# Algebraic Computation

## Tzovas Charilaos

MPLA

January 26, 2015

Tzovas Charilaos Algebraic Computation

< ロ > < 同 > < 回 > <

Our motivation is to investigate the complexity of algebraic problems, e.g.

Motivation

- The common root of a system of polynomials.
- The permanent or determinant of an  $n \times n$  matrix.

Problems that arise in computational geometry, numeric analysis etc. that involve operations  $(+, \times, \div)$  in some field  $\mathbb{F}$ .

# Preliminaries

- We are refering to some field 𝔽, such as the real or the complex numbers.
- The input to our problems will be  $(x_1, x_2 \dots, x_n) \in \mathbb{F}^n$  of size n.
- But can we implement real numbers in computers?

# Preliminaries

- We are refering to some field  $\mathbb F,$  such as the real or the complex numbers.
- The input to our problems will be  $(x_1, x_2 \dots, x_n) \in \mathbb{F}^n$  of size n.
- But can we implement real numbers in computers?
  - We are looking mostly for lower bounds, so we can consider stronger, unrealistic models.
- We will now define appropriate models to measure complexity of these problems .

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Straight-Line Programs

#### Definition

An algebraic straight line program of length T with input variables  $x_1, x_2, \ldots, x_n \in \mathbb{F}$  and built-in constants  $c_1, c_2, \ldots, c_k \in \mathbb{F}$  is a sequence of T statements of the form  $y_i = z_{i1}OP z_{i2}$  for  $i = 1, 2, \ldots, T$  where OP is one of the field operations  $\times$  or + and each  $z_{i1}, z_{i2}$  is either an input variable, or a built-in constant, or some  $y_j$  for j < i. For every setting of values to the input variables, the straight line computation consists of executing these simple statements in order and find the values  $y_1, y_2, \ldots, y_T$ . The *output* of the computation is the value  $y_1$ .

is the value y<sub>T</sub>.

(日) (同) (三) (

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Straight-Line Programs

- They look like programs without any branching or loops, just simple assignments.
- A straight line program for the equation  $f(x_1, x_2, x_3) = (x_1 + x_2)^2(x_3 + 4) + 2x_2$  would be :

 $y_1 = x_1 + x_2$   $y_2 = y_1 \times y_1$   $y_3 = x_3 + 4$   $y_4 = y_3 \times y_2$   $y_5 = x_2 + x_2$  $y_6 = y_4 + y_5$ 

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Straight-Line Programs

- The asymptotic complexity is the *length* of the shortest family of algebraic straight-line programs that compute a family of functions  $\{f_n\}$  where  $f_n$  is a function of n variables.
- Straight-line programs over {0,1} are equivalent to Boolean circuits.
- Functions computable by polynomial length straight-line programs:
  - Fast Fourier Transformation , Matrix Multiplication, Determinant.

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Straight-Line Programs

Every straight line program computes a polynomial of degree related to its length.

#### Proposition

The output of a straight line program of length T with variables  $x_1, x_2, \ldots, x_n$  is a polynomial  $p(x_1, x_2, \ldots, x_n)$  of degree at most  $2^T$ .

We can reach degree  $2^{T}$  only if we quadrate a single variable T times.

• What if we allow division  $(\div)$ ?

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Straight-Line Programs

Every straight line program computes a polynomial of degree related to its length.

#### Proposition

The output of a straight line program of length T with variables  $x_1, x_2, \ldots, x_n$  is a polynomial  $p(x_1, x_2, \ldots, x_n)$  of degree at most  $2^T$ .

We can reach degree  $2^{T}$  only if we quadrate a single variable T times.

- What if we allow division  $(\div)$ ?
- Strassen proved that if a program uses division we can transform it to an equivalent program that does not uses this operator and has similar size.

< ロ > < 同 > < 回 > <

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Blum-Shub-Smale Model

- Generalization of a Turing Machine where each cell can hold an element from a field F.
- *Shift* and *Branch* states. Branch tests check only for equallity, not inequality.
  - If we allow inequallity tests we could decide every language in  $P_{\rm /poly}.$
- Computation states associated with a hard-wired function f that computes and stores f(a) for some value a.

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Algebraic Circuits

An algebraic circuit is defined by analogy with a Boolean circuit. The inputs nodes accept values from  $\mathbb{F}$  and the internal nodes, the *gates*, are labeled with one operation  $\{+, \times\}$ . The circuit has one output gate and each gate has fan-in 2.



$$f(x_1, x_2, x_3) = (x_1 + x_2)^2(x_3 + 4) + 2x_2$$

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

# Algebraic Circuits

## Definitions

- The *size* of the circuit is the number of operational gates.
- 2 The *depth* of the circuit is length of the longest path.

Straight-line programs and algebraic circuits are equivalent:

### Proposition

Let  $f : \mathbb{F}^n \to \mathbb{F}$ . If f has an algebraic straight-line program of size S then it has an algebraic circuit of size 3S. If f is computable by an algebraic circuit of size S then it is computable by an algebraic straight-line program of length S.

Image: A math a math

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## The analogues of P and NP

#### Definition (Valiant 1979)

A family of polynomials  $\{p_n\}$  over  $\mathbb{F}$  has polynomially bounded degree if  $\exists c$  constant,  $\forall n \in \mathbb{N}$  the degree of  $p_n$  is at most  $cn^c$ .

- The class AlgP<sub>/poly</sub> (or VP) contains all polynomially bounded degree families {*p<sub>n</sub>*} of polynomials that are computable by algebraic circuits of polynomial size.
- The class  $AlgNP_{poly}$  (or VNP) is the class of polynomially bounded degree families  $\{p_n\}$  that are definable as

$$p_n(x_1, x_2, \ldots, x_n) = \sum_{e \in \{0,1\}^{m-n}} g_m(x_1, x_2, \ldots, x_n, e_{n+1}, \ldots, e_m)$$

where  $g_m \in \mathrm{AlgP}_{/\mathrm{poly}}$  and m is polynomial in n.

(日) (同) (三) (三)

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## On VNP

On the definition of VNP.

- The idea is to define VNP similar to NP.
  - $A \in NP$  if exists  $B \in P$  such that  $x \in A \iff \exists e \text{ such that } (x, e) \in B$ .
- $\bullet$  + is the algebraic analog of Boolean OR.
  - The definition of NP involves  $\exists_{e \in \{0,1\}^{m-n}}$  that means  $\bigvee_{e \in \{0,1\}^{m-n}}$  and the algebraic analog is  $\sum_{e \in \{0,1\}^{m-n}}$ .

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Reductions

## Definition (Projection reduction)

A function  $f(x_1, x_2, ..., x_n)$  is a projection of a function  $g(y_1, y_2, ..., y_m)$  if there is a mapping  $\sigma$  from  $\{y_1, y_2, ..., y_m\}$  to  $\{0, 1, x_1, x_2, ..., x_n\}$  such that  $f(x_1, x_2, ..., x_n) = g(\sigma(y_1), \sigma(y_2), ..., \sigma(y_m)).$ We say that f is projection-reducable to g if f is a projection of g.

#### Example

 $f(x_1, x_2) = x_1 + x_2$  is projection reducible to  $g(y_1, y_2, y_3) = y_1^2 y_3 + y_2$  since  $f(x_1, x_2) = g(1, x_1, x_2)$ .

If we have g we just hardwire its inputs to 0, 1 or  $x_i$  and we can compute f.

< ロ > ( 同 > ( 回 > ( 回 > ))

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## Determinant and Permanent

#### Definition

Determinant of an  $n \times n$  matrix  $X = (X_{i,j})$  is defined:

$$det(X) = \sum_{\sigma \in S_n} sgn(\sigma) \prod_{i=1}^n X_{i,\sigma(i)}$$

Permanent is defined:

$$perm(X) = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i,\sigma(i)}$$

where  $S_n$  is the set of all n! permutations on  $\{1, 2, ..., n\}$  and  $sgn(\sigma) = \{-1, 1\}$  is the signature of  $\sigma$ .

(日) (同) (三) (三)

## Completeness

Theorem (Completeness of determinant and permanent (Valiant 1979))

- Every polynomial family {p<sub>n</sub>} over any field 𝔅 that is computable by a circuit if size u is projection reducible to the determinant function on u + 2 variables.
- Every polynomial family {p<sub>n</sub>} in VNP is projection reducible to the permanent function with polynomially more variables.
- In other words, deteminant ∈ VP and permanent ∈ VNP - complete.
- Obviously VP ⊆ VNP and is an open question if VP = VNP or not. It is believed that are not equal.

Straight-Line Programs Blum-Shub-Smale model Algebraic Circuits

## VP=VNP implications

• If one show that permanent has polynomial size algebraic circuits will prove that VP =VNP.

## Conjecture (Valiant )

The  $n \times n$  permanent cannot be obtained as a projection of the  $m \times m$  determinant where  $m = 2^{O(\log^2 n)}$ .

- The Cook reduction is a projection reduction and we know that  $VP \stackrel{?}{=} VNP$  must be answered before  $P \stackrel{?}{=} NP$ .
- If equality is proven would imply that the polynomial hierarchy collapses to the second level.
  - Under GRY:  $VP = VNP \implies P_{/poly} = NP_{/poly}$ .
  - Also, if VP = VNP over  $\mathbb Q$  then  $P^{\#P} \subset P_{/poly}.$

(日) (同) (三)

# **Computation Trees**

- We will introduce a more powerful model, the *algebraic computation trees*.
- These are augmented straight-line programs with division and branching when a variable y; is greater than zero or not.
- You can use the model to solve decision problems on real inputs  $f : \mathbb{R}^n \to \{0, 1\}$ .

・ロト ・同ト ・ヨト ・

# Computation Trees

## Definition (Algebraic Computation Tree over $\mathbb{R}$ )

It is a binary tree on input vector  $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$  for a function f where each of the nodes is one of the following:

- Leaf labeled "Accept" or "Reject".
- Computational node  $y_v = y_u OP y_w$ , where  $y_i = x_j$  or  $y_{k < i}$  and  $OP = \{+, -, \times, \div, \sqrt{\}}$ .
- Branch node with out degree 2 upon a condition of the type  $y_{\nu} = 0, \ y_{\nu} \ge 0 \ or \ y_{\nu} \le 0.$

Definition Topological method for lower bounds

# Computation Trees

# Definition (Algebraic Computation Tree over $\mathbb{R}$ (contd))

The computation follows a single path from the root to a leaf evaluating functions at internal nodes. It reaches an "Accept" iff  $f(x_1, x_2, ..., x_n) = 1$ . The complexity is measured using the following costs.

- $\bullet$  +, are free.
- ×, ÷, √ and branch nodes are charged one unit cost.
- The *depth* of the tree is the maximum cost of any path in it.



## The power of the model

Algebraic computation trees are much stronger than real life programs. A depth d algebraic computation tree would yield a classical algorithm of size  $2^d$  since a tree can have  $2^d$  nodes. We are going to use this model to investigate lower bounds.

## Theorem (Meyer auf der Heide 1988)

The real-number version of SUBSET SUM can be solved using an algebraic computation tree of depth  $O(n^5)$ .

## Definition (Algebraic computation tree complexity)

Let  $f : \mathbb{R}^n \to \{0, 1\}$ , the algebraic computation tree complexity of f is:

$$AC(f) = \min_{\forall tree \ T \ computes \ f} \{depth \ of \ T\}$$

< <p>Image: A matrix

# Topological method

- We will try to prove lower bounds for this model.
- Using the topology of the sets  $f^{-1}(0)$  and  $f^{-1}(1)$ . Specifically, the number of connected components.
- We say W ⊆ ℝ<sup>n</sup> is connected if ∀x, y ∈ W there is a path from x to y inside W. A connected component of W is a maximal connected subset of W. By #(W) we denote the number of connected components of W.

#### Theorem (M.Ben-Or 1983)

For every  $f : \mathbb{R}^n \to \{0, 1\}$ ,

$$\mathsf{AC}(f) = \Omega\left(\log\left(\max\left\{\#(f^{-1}(1), \,\#(\mathbb{R}^n\setminus f^{-1}(1)\}\right) - n\right)
ight)$$

(日) (同) (三) (

## Lower Bounds

- Proving lower bounds for the problem Element Distinctness: Given *n* numbers  $x_1, x_2, \ldots, x_n$  determine whether they are all distinct. Equivalently, determine if  $\prod_{i \neq j} (x_i - x_j) \neq 0$ .
- The next and Ben-Or's theorems prove the lower bound:  $\Omega(nlogn)$ .

#### Theorem

Let 
$$W = \{(x_1, x_2, ..., x_n) \mid \prod_{i \neq j} (x_i - x_j) \neq 0\}$$
. Then  $\#(W) \ge n!$ 

Since  $logn! = \Omega(nlogn)$  this proves the lower bound.

< □ > < 🗇 >

## Element Distinctness Lower Bounds

#### Proof.

For each permutation  $\sigma$  let:

$$W_{\sigma} = \left\{ \left( x_1, x_2, \ldots, x_n \right) \mid x_{\sigma(1)} < x_{\sigma(2)} < \cdots < x_{\sigma(n)} \right\}$$

 $W_{\sigma}$  is the set of all tuples  $(x_1, x_2, \ldots, x_n)$  which respect the order given by  $\sigma$  and  $W_{\sigma} \subseteq W$ . It suffices to prove that for all  $\sigma' \neq \sigma$ the sets  $W_{\sigma'}$  and  $W_{\sigma}$  are not connected. For any distinct permutations  $\sigma$  and  $\sigma'$  there exist two distinct  $1 \leq i, j \leq n$  such that:

$$\sigma^{-1}(i) < \sigma^{-1}(j) \implies X_j - X_i > 0$$
  
$$\sigma'^{-1}(i) > \sigma'^{-1}(j) \implies X_j - X_i < 0$$

Definition Topological method for lower bounds

(日) (同) (三) (

## Element Distinctness Lower Bounds

#### Proof.

These two points belong to  $W_{\sigma}$  and  $W_{\sigma'}$  respectively. Lets try find a path from one to the other. This path must pass from a point z that make the term  $X_i - X_j = 0$ . Since both are subsets of W this would violate  $X_i - X_j \neq 0$ . So this point cannot belong to either  $W_{\sigma}$  or  $W_{\sigma'}$  and these are not connected. Thus all distinct permutations are not connected and  $\#(W) \geq n!$ .

From Ben-Or's theorem this implies that the lower bound for Element Distinctness is  $\Omega(nlogn)$ .

Image: Image:

- S.Arora, B.Barak, "Computational Complexity, A Modern Approach"
- M.Sudan, Lectures notes on Algebra and Computation