Analysis of Boolean Functions and Inapproximability

Dimitris Tsipras
CoReLab, ECE, NTUA
February 5, 2015

Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability

Introduction to Boolean Functions

We will study boolean functions

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

Introduction to Boolean Functions

We will study boolean functions

$$
f:\{-1,1\}^{n} \rightarrow\{-1,1\}
$$

For examply consider the Majority Function

$$
\begin{array}{ll}
\operatorname{Maj}_{3}(-1,-1,-1)=-1, & \operatorname{Maj}_{3}(-1,-1,+1)=-1 \\
\operatorname{Maj}_{3}(-1,+1,-1)=-1, & \operatorname{Maj}_{3}(+1,-1,-1)=-1 \\
\operatorname{Maj}_{3}(-1,+1,+1)=+1, & \operatorname{Maj}_{3}(+1,-1,+1)=+1 \\
\operatorname{Maj} j_{3}(+1,+1,-1)=+1, & \operatorname{Maj} j_{3}(+1,+1,+1)=+1
\end{array}
$$

Interpolating Boolean Functions

We can interpolate any boolean function with a polynomial

$$
\begin{aligned}
\operatorname{Maj}_{3}(x) & =\left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right)\left(\frac{1+x_{3}}{2}\right)(+1) \\
& +\left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right)\left(\frac{1-x_{3}}{2}\right)(+1) \\
& +\cdots \\
& +\left(\frac{1-x_{1}}{2}\right)\left(\frac{1-x_{2}}{2}\right)\left(\frac{1-x_{3}}{2}\right)(-1)
\end{aligned}
$$

Interpolating Boolean Functions

We can interpolate any boolean function with a polynomial

$$
\begin{aligned}
\operatorname{Maj}_{3}(x) & =\left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right)\left(\frac{1+x_{3}}{2}\right)(+1) \\
& +\left(\frac{1+x_{1}}{2}\right)\left(\frac{1+x_{2}}{2}\right)\left(\frac{1-x_{3}}{2}\right)(+1) \\
& +\cdots \\
& +\left(\frac{1-x_{1}}{2}\right)\left(\frac{1-x_{2}}{2}\right)\left(\frac{1-x_{3}}{2}\right)(-1)
\end{aligned}
$$

and then expand and simplify to get

$$
\operatorname{Maj}_{3}(x)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}
$$

"Fourier Expansion" of Boolean Functions

Theorem

Every function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be expressed as

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) x_{S}(x)
$$

where $x_{S}(x)=\prod_{i \in S} x_{i}$

"Fourier Expansion" of Boolean Functions

Theorem

Every function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ can be expressed as

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) x_{S}(x)
$$

where $x_{S}(x)=\prod_{i \in S} x_{i}$
Example: $\operatorname{Maj}_{3}(x)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}$

$$
\widehat{M a j_{3}}(\emptyset)=0
$$

$$
\begin{gathered}
\widehat{\operatorname{Maj}_{3}}(\{1\})=\widehat{\operatorname{Maj}_{3}}(\{2\})=\widehat{\operatorname{Maj}_{3}}(\{3\})=\frac{1}{2} \\
\widehat{\operatorname{Maj}_{3}}(\{1,2\})=\widehat{\operatorname{Maj}_{3}}(\{1,3\})=\widehat{\operatorname{Maj}_{3}}(\{2,3\})=0 \\
\widehat{M a j_{3}}(\{1,2,3\})=\frac{1}{2}
\end{gathered}
$$

Plancheler Theorem

We will study the behavior of functions on uniformly random strings

$$
\mathbf{x} \sim\{-1,1\}^{n}
$$

Plancheler Theorem

We will study the behavior of functions on uniformly random strings

$$
\mathbf{x} \sim\{-1,1\}^{n}
$$

Theorem (Plancheler)

For any functions $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\underset{\mathbf{x}}{\mathbb{E}}[f(\mathbf{x}) g(\mathbf{x})]=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S)
$$

Plancheler Theorem

Proof.

$$
\underset{x}{\mathbb{E}}\left[x_{S}(x)\right]= \begin{cases}0, & \text { if } S \neq \emptyset \\ 1, & \text { otherwise }\end{cases}
$$

Plancheler Theorem

Proof.

$$
\begin{aligned}
& \underset{\mathrm{x}}{\mathbb{E}}\left[x_{S}(x)\right]= \begin{cases}0, & \text { f } S \neq \emptyset \\
1, & \text { otherwise }\end{cases} \\
& \underset{\sim}{\mathbb{E}}[f(x) g(x)]=\underset{\mathbf{x}}{\mathbb{E}}\left[\sum_{S \subseteq[n]} \widehat{f}(S) x_{S}(\mathbf{x}) \cdot \sum_{T \subseteq[n]} \widehat{g}(T) x_{T}(\mathbf{x})\right] \\
&=\sum_{S, T \subseteq[n]} \widehat{f}(S) \widehat{g}(T) \underset{\mathrm{x}}{\mathbb{E}[}\left[x_{S}(\mathbf{x}) x_{T}(\mathbf{x})\right] \\
&=\sum_{S, T \subseteq[n]} \widehat{f}(S) \widehat{g}(T) \underset{\mathbf{x}}{\mathbb{E}\left[x_{S \oplus T}(\mathbf{x})\right]} \\
&=\sum_{S \subseteq[n]} \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

Parseval Theorem

Corollary (Parseval's Theorem)

For any functions $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\underset{\mathbf{x}}{\mathbb{E}}\left[f^{2}(\mathbf{x})\right]=\sum_{S \subseteq[n]} \widehat{f}(S)^{2}
$$

Parseval Theorem

Corollary (Parseval's Theorem)
For any functions $f, g:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\underset{\mathbf{x}}{\mathbb{E}}\left[f^{2}(\mathbf{x})\right]=\sum_{S \subseteq[n]} \widehat{f}(S)^{2}
$$

And therefore for functions $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\sum_{S \subseteq[n]} \widehat{f}(S)^{2}=1
$$

Formula for Fourier Coefficients

Corollary

For any functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\widehat{f}(S)=\underset{\mathbf{x}}{\mathbb{E}}\left[f(\mathbf{x}) x_{S}(\mathbf{x})\right]
$$

Formula for Fourier Coefficients

Corollary

For any functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\widehat{f}(S)=\underset{\mathbf{x}}{\mathbb{E}}\left[f(\mathbf{x}) x_{S}(\mathbf{x})\right]
$$

Proof.

$$
\begin{aligned}
\underset{\mathbf{x}}{\mathbb{E}}\left[f(\mathbf{x}) x_{S}(\mathbf{x})\right] & =\underset{\mathbf{x}}{\mathbb{E}}\left[\left(\sum_{T} \widehat{f}(T) x_{T}(\mathbf{x})\right) x_{S}(\mathbf{x})\right] \\
& =\sum_{T} \widehat{f}(T) \underset{\mathbf{x}}{\mathbb{E}}\left[x_{S}(\mathbf{x}) x_{T}(\mathbf{x})\right] \\
& =\widehat{f}(S)
\end{aligned}
$$

Fourier Coefficients as Weights

Definition

The "(Fourier) weight" of f on S is $\widehat{f}(S)^{2}$.

Some Illustrative Examples

- Majority: $\operatorname{Maj}(x)$

Some Illustrative Examples

- Majority: $\operatorname{Maj}_{3}(x)$

- Parity: $\operatorname{Par}_{3}(x)=x_{1} x_{2} x_{3}$

Some Illustrative Examples

- Dictatorship: $\operatorname{Dict}_{1}(x)=x_{1}$

Some Illustrative Examples

- Dictatorship: $\operatorname{Dict}_{1}(x)=x_{1}$
- Constants: $\operatorname{Const}_{-1}(x)=-1$, Const $_{1}(x)=1$

Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability

Linearity Testing

Definition

A function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is linear if for some $S \subseteq[n]$

$$
f(x)=x_{S}(x)=\prod_{i \in S} x_{i}
$$

Linearity Testing

Definition

A function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is linear if for some $S \subseteq[n]$

$$
f(x)=x_{S}(x)=\prod_{i \in S} x_{i}
$$

Suppose we have black-box access to an unknown function f and want to test if it is linear. Specifically we want to design a test such that

Linearity Testing

Definition

A function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is linear if for some $S \subseteq[n]$

$$
f(x)=x_{S}(x)=\prod_{i \in S} x_{i}
$$

Suppose we have black-box access to an unknown function f and want to test if it is linear. Specifically we want to design a test such that

■ If f is linear, it passes the test with probability $1-\epsilon$.

Linearity Testing

Definition

A function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is linear if for some $S \subseteq[n]$

$$
f(x)=x_{S}(x)=\prod_{i \in S} x_{i}
$$

Suppose we have black-box access to an unknown function f and want to test if it is linear. Specifically we want to design a test such that

■ If f is linear, it passes the test with probability $1-\epsilon$.

- If f passes the test with probability $1-\epsilon$, then f is ϵ-close to some linear function.

The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

The BLR Test

The Blum-Luby-Rubinfield Linearity Test:
■ Pick $\mathbf{x} \sim\{-1,1\}^{n}$ and $\mathbf{y} \sim\{-1,1\}^{n}$ independently

The BLR Test

The Blum-Luby-Rubinfield Linearity Test:
\square Pick $\mathbf{x} \sim\{-1,1\}^{n}$ and $\mathbf{y} \sim\{-1,1\}^{n}$ independently

- Query f at \mathbf{x}, \mathbf{y} and $\mathbf{x} \cdot \mathbf{y}$ (where \cdot the pointwise product of $\mathbf{x , y}$)

The BLR Test

The Blum-Luby-Rubinfield Linearity Test:
■ Pick $\mathbf{x} \sim\{-1,1\}^{n}$ and $\mathbf{y} \sim\{-1,1\}^{n}$ independently

- Query f at \mathbf{x}, \mathbf{y} and $\mathbf{x} \cdot \mathbf{y}$ (where \cdot the pointwise product of $\mathbf{x , y}$)
- Accept if $f(\mathbf{x}) \cdot f(\mathbf{y})=f(\mathbf{x} \cdot \mathbf{y})$

The BLR Test

The Blum-Luby-Rubinfield Linearity Test:
■ Pick $\mathbf{x} \sim\{-1,1\}^{n}$ and $\mathbf{y} \sim\{-1,1\}^{n}$ independently

- Query f at \mathbf{x}, \mathbf{y} and $\mathbf{x} \cdot \mathbf{y}$ (where \cdot the pointwise product of $\mathbf{x , y}$)
■ Accept if $f(\mathbf{x}) \cdot f(\mathbf{y})=f(\mathbf{x} \cdot \mathbf{y})$

Claim 1 (obvious)

If f is a linear (or ϵ-close to a linear) function, then it passes the test with probability 1 (or at least $1-\epsilon$).

The BLR Test

Claim 2

If f is accepted with probability $1-\epsilon$, then there exists some S such that $\operatorname{Pr}_{\mathbf{x}}\left[f(\mathbf{x}) \neq x_{S}(\mathbf{x})\right] \geq 1-\epsilon$

The BLR Test

Claim 2

If f is accepted with probability $1-\epsilon$, then there exists some S such that $\operatorname{Pr}_{\mathbf{x}}\left[f(\mathbf{x}) \neq x_{S}(\mathbf{x})\right] \geq 1-\epsilon$

Proof.

$$
\begin{aligned}
1-\epsilon=\operatorname{Pr}[\text { BLR accepts }] & =\underset{x, y}{\mathbb{E}}\left[\frac{1}{2}+\frac{1}{2} f(\mathbf{x}) f(\mathbf{y}) f(\mathbf{x} \cdot \mathbf{y})\right] \\
& =\frac{1}{2}+\frac{1}{2} \underset{\mathbf{x}}{\mathbb{E}}[f(\mathbf{x}) \underset{\mathbf{y}}{\mathbb{E}}[f(\mathbf{y}) f(\mathbf{x} \cdot \mathbf{y})]] \\
& =\frac{1}{2}+\frac{1}{2} \underset{\mathbf{x}}{\mathbb{E}}[f(\mathbf{x}) g(\mathbf{x})] \\
& =\frac{1}{2}+\frac{1}{2} \sum_{S} \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

where $g(x)=E_{\mathbf{y}}[f(\mathbf{y}) f(x \cdot \mathbf{y})]$

The BLR Test

Proof.

For $g(x)$

$$
\begin{aligned}
\widehat{g}(S) & =\underset{\mathbf{x}}{\mathbb{E}}\left[\underset{\mathbf{y}}{\mathbb{E}}[f(\mathbf{y}) f(\mathbf{x} \cdot \mathbf{y})] x_{S}(\mathbf{x})\right] \\
& =\underset{\mathbf{x}, \mathbf{z}}{\mathbb{E}}\left[f(\mathbf{y}) f(\mathbf{z}) x_{S}(\mathbf{y} \cdot \mathbf{z})\right] \\
& =\underset{\mathbf{x}, \mathbf{z}}{\mathbb{E}}\left[f(\mathbf{y}) x_{S}(\mathbf{y}) f(\mathbf{z}) x_{S}(\mathbf{z})\right] \\
& =\widehat{f}(S)^{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
1-\epsilon=\operatorname{Pr}[\text { BLR accepts }] & =\frac{1}{2}+\frac{1}{2} \sum_{S} \widehat{f}(S)^{3} \\
& \leq \frac{1}{2}+\frac{1}{2} \max _{S}\{\widehat{f}(S)\}
\end{aligned}
$$

The BLR Test

Proof.
Let $S^{*}=\operatorname{argmax}_{S}\{\widehat{f}(S)\}$, then

$$
\begin{aligned}
1-\epsilon & \leq \frac{1}{2}+\frac{1}{2} \widehat{f}\left(S^{*}\right) \\
& =\frac{1}{2}+\frac{1}{2} \underset{\mathbf{x}}{\mathbb{E}}\left[f(\mathbf{x}) x_{S^{*}}(\mathbf{x})\right] \\
& =\frac{1}{2}+\frac{1}{2}\left(\underset{\mathbf{x}}{\operatorname{Pr}}\left[f(\mathbf{x})=x_{S^{*}}(\mathbf{x})\right]-\underset{\mathbf{x}}{\operatorname{Pr}_{\mathbf{x}}}\left[f(\mathbf{x}) \neq x_{S^{*}}(\mathbf{x})\right]\right) \\
& =1-\underset{\mathbf{x}}{\operatorname{Pr}}\left[f(\mathbf{x}) \neq x_{S^{*}}(\mathbf{x})\right]
\end{aligned}
$$

And therefore

$$
\operatorname{Pr}_{\mathbf{x}}\left[f(\mathbf{x}) \neq x_{S^{*}}(\mathbf{x})\right] \leq \epsilon
$$

The BLR Test

We have therefore constructed $1-\epsilon$ vs. 1 Linearity with 3 queries, which uses a linear predicate for acceptance.

The BLR Test

We have therefore constructed $1-\epsilon$ vs. 1 Linearity with 3 queries, which uses a linear predicate for acceptance.

- Any linear function passes with probability 1 (Completeness).

The BLR Test

We have therefore constructed $1-\epsilon$ vs. 1 Linearity with 3 queries, which uses a linear predicate for acceptance.

- Any linear function passes with probability 1 (Completeness).
- Any function the is ϵ-far from a linear function passes with probability at most $1-\epsilon$ (Soundness).

The BLR Test

We have therefore constructed $1-\epsilon$ vs. 1 Linearity with 3 queries, which uses a linear predicate for acceptance.

- Any linear function passes with probability 1 (Completeness).
- Any function the is ϵ-far from a linear function passes with probability at most $1-\epsilon$ (Soundness).
One can create similar tests for a variety of function properties, this is a huge field known as Property Testing.

Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability

The Long Code

Bellare, Goldreich, Sudan: Let $i \in[q]$ that is to be coded in a PCP proof. Then instead of representing it with $\log q$ bits we will represent i by writing down the truth table of the i-th dictatorship function 2^{q} bits.

The Long Code

Bellare, Goldreich, Sudan: Let $i \in[q]$ that is to be coded in a PCP proof. Then instead of representing it with $\log q$ bits we will represent i by writing down the truth table of the i-th dictatorship function 2^{q} bits.
If $q=3$ and $i=1$ the instead of

$$
01
$$

we code i as

$$
00001111
$$

The Long Code

The framework incorporates

- An outer PCP making non-boolean queries to the proof

The Long Code

The framework incorporates

- An outer PCP making non-boolean queries to the proof
- An inner PCP translating these queries to boolean queries through dictatorship testing and Fourier Analysis tools.
Many (non-tight) inapproximability bounds were estabilished this way.

Håstad's optimized PCPs

Håstad:

Håstad's optimized PCPs

Håstad:

- a full dictatorship test is not needed for these Long Code reductions

Håstad's optimized PCPs

Håstad:

- a full dictatorship test is not needed for these Long Code reductions
- we only need to distinguish dictators from functions that are far from dictators

Håstad's optimized PCPs

Håstad:

- a full dictatorship test is not needed for these Long Code reductions

■ we only need to distinguish dictators from functions that are far from dictators

Which functions are far from dictatorships?

The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using predicate $\boldsymbol{\Psi}$, is a randomized algorithm the queries a function f at r points and accepts if

$$
\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{r}\right)\right)=1
$$

such that

The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using predicate $\boldsymbol{\Psi}$, is a randomized algorithm the queries a function f at r points and accepts if

$$
\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{r}\right)\right)=1
$$

such that

- if f is a dictator, the test accepts w.p. at least c

The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using predicate $\boldsymbol{\Psi}$, is a randomized algorithm the queries a function f at r points and accepts if

$$
\Psi\left(f\left(\mathbf{x}_{1}\right), \ldots, f\left(\mathbf{x}_{r}\right)\right)=1
$$

such that

- if f is a dictator, the test accepts w.p. at least c
- if f has no notable coordinates, then the test accepts w.p. at most s

Constraint Satisfaction Problems

Constraint Satisfaction Problems

■ a set of n variables, x_{1}, \ldots, x_{n}

Constraint Satisfaction Problems

- a set of n variables, x_{1}, \ldots, x_{n}
- a domain Ω, e.g. $\{-1,1\}$

Constraint Satisfaction Problems

■ a set of n variables, x_{1}, \ldots, x_{n}

- a domain Ω, e.g. $\{-1,1\}$
- a (multi)set of constraints, which we try to satisfy

Examples:

Constraint Satisfaction Problems

\square a set of n variables, x_{1}, \ldots, x_{n}

- a domain Ω, e.g. $\{-1,1\}$
- a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

$$
\begin{gathered}
\left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
\left(x_{2} \vee x_{4} \vee \neg x_{3}\right) \\
\cdots \\
\left(\neg x_{10} \vee \neg x_{21} \vee x_{50}\right)
\end{gathered}
$$

Constraint Satisfaction Problems

\square a set of n variables, x_{1}, \ldots, x_{n}

- a domain Ω, e.g. $\{-1,1\}$

■ a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

$$
\begin{aligned}
& \left(x_{1} \vee x_{2} \vee \neg x_{5}\right) \\
& \left(x_{2} \vee x_{4} \vee \neg x_{3}\right)
\end{aligned}
$$

$$
\left(\neg x_{10} \vee \neg x_{21} \vee x_{50}\right)
$$

Max-E3-Lin

$$
\begin{aligned}
& x_{1}+x_{2}+x_{5}=0 \\
& x_{6}+x_{7}+x_{9}=1
\end{aligned}
$$

$$
x_{1}+x_{20}+x_{50}=0
$$

Constraint Satisfaction Problems

■ a set of n variables, x_{1}, \ldots, x_{n}
■ a domain Ω, e.g. $\{-1,1\}$

- a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

$$
\begin{array}{ccc}
\text { Max-E3-Sat } & \text { Max-E3-Lin } & \text { Max-Cut } \\
& & \\
\left(x_{1} \vee x_{2} \vee \neg x_{5}\right) & x_{1}+x_{2}+x_{5}=0 & x_{1} \neq x_{5} \\
\left(x_{2} \vee x_{4} \vee \neg x_{3}\right) & x_{6}+x_{7}+x_{9}=1 & x_{2} \neq x_{3} \\
\cdots & \cdots & \ldots \\
\left(\neg x_{10} \vee \neg x_{21} \vee x_{50}\right) & x_{1}+x_{20}+x_{50}=0 & x_{10} \neq x_{42}
\end{array}
$$

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints
- the α lgorithms satisfies at least a fraction α

Facts:

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints
- the α lgorithms satisfies at least a fraction α

Facts:

■ (β, β)-approximating most CSPs is NP-Hard

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints
- the α lgorithms satisfies at least a fraction α

Facts:

■ (β, β)-approximating most CSPs is NP-Hard
■ (1,1)-approximating Max-E3-Lin is easy

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints
- the α lgorithms satisfies at least a fraction α

Facts:

■ (β, β)-approximating most CSPs is NP-Hard

- (1,1)-approximating Max-E3-Lin is easy
- ($\frac{1}{2}, \beta$-approximating Max-3-Lin is easy

Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

- the β est assignment satisfies a fraction β of the constraints
- the α lgorithms satisfies at least a fraction α

Facts:

■ (β, β)-approximating most CSPs is NP-Hard
■ (1,1)-approximating Max-E3-Lin is easy

- ($\frac{1}{2}, \beta$)-approximating Max-3-Lin is easy

■ ($\frac{7}{8}, \beta$)-approximating Max-3-Sat is easy

A black box reduction

Theorem

A black box reduction

Theorem

- Fix any CSP over domain $\{-1,1\}$ with predicate set Ψ.

A black box reduction

Theorem

- Fix any CSP over domain $\{-1,1\}$ with predicate set Ψ.
- Suppose there exists some r-query, s vs. c Dictatorship vs. No-Notables Test using predicate Ψ

A black box reduction

Theorem

- Fix any CSP over domain $\{-1,1\}$ with predicate set Ψ.
- Suppose there exists some r-query, s vs. c Dictatorship vs. No-Notables Test using predicate Ψ
- Then for any $\delta>0$ it is UG-hard to $(s+\delta, c-\delta)$-approximate Max-CSP ${ }_{r}(\Psi)$.

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not
■ Dictators pass w.p. 1 (small parities too but this is ok)

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

- Dictators pass w.p. 1 (small parities too but this is ok)
- we need to reject large parities $\left(\mathrm{Par}_{n}\right)$: Add a little ϵ-noise to $\mathbf{x} \cdot \mathbf{y}$

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

- Dictators pass w.p. 1 (small parities too but this is ok)

■ we need to reject large parities $\left(\mathrm{Par}_{n}\right)$:
Add a little ϵ-noise to $\mathbf{x} \cdot \mathbf{y}$

- dictators still pass w.p. $1-\epsilon$
- large parities fail with large probability

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

- Dictators pass w.p. 1 (small parities too but this is ok)

■ we need to reject large parities $\left(\mathrm{Par}_{n}\right)$:
Add a little ϵ-noise to $\mathbf{x} \cdot \mathbf{y}$

- dictators still pass w.p. $1-\epsilon$
- large parities fail with large probability
- we need to reject the constant 1

A $\frac{1}{2}$ vs. $1-\delta$ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

- Dictators pass w.p. 1 (small parities too but this is ok)

■ we need to reject large parities $\left(\mathrm{Par}_{n}\right)$:
Add a little ϵ-noise to $\mathbf{x} \cdot \mathbf{y}$

- dictators still pass w.p. $1-\epsilon$
- large parities fail with large probability
- we need to reject the constant 1 Instead of testing whether $f(\mathbf{x}) f(\mathbf{y}) f(\mathbf{x} \cdot \mathbf{y})=1$ we test w.p. $1 / 2$
- if $f(\mathbf{x}) f(\mathbf{y}) f(\mathbf{x} \cdot \mathbf{y})=1$
- if $f(\mathbf{x}) f(\mathbf{y}) f(\overline{\mathbf{x} \cdot \mathbf{y}})=-1$

Inapproximability Results

Corollary
It is UG-Hard to $\left(\frac{1}{2}+\delta, 1-\delta\right)$-approximate Max-E3-Lin.

Inapproximability Results

Corollary

It is UG-Hard to $\left(\frac{1}{2}+\delta, 1-\delta\right)$-approximate Max-E3-Lin.
With similar tests and Fourier Analysis
Corollary
It is UG-Hard to $\left(\frac{7}{8}+\delta, 1-\delta\right)$-approximate Max-E3-Sat.

Inapproximability Results

Corollary

It is UG-Hard to $\left(\frac{1}{2}+\delta, 1-\delta\right)$-approximate Max-E3-Lin.
With similar tests and Fourier Analysis
Corollary
It is UG-Hard to $\left(\frac{7}{8}+\delta, 1-\delta\right)$-approximate Max-E3-Sat.
Corollary
It is UG-Hard to $((0.878+\delta) \beta, \beta)$-approximate Max-Cut.

Unique Games

- a set of variables (nodes)
- a domain Ω (colors)
- a set of bijective constraints

Unique Games Conjecture

Conjecture [Khot '02]
For every $\delta>0,(\delta, 1-\delta)$-approximating UG is NP-Hard.

Unique Games Conjecture

Conjecture [Khot '02]

For every $\delta>0$, $(\delta, 1-\delta)$-approximating UG is NP-Hard.

Problem	Best Known	NP-Hardness	UGC-Hardness
Max-2-Sat	0.940	$0.954+\epsilon$	$0.940+\epsilon$
Max-Cut	0.878	$0.941+\epsilon$	$0.878+\epsilon$
Min-Vertex-Cover	2	$1.360-\epsilon$	$2-\epsilon$

Further Reading

Q O＇Donnell，Ryan．Analysis of boolean functions．Cambridge University Press， 2014.
围 Khot，Subhash．＂Guest column：Inapproximability results via long code based PCPs．＂ACM SIGACT News 36.2 （2005）： 25－42．
围 Khot，Subhash．＂Inapproximability of np－complete problems， discrete fourier analysis，and geometry．＂International Congress of Mathematics．Vol．5． 2010.
回 O＇Donnell，Ryan．＂Some topics in analysis of Boolean functions．＂Proceedings of the fortieth annual ACM symposium on Theory of computing．ACM，2008．S．Jemand．

THANK YOU!

