
Average case Complexity

Samaris Michalis

February 2, 2015

Samaris Michalis Average case Complexity

introduction

So far we only studied the complexity of algorithms that solve
computational task on every possible input; that is, worst-case
complexity.

One frequent objection to this whole framework is that
practitioners are only interested in instances of the problem that
arise ”in practice”.
Algorithm designers have tried to formalize this in various ways
and to design efficient algorithm that work for ”many” or ”most”
of these instances, this body of work is known variously as
average-case analysis.One way to formalize ”average” instances is
that is generated randomly.
The question arises whether we can come up with a theory
analogous to NP completeness for average-case complexity, and to
identify problems that are ”hardest” or ”complete” with respect to
some appropriate notion of reducibility.

Samaris Michalis Average case Complexity

introduction

So far we only studied the complexity of algorithms that solve
computational task on every possible input; that is, worst-case
complexity.
One frequent objection to this whole framework is that
practitioners are only interested in instances of the problem that
arise ”in practice”.

Algorithm designers have tried to formalize this in various ways
and to design efficient algorithm that work for ”many” or ”most”
of these instances, this body of work is known variously as
average-case analysis.One way to formalize ”average” instances is
that is generated randomly.
The question arises whether we can come up with a theory
analogous to NP completeness for average-case complexity, and to
identify problems that are ”hardest” or ”complete” with respect to
some appropriate notion of reducibility.

Samaris Michalis Average case Complexity

introduction

So far we only studied the complexity of algorithms that solve
computational task on every possible input; that is, worst-case
complexity.
One frequent objection to this whole framework is that
practitioners are only interested in instances of the problem that
arise ”in practice”.
Algorithm designers have tried to formalize this in various ways
and to design efficient algorithm that work for ”many” or ”most”
of these instances, this body of work is known variously as
average-case analysis.One way to formalize ”average” instances is
that is generated randomly.

The question arises whether we can come up with a theory
analogous to NP completeness for average-case complexity, and to
identify problems that are ”hardest” or ”complete” with respect to
some appropriate notion of reducibility.

Samaris Michalis Average case Complexity

introduction

So far we only studied the complexity of algorithms that solve
computational task on every possible input; that is, worst-case
complexity.
One frequent objection to this whole framework is that
practitioners are only interested in instances of the problem that
arise ”in practice”.
Algorithm designers have tried to formalize this in various ways
and to design efficient algorithm that work for ”many” or ”most”
of these instances, this body of work is known variously as
average-case analysis.One way to formalize ”average” instances is
that is generated randomly.
The question arises whether we can come up with a theory
analogous to NP completeness for average-case complexity, and to
identify problems that are ”hardest” or ”complete” with respect to
some appropriate notion of reducibility.

Samaris Michalis Average case Complexity

distributional problem

What is distribution?

Examples:
1. Gn,p be the distribution over n-vertex graph where each edge is
chosen to appear in the graph independently with probability p.The
time to produce an instance was polynomial in the instant size.
2.Random 3SAT: A random 3CNF formula on n literals and m
clauses can be by choosing each clause as the OR of three random
literals.

Definition

A distributional problem is a pair 〈L,D〉 where L ⊆ {0, 1}∗ is a
language and D = {Dn} is a sequence of distributions, with Dn

being an distribution over {0, 1}n.

Samaris Michalis Average case Complexity

distributional problem

What is distribution?
Examples:
1. Gn,p be the distribution over n-vertex graph where each edge is
chosen to appear in the graph independently with probability p.The
time to produce an instance was polynomial in the instant size.
2.Random 3SAT: A random 3CNF formula on n literals and m
clauses can be by choosing each clause as the OR of three random
literals.

Definition

A distributional problem is a pair 〈L,D〉 where L ⊆ {0, 1}∗ is a
language and D = {Dn} is a sequence of distributions, with Dn

being an distribution over {0, 1}n.

Samaris Michalis Average case Complexity

distributional problem

What is distribution?
Examples:
1. Gn,p be the distribution over n-vertex graph where each edge is
chosen to appear in the graph independently with probability p.The
time to produce an instance was polynomial in the instant size.
2.Random 3SAT: A random 3CNF formula on n literals and m
clauses can be by choosing each clause as the OR of three random
literals.

Definition

A distributional problem is a pair 〈L,D〉 where L ⊆ {0, 1}∗ is a
language and D = {Dn} is a sequence of distributions, with Dn

being an distribution over {0, 1}n.

Samaris Michalis Average case Complexity

The class distP

Our next step is to define the class distP,the average-case analog
of P
For every algorithm A and input x , let timeA(x) denote the
number of steps A takes on input x .

A natural candidate definition is to say that 〈L,D〉 is solvable in
polynomial time on the average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p that for every n,
Ex∈RDn [timeA(x)] ≤ p(n).
Why NOT?
If we change the model of a computation to a different model(for
example change from multiple tape TM to one-tape TM), then a
polynomial-time algorithm can suddenly turn into an
exponential-time algorithm,as demonstrades by the following
simple claim.

Samaris Michalis Average case Complexity

The class distP

Our next step is to define the class distP,the average-case analog
of P
For every algorithm A and input x , let timeA(x) denote the
number of steps A takes on input x .
A natural candidate definition is to say that 〈L,D〉 is solvable in
polynomial time on the average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p that for every n,
Ex∈RDn [timeA(x)] ≤ p(n).

Why NOT?
If we change the model of a computation to a different model(for
example change from multiple tape TM to one-tape TM), then a
polynomial-time algorithm can suddenly turn into an
exponential-time algorithm,as demonstrades by the following
simple claim.

Samaris Michalis Average case Complexity

The class distP

Our next step is to define the class distP,the average-case analog
of P
For every algorithm A and input x , let timeA(x) denote the
number of steps A takes on input x .
A natural candidate definition is to say that 〈L,D〉 is solvable in
polynomial time on the average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p that for every n,
Ex∈RDn [timeA(x)] ≤ p(n).
Why NOT?

If we change the model of a computation to a different model(for
example change from multiple tape TM to one-tape TM), then a
polynomial-time algorithm can suddenly turn into an
exponential-time algorithm,as demonstrades by the following
simple claim.

Samaris Michalis Average case Complexity

The class distP

Our next step is to define the class distP,the average-case analog
of P
For every algorithm A and input x , let timeA(x) denote the
number of steps A takes on input x .
A natural candidate definition is to say that 〈L,D〉 is solvable in
polynomial time on the average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p that for every n,
Ex∈RDn [timeA(x)] ≤ p(n).
Why NOT?
If we change the model of a computation to a different model(for
example change from multiple tape TM to one-tape TM), then a
polynomial-time algorithm can suddenly turn into an
exponential-time algorithm,as demonstrades by the following
simple claim.

Samaris Michalis Average case Complexity

The class distP

Claim: There is an algorithm A such that for every n we have
Ex∈R{0,1}n [timeA(x)] ≤ n + 1 but Ex∈R{0,1}n [timeA

2(x)] ≥ 2n.

Definition

A distributional problem 〈L,D〉 is in distP if there is an algortihm
A for L and constants C and c > 0 such that for every n

Ex∈RDn [timeA(x)
c

n] ≤ C

Notice that P ⊆ distP.

Samaris Michalis Average case Complexity

The class distP

Claim: There is an algorithm A such that for every n we have
Ex∈R{0,1}n [timeA(x)] ≤ n + 1 but Ex∈R{0,1}n [timeA

2(x)] ≥ 2n.

Definition

A distributional problem 〈L,D〉 is in distP if there is an algortihm
A for L and constants C and c > 0 such that for every n

Ex∈RDn [timeA(x)
c

n] ≤ C

Notice that P ⊆ distP.

Samaris Michalis Average case Complexity

”real-life distributions”

Polynomial time computable (or P-computable) distributions.
Such distributions have an associated deterministic polynomial
time machine that, given input x ∈ {0, 1}n, can compute the
cumulative probability µDn(x), where

µDn(x) =
∑

y∈{0,1}n:y≤x PrDn [y]

Here PrDn(y) denotes the probability assigned to string y and
y ≤ x means y either precedes x in lexicographic order or is equal
to x .
Denoting the lexicographic prodecessor of x by x − 1, we have

PrDn [y] = µDn(x)− µDn(x − 1)

which shows that if µDn is computable in polynomial time, then so
is PrDn [x]

Samaris Michalis Average case Complexity

”real-life distributions”

Polynomial time samplable(or P-samplable distributions)
These distributions have an associated probabilistic polynomial
time machine that can produce samples from the distribution.
Specifically, we say that D = {Dn} is P-samplable if there is a
polynomial p and a probabilistic p(n)-time algorithm S such that
for every n, the random variables A(1n) and Dn are identically
distributed.

If a distribution is P-computable then it is P-samplable.

Samaris Michalis Average case Complexity

”real-life distributions”

Polynomial time samplable(or P-samplable distributions)
These distributions have an associated probabilistic polynomial
time machine that can produce samples from the distribution.
Specifically, we say that D = {Dn} is P-samplable if there is a
polynomial p and a probabilistic p(n)-time algorithm S such that
for every n, the random variables A(1n) and Dn are identically
distributed.
If a distribution is P-computable then it is P-samplable.

Samaris Michalis Average case Complexity

distNP and average case reduction

Definition

A distributional problem 〈L,D〉 is in distNP if L ∈ NP and D is
P-computable

Definition

We say that a distributional problem 〈L,D〉 average-case reduces
to a distributional problem 〈L′,D ′〉, denoted by 〈L,D〉 ≤ p〈L′,D ′〉,
if there is a polynomial time computable f an polynomials
p, q : N→ N satisfying
1.(Correctness) For every x ∈ {0, 1}∗, x ∈ L⇔ f (x) ∈ L′

2.(Length regularity) For every x ∈ {0, 1}∗, |f (x)| = p(|x |)
3.(Domination) For every n ∈ N and
y ∈ {0, 1}p(n),Pr [y = f (Dn)] ≤ q(n)Pr [y = D ′p(n)]

Samaris Michalis Average case Complexity

distNP and average case reduction

Definition

A distributional problem 〈L,D〉 is in distNP if L ∈ NP and D is
P-computable

Definition

We say that a distributional problem 〈L,D〉 average-case reduces
to a distributional problem 〈L′,D ′〉, denoted by 〈L,D〉 ≤ p〈L′,D ′〉,
if there is a polynomial time computable f an polynomials
p, q : N→ N satisfying
1.(Correctness) For every x ∈ {0, 1}∗, x ∈ L⇔ f (x) ∈ L′

2.(Length regularity) For every x ∈ {0, 1}∗, |f (x)| = p(|x |)
3.(Domination) For every n ∈ N and
y ∈ {0, 1}p(n),Pr [y = f (Dn)] ≤ q(n)Pr [y = D ′p(n)]

Samaris Michalis Average case Complexity

Theorem

If 〈L,D〉 ≤ p〈L′,D ′〉 and 〈L′,D ′〉 ∈ distP then 〈L,D〉 ∈ distP

Proof.

A′ is polynomial algorithm for 〈L′,D ′〉.
There are constants C , c > 0 that for every m

E [
timeA′D

′
m
c

m] ≤ C

Algorithm A for L: Given input x , compute f (x) and then output
A′(f (x)).
Since A decides L, it is left to show that A runs on polynomial
time on the average with respect to D.
Assume that for every x , |f (x)| = |x |d and that computing f in
length n inputs is faster than running time of A′ on length nd

inputs and hence timeA(x) ≤ 2timeA′(f (x))

Samaris Michalis Average case Complexity

Proof.

Using definition of A,our assumption and domination of reduction:

E [
(1
2
timeA(Dn))c

q(n)nd
] ≤

∑
y∈{0,1}ndPr [y = f (Dn)]

timeA′ (y)
c

q(n)nd
≤∑

y∈{0,1}ndPr [y = f (D ′
nd

)]
timeA′ (y)

c

nd
= E [

(timeA′ (D
′
nd

))c

nd
] ≤ C

Samaris Michalis Average case Complexity

A complete proble for distNP

We say that 〈L′,D ′〉 is distNP-complete if 〈L′,D ′〉 is in distNP
and 〈L,D〉 ≤ p〈L′,D ′〉 for every 〈L,D〉 ∈ distNP.

We give a useful lemma for the proof of the theorem of existence

Lemma

Let D = {Dn} be a P-computable distribution. Then there is a
polynomial-time computable function g : {0, 1}∗ → {0, 1}∗ such
that
1. g is one-to-one
2. For every x ∈ {0, 1}∗, |g(x)| = |x |+ 2
3. For every string y ∈ {0, 1}m, Pr [y = g(Dm)] ≤ 2−m+1

Samaris Michalis Average case Complexity

A complete proble for distNP

We say that 〈L′,D ′〉 is distNP-complete if 〈L′,D ′〉 is in distNP
and 〈L,D〉 ≤ p〈L′,D ′〉 for every 〈L,D〉 ∈ distNP.
We give a useful lemma for the proof of the theorem of existence

Lemma

Let D = {Dn} be a P-computable distribution. Then there is a
polynomial-time computable function g : {0, 1}∗ → {0, 1}∗ such
that
1. g is one-to-one
2. For every x ∈ {0, 1}∗, |g(x)| = |x |+ 2
3. For every string y ∈ {0, 1}m, Pr [y = g(Dm)] ≤ 2−m+1

Samaris Michalis Average case Complexity

Theorem

Let V contain all tuples 〈M, x , 1t〉 where there exists a string
y ∈ {0, 1}l such that NDTM M outputs 1 on input x within t
steps.
For every n we let Un be the following distribution on length n
tuples 〈M, x , 1t〉: the string representing M is chosen at random
from all strings of length at most log n, t is chosen at random in
the set {0, ..., n − |M|} and x is chosen at random from
{0, 1}n−t−|M|.
This distribution is polynomial-time computable.Then 〈V ,U〉 is
distNP-complete

Samaris Michalis Average case Complexity

Proof.

Let 〈L,D〉 be in distNP and let M be the polynomial-time NDTM
M accepting L.
Define the following NDTM M ′: On input y , guess x such that
y = g(x) and execute M(x)
Let p be the polynomial running time of M ′.

To reduce 〈L,D〉 to 〈V ,U〉, we simply map every string x into the
tuple 〈M ′, g(x), 1k〉 where k = p(n) + log n + n − |M ′| − |g(x)|.
The reduction obviously satisfies the length regularity
requirement.
Because function g is one-to-one by the previous lemma,reduction
satisfies also the correctness condition.
Also by the previous lemma the probability that a length m tuple
〈M ′, y , 1t〉 is obtained by the reduction, is at most 2−|y |+1.This
tuple is obtained with probability at least 2− log n2−|y | 1m by
Um.Hence also the domination condition is satisfied

Samaris Michalis Average case Complexity

Proof.

Let 〈L,D〉 be in distNP and let M be the polynomial-time NDTM
M accepting L.
Define the following NDTM M ′: On input y , guess x such that
y = g(x) and execute M(x)
Let p be the polynomial running time of M ′.
To reduce 〈L,D〉 to 〈V ,U〉, we simply map every string x into the
tuple 〈M ′, g(x), 1k〉 where k = p(n) + log n + n − |M ′| − |g(x)|.

The reduction obviously satisfies the length regularity
requirement.
Because function g is one-to-one by the previous lemma,reduction
satisfies also the correctness condition.
Also by the previous lemma the probability that a length m tuple
〈M ′, y , 1t〉 is obtained by the reduction, is at most 2−|y |+1.This
tuple is obtained with probability at least 2− log n2−|y | 1m by
Um.Hence also the domination condition is satisfied

Samaris Michalis Average case Complexity

Proof.

Let 〈L,D〉 be in distNP and let M be the polynomial-time NDTM
M accepting L.
Define the following NDTM M ′: On input y , guess x such that
y = g(x) and execute M(x)
Let p be the polynomial running time of M ′.
To reduce 〈L,D〉 to 〈V ,U〉, we simply map every string x into the
tuple 〈M ′, g(x), 1k〉 where k = p(n) + log n + n − |M ′| − |g(x)|.
The reduction obviously satisfies the length regularity
requirement.

Because function g is one-to-one by the previous lemma,reduction
satisfies also the correctness condition.
Also by the previous lemma the probability that a length m tuple
〈M ′, y , 1t〉 is obtained by the reduction, is at most 2−|y |+1.This
tuple is obtained with probability at least 2− log n2−|y | 1m by
Um.Hence also the domination condition is satisfied

Samaris Michalis Average case Complexity

Proof.

Let 〈L,D〉 be in distNP and let M be the polynomial-time NDTM
M accepting L.
Define the following NDTM M ′: On input y , guess x such that
y = g(x) and execute M(x)
Let p be the polynomial running time of M ′.
To reduce 〈L,D〉 to 〈V ,U〉, we simply map every string x into the
tuple 〈M ′, g(x), 1k〉 where k = p(n) + log n + n − |M ′| − |g(x)|.
The reduction obviously satisfies the length regularity
requirement.
Because function g is one-to-one by the previous lemma,reduction
satisfies also the correctness condition.

Also by the previous lemma the probability that a length m tuple
〈M ′, y , 1t〉 is obtained by the reduction, is at most 2−|y |+1.This
tuple is obtained with probability at least 2− log n2−|y | 1m by
Um.Hence also the domination condition is satisfied

Samaris Michalis Average case Complexity

Proof.

Let 〈L,D〉 be in distNP and let M be the polynomial-time NDTM
M accepting L.
Define the following NDTM M ′: On input y , guess x such that
y = g(x) and execute M(x)
Let p be the polynomial running time of M ′.
To reduce 〈L,D〉 to 〈V ,U〉, we simply map every string x into the
tuple 〈M ′, g(x), 1k〉 where k = p(n) + log n + n − |M ′| − |g(x)|.
The reduction obviously satisfies the length regularity
requirement.
Because function g is one-to-one by the previous lemma,reduction
satisfies also the correctness condition.
Also by the previous lemma the probability that a length m tuple
〈M ′, y , 1t〉 is obtained by the reduction, is at most 2−|y |+1.This
tuple is obtained with probability at least 2− log n2−|y | 1m by
Um.Hence also the domination condition is satisfied

Samaris Michalis Average case Complexity

Thank you.

Samaris Michalis Average case Complexity

