

would violate Xi − Xj 6= 0. So this point cannot belong to either

Wσ or Wσ′ and these are not connected.

Thus all distinct permutations are not connected and

#(W ) ≥ n!.

From Ben-Or's theorem this implies that the lower bound for

Element Distinctness is Ω(nlogn).

Tzovas Charilaos Algebraic Computation



Introduction
Algebraic Computation Models
Algebraic Computation Trees

De�nition
Topological method for lower bounds

S.Arora, B.Barak, "Computational Complexity, A Modern

Approach"

M.Sudan, Lectures notes on Algebra and Computation

Tzovas Charilaos Algebraic Computation


	Introduction
	Motivation
	Straight-Line Programs
	Blum-Shub-Smale model
	Algebraic Circuits

	Algebraic Computation Trees
	Definition
	Topological method for lower bounds


