Average case Complexity

Samaris Michalis

February 2, 2015

introduction

So far we only studied the complexity of algorithms that solve computational task on every possible input; that is, worst-case complexity.

introduction

So far we only studied the complexity of algorithms that solve computational task on every possible input; that is, worst-case complexity.
One frequent objection to this whole framework is that practitioners are only interested in instances of the problem that arise "in practice".

introduction

So far we only studied the complexity of algorithms that solve computational task on every possible input; that is, worst-case complexity.
One frequent objection to this whole framework is that practitioners are only interested in instances of the problem that arise "in practice".
Algorithm designers have tried to formalize this in various ways and to design efficient algorithm that work for "many" or "most" of these instances, this body of work is known variously as average-case analysis.One way to formalize "average" instances is that is generated randomly.

introduction

So far we only studied the complexity of algorithms that solve computational task on every possible input; that is, worst-case complexity.
One frequent objection to this whole framework is that practitioners are only interested in instances of the problem that arise "in practice".
Algorithm designers have tried to formalize this in various ways and to design efficient algorithm that work for "many" or "most" of these instances, this body of work is known variously as average-case analysis. One way to formalize "average" instances is that is generated randomly.
The question arises whether we can come up with a theory analogous to NP completeness for average-case complexity, and to identify problems that are "hardest" or "complete" with respect to some appropriate notion of reducibility.

distributional problem

What is distribution?

distributional problem

What is distribution?
Examples:

1. $G_{n, p}$ be the distribution over n-vertex graph where each edge is chosen to appear in the graph independently with probability p. The time to produce an instance was polynomial in the instant size. 2. Random 3SAT: A random 3CNF formula on n literals and m clauses can be by choosing each clause as the OR of three random literals.

distributional problem

What is distribution?
Examples:

1. $G_{n, p}$ be the distribution over n-vertex graph where each edge is chosen to appear in the graph independently with probability p. The time to produce an instance was polynomial in the instant size. 2.Random 3SAT: A random 3CNF formula on n literals and m clauses can be by choosing each clause as the OR of three random literals.

Definition

A distributional problem is a pair $\langle L, D\rangle$ where $L \subseteq\{0,1\}^{*}$ is a language and $D=\left\{D_{n}\right\}$ is a sequence of distributions, with D_{n} being an distribution over $\{0,1\}^{n}$.

Our next step is to define the class dist \mathbf{P}, the average-case analog of P
For every algorithm A and input x, let time $_{A}(x)$ denote the number of steps A takes on input x.

Our next step is to define the class dist \mathbf{P}, the average-case analog of P
For every algorithm A and input x, let $\operatorname{time}_{A}(x)$ denote the number of steps A takes on input x.
A natural candidate definition is to say that $\langle L, D\rangle$ is solvable in polynomial time on the average if there is an algorithm A such that $A(x)=L(x)$ for every x and a polynomial p that for every n, $E_{x \in{ }_{R} D_{n}}\left[\operatorname{time}_{A}(x)\right] \leq p(n)$.

Our next step is to define the class dist \mathbf{P}, the average-case analog of P
For every algorithm A and input x, let $\operatorname{time}_{A}(x)$ denote the number of steps A takes on input x.
A natural candidate definition is to say that $\langle L, D\rangle$ is solvable in polynomial time on the average if there is an algorithm A such that $A(x)=L(x)$ for every x and a polynomial p that for every n, $E_{x \in R_{R} D_{n}}\left[\operatorname{time}_{A}(x)\right] \leq p(n)$. Why NOT?

The class distP

Our next step is to define the class dist \mathbf{P}, the average-case analog of P
For every algorithm A and input x, let time $_{A}(x)$ denote the number of steps A takes on input x.
A natural candidate definition is to say that $\langle L, D\rangle$ is solvable in polynomial time on the average if there is an algorithm A such that $A(x)=L(x)$ for every x and a polynomial p that for every n, $E_{x \in R_{R} D_{n}}\left[\operatorname{time}_{A}(x)\right] \leq p(n)$.
Why NOT?
If we change the model of a computation to a different model(for example change from multiple tape TM to one-tape TM), then a polynomial-time algorithm can suddenly turn into an exponential-time algorithm, as demonstrades by the following simple claim.

Claim: There is an algorithm A such that for every n we have $E_{x \in_{R}\{0,1\}^{n}}\left[\operatorname{time}_{A}(x)\right] \leq n+1$ but $E_{x \in_{R}\{0,1\}^{n}}\left[\operatorname{time}_{A}{ }^{2}(x)\right] \geq 2^{n}$.

Claim: There is an algorithm A such that for every n we have $E_{x \in_{R}\{0,1\}^{n}}\left[\operatorname{time}_{A}(x)\right] \leq n+1$ but $E_{x \in_{R}\{0,1\}^{n}}\left[\operatorname{time}_{A}{ }^{2}(x)\right] \geq 2^{n}$.

Definition

A distributional problem $\langle L, D\rangle$ is in dist \mathbf{P} if there is an algortihm A for L and constants C and $c>0$ such that for every n

$$
E_{x \in_{R} D_{n}}\left[\frac{\operatorname{time}_{A}(x)^{c}}{n}\right] \leq C
$$

Notice that $P \subseteq \operatorname{dist} P$.

Polynomial time computable (or \mathbf{P}-computable) distributions. Such distributions have an associated deterministic polynomial time machine that, given input $x \in\{0,1\}^{n}$, can compute the cumulative probability $\mu_{D_{n}}(x)$, where

$$
\mu_{D_{n}}(x)=\sum_{y \in\{0,1\}^{n}: y \leq x} \operatorname{Pr}_{D_{n}}[y]
$$

Here $\operatorname{Pr}_{D_{n}}(y)$ denotes the probability assigned to string y and $y \leq x$ means y either precedes x in lexicographic order or is equal to x.
Denoting the lexicographic prodecessor of x by $x-1$, we have

$$
\operatorname{Pr}_{D_{n}}[y]=\mu_{D_{n}}(x)-\mu_{D_{n}}(x-1)
$$

which shows that if $\mu_{D_{n}}$ is computable in polynomial time, then so is $\operatorname{Pr}_{D_{n}}[x]$

Polynomial time samplable(or \mathbf{P}-samplable distributions)
These distributions have an associated probabilistic polynomial time machine that can produce samples from the distribution. Specifically, we say that $D=\left\{D_{n}\right\}$ is \mathbf{P}-samplable if there is a polynomial p and a probabilistic $p(n)$-time algorithm S such that for every n, the random variables $A\left(1^{n}\right)$ and D_{n} are identically distributed.

Polynomial time samplable(or \mathbf{P}-samplable distributions)
These distributions have an associated probabilistic polynomial time machine that can produce samples from the distribution. Specifically, we say that $D=\left\{D_{n}\right\}$ is \mathbf{P}-samplable if there is a polynomial p and a probabilistic $p(n)$-time algorithm S such that for every n, the random variables $A\left(1^{n}\right)$ and D_{n} are identically distributed.
If a distribution is \mathbf{P}-computable then it is \mathbf{P}-samplable.

distNP and average case reduction

Definition

A distributional problem $\langle L, D\rangle$ is in distNP if $L \in N P$ and D is
P-computable

distNP and average case reduction

Definition

A distributional problem $\langle L, D\rangle$ is in distNP if $L \in N P$ and D is P-computable

Definition

We say that a distributional problem $\langle L, D\rangle$ average-case reduces to a distributional problem $\left\langle L^{\prime}, D^{\prime}\right\rangle$, denoted by $\langle L, D\rangle \leq{ }_{p}\left\langle L^{\prime}, D^{\prime}\right\rangle$, if there is a polynomial time computable f an polynomials $p, q: \mathbb{N} \rightarrow \mathbb{N}$ satisfying
1.(Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$
2. (Length regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$
3. (Domination) For every $n \in \mathbb{N}$ and
$y \in\{0,1\}^{p(n)}, \operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \leq q(n) \operatorname{Pr}\left[y=D_{p(n)}^{\prime}\right]$

Theorem

If $\langle L, D\rangle \leq{ }_{p}\left\langle L^{\prime}, D^{\prime}\right\rangle$ and $\left\langle L^{\prime}, D^{\prime}\right\rangle \in \operatorname{dist} \mathbf{P}$ then $\langle L, D\rangle \in \operatorname{dist} \mathbf{P}$

Proof.

A^{\prime} is polynomial algorithm for $\left\langle L^{\prime}, D^{\prime}\right\rangle$.
There are constants $C, c>0$ that for every m

$$
E\left[\frac{t i m e_{A^{\prime}} D_{m}^{\prime} c}{m}\right] \leq C
$$

Algorithm A for L : Given input x, compute $f(x)$ and then output $A^{\prime}(f(x))$.
Since A decides L, it is left to show that A runs on polynomial time on the average with respect to D.
Assume that for every $x,|f(x)|=|x|^{d}$ and that computing f in length n inputs is faster than running time of A^{\prime} on length n^{d} inputs and hence $\operatorname{time}_{A}(x) \leq 2$ time $_{A^{\prime}}(f(x))$

Proof.

Using definition of A,our assumption and domination of reduction: $E\left[\frac{\left(\frac{1}{2} \operatorname{time}_{A}\left(D_{n}\right)\right)^{c}}{q(n) n^{d}}\right] \leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{c}}{q(n) n^{d}} \leq$
$\sum_{y \in\{0,1\}^{d^{d}}} \operatorname{Pr}\left[y=f\left(D_{n^{d}}^{\prime}\right)\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{c}}{n^{d}}=E\left[\frac{\left(\text { time }_{A^{\prime}}\left(D_{n^{d}}^{\prime}\right)\right)^{c}}{n^{d}}\right] \leq C$

A complete proble for distNP

We say that $\left\langle L^{\prime}, D^{\prime}\right\rangle$ is dist NP-complete if $\left\langle L^{\prime}, D^{\prime}\right\rangle$ is in dist NP and $\langle L, D\rangle \leq{ }_{p}\left\langle L^{\prime}, D^{\prime}\right\rangle$ for every $\langle L, D\rangle \in \operatorname{distNP}$.

A complete proble for distNP

We say that $\left\langle L^{\prime}, D^{\prime}\right\rangle$ is distNP-complete if $\left\langle L^{\prime}, D^{\prime}\right\rangle$ is in distNP and $\langle L, D\rangle \leq{ }_{p}\left\langle L^{\prime}, D^{\prime}\right\rangle$ for every $\langle L, D\rangle \in \operatorname{distNP}$.
We give a useful lemma for the proof of the theorem of existence

Lemma

Let $D=\left\{D_{n}\right\}$ be a \mathbf{P}-computable distribution. Then there is a polynomial-time computable function $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that

1. g is one-to-one
2. For every $x \in\{0,1\}^{*},|g(x)|=|x|+2$
3. For every string $y \in\{0,1\}^{m}, \operatorname{Pr}\left[y=g\left(D_{m}\right)\right] \leq 2^{-m+1}$

Theorem

Let V contain all tuples $\left\langle M, x, 1^{t}\right\rangle$ where there exists a string $y \in\{0,1\}^{\prime}$ such that NDTM M outputs 1 on input x within t steps.
For every n we let U_{n} be the following distribution on length n tuples $\left\langle M, x, 1^{t}\right\rangle$: the string representing M is chosen at random from all strings of length at most $\log n, t$ is chosen at random in the set $\{0, \ldots, n-|M|\}$ and x is chosen at random from $\{0,1\}^{n-t-|M|}$.
This distribution is polynomial-time computable. Then $\langle V, U\rangle$ is distNP-complete

Proof.

Let $\langle L, D\rangle$ be in distNP and let M be the polynomial-time NDTM M accepting L.
Define the following NDTM M^{\prime} : On input y, guess x such that $y=g(x)$ and execute $M(x)$
Let p be the polynomial running time of M^{\prime}.

Proof.

Let $\langle L, D\rangle$ be in distNP and let M be the polynomial-time NDTM M accepting L.
Define the following NDTM M^{\prime} : On input y, guess x such that $y=g(x)$ and execute $M(x)$
Let p be the polynomial running time of M^{\prime}.
To reduce $\langle L, D\rangle$ to $\langle V, U\rangle$, we simply map every string x into the tuple $\left\langle M^{\prime}, g(x), 1^{k}\right\rangle$ where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.

Proof.

Let $\langle L, D\rangle$ be in distNP and let M be the polynomial-time NDTM M accepting L.
Define the following NDTM M^{\prime} : On input y, guess x such that $y=g(x)$ and execute $M(x)$
Let p be the polynomial running time of M^{\prime}.
To reduce $\langle L, D\rangle$ to $\langle V, U\rangle$, we simply map every string x into the tuple $\left\langle M^{\prime}, g(x), 1^{k}\right\rangle$ where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
The reduction obviously satisfies the length regularity requirement.

Proof.

Let $\langle L, D\rangle$ be in distNP and let M be the polynomial-time NDTM M accepting L.
Define the following NDTM M^{\prime} : On input y, guess x such that $y=g(x)$ and execute $M(x)$
Let p be the polynomial running time of M^{\prime}.
To reduce $\langle L, D\rangle$ to $\langle V, U\rangle$, we simply map every string x into the tuple $\left\langle M^{\prime}, g(x), 1^{k}\right\rangle$ where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
The reduction obviously satisfies the length regularity requirement.
Because function g is one-to-one by the previous lemma,reduction satisfies also the correctness condition.

Proof.

Let $\langle L, D\rangle$ be in distNP and let M be the polynomial-time NDTM M accepting L.
Define the following NDTM M^{\prime} : On input y, guess x such that $y=g(x)$ and execute $M(x)$
Let p be the polynomial running time of M^{\prime}.
To reduce $\langle L, D\rangle$ to $\langle V, U\rangle$, we simply map every string x into the tuple $\left\langle M^{\prime}, g(x), 1^{k}\right\rangle$ where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
The reduction obviously satisfies the length regularity requirement.
Because function g is one-to-one by the previous lemma,reduction satisfies also the correctness condition.
Also by the previous lemma the probability that a length m tuple $\left\langle M^{\prime}, y, 1^{t}\right\rangle$ is obtained by the reduction, is at most $2^{-|y|+1}$. This tuple is obtained with probability at least $2^{-\log n} 2^{-|y|} \frac{1}{m}$ by U_{m}. Hence also the domination condition is satisfied

Thank you.

