
Analysis of Boolean Functions and
Inapproximability

Dimitris Tsipras

CoReLab, ECE, NTUA

February 5, 2015



Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability



Introduction to Boolean Functions

We will study boolean functions

f : {−1, 1}n → {−1, 1}

For examply consider the Majority Function

Maj3(−1,−1,−1) = −1, Maj3(−1,−1,+1) = −1

Maj3(−1,+1,−1) = −1, Maj3(+1,−1,−1) = −1

Maj3(−1,+1,+1) = +1, Maj3(+1,−1,+1) = +1

Maj3(+1,+1,−1) = +1, Maj3(+1,+1,+1) = +1



Introduction to Boolean Functions

We will study boolean functions

f : {−1, 1}n → {−1, 1}

For examply consider the Majority Function

Maj3(−1,−1,−1) = −1, Maj3(−1,−1,+1) = −1

Maj3(−1,+1,−1) = −1, Maj3(+1,−1,−1) = −1

Maj3(−1,+1,+1) = +1, Maj3(+1,−1,+1) = +1

Maj3(+1,+1,−1) = +1, Maj3(+1,+1,+1) = +1



Interpolating Boolean Functions

We can interpolate any boolean function with a polynomial

Maj3(x) =

(
1 + x1

2

)(
1 + x2

2

)(
1 + x3

2

)
(+1)

+

(
1 + x1

2

)(
1 + x2

2

)(
1− x3

2

)
(+1)

+ . . .

+

(
1− x1

2

)(
1− x2

2

)(
1− x3

2

)
(−1)

and then expand and simplify to get

Maj3(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3



Interpolating Boolean Functions

We can interpolate any boolean function with a polynomial

Maj3(x) =

(
1 + x1

2

)(
1 + x2

2

)(
1 + x3

2

)
(+1)

+

(
1 + x1

2

)(
1 + x2

2

)(
1− x3

2

)
(+1)

+ . . .

+

(
1− x1

2

)(
1− x2

2

)(
1− x3

2

)
(−1)

and then expand and simplify to get

Maj3(x) =
1

2
x1 +

1

2
x2 +

1

2
x3 −

1

2
x1x2x3



”Fourier Expansion” of Boolean Functions

Theorem

Every function f : {−1, 1}n → {−1, 1} can be expressed as

f (x) =
∑
S⊆[n]

f̂ (S)xS(x)

where xS(x) =
∏

i∈S xi

Example: Maj3(x) = 1
2x1 + 1

2x2 + 1
2x3 −

1
2x1x2x3

M̂aj3(∅) = 0

M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) =
1

2

M̂aj3({1, 2}) = M̂aj3({1, 3}) = M̂aj3({2, 3}) = 0

M̂aj3({1, 2, 3}) =
1

2



”Fourier Expansion” of Boolean Functions

Theorem

Every function f : {−1, 1}n → {−1, 1} can be expressed as

f (x) =
∑
S⊆[n]

f̂ (S)xS(x)

where xS(x) =
∏

i∈S xi

Example: Maj3(x) = 1
2x1 + 1

2x2 + 1
2x3 −

1
2x1x2x3

M̂aj3(∅) = 0

M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) =
1

2

M̂aj3({1, 2}) = M̂aj3({1, 3}) = M̂aj3({2, 3}) = 0

M̂aj3({1, 2, 3}) =
1

2



Plancheler Theorem

We will study the behavior of functions on uniformly random
strings

x ∼ {−1, 1}n

Theorem (Plancheler)

For any functions f , g : {−1, 1}n → R

E
x

[f (x)g(x)] =
∑
S⊆[n]

f̂ (S)ĝ(S)



Plancheler Theorem

We will study the behavior of functions on uniformly random
strings

x ∼ {−1, 1}n

Theorem (Plancheler)

For any functions f , g : {−1, 1}n → R

E
x

[f (x)g(x)] =
∑
S⊆[n]

f̂ (S)ĝ(S)



Plancheler Theorem

Proof.

E
x

[xS(x)] =

{
0, if S 6= ∅
1, otherwise

E
x

[f (x)g(x)] = E
x

∑
S⊆[n]

f̂ (S)xS(x) ·
∑
T⊆[n]

ĝ(T )xT (x)


=

∑
S,T⊆[n]

f̂ (S)ĝ(T )E
x

[xS(x)xT (x)]

=
∑

S,T⊆[n]

f̂ (S)ĝ(T )E
x

[xS⊕T (x)]

=
∑
S⊆[n]

f̂ (S)ĝ(S)



Plancheler Theorem

Proof.

E
x

[xS(x)] =

{
0, if S 6= ∅
1, otherwise

E
x

[f (x)g(x)] = E
x

∑
S⊆[n]

f̂ (S)xS(x) ·
∑
T⊆[n]

ĝ(T )xT (x)


=

∑
S,T⊆[n]

f̂ (S)ĝ(T )E
x

[xS(x)xT (x)]

=
∑

S,T⊆[n]

f̂ (S)ĝ(T )E
x

[xS⊕T (x)]

=
∑
S⊆[n]

f̂ (S)ĝ(S)



Parseval Theorem

Corollary (Parseval’s Theorem)

For any functions f , g : {−1, 1}n → R

E
x

[f 2(x)] =
∑
S⊆[n]

f̂ (S)2

And therefore for functions f : {−1, 1}n → {−1, 1}∑
S⊆[n]

f̂ (S)2 = 1



Parseval Theorem

Corollary (Parseval’s Theorem)

For any functions f , g : {−1, 1}n → R

E
x

[f 2(x)] =
∑
S⊆[n]

f̂ (S)2

And therefore for functions f : {−1, 1}n → {−1, 1}∑
S⊆[n]

f̂ (S)2 = 1



Formula for Fourier Coefficients

Corollary

For any functions f : {−1, 1}n → R

f̂ (S) = E
x

[f (x)xS(x)]

Proof.

E
x

[f (x)xS(x)] = E
x

[(∑
T

f̂ (T )xT (x)

)
xS(x)

]
=
∑
T

f̂ (T )E
x

[xS(x)xT (x)]

= f̂ (S)



Formula for Fourier Coefficients

Corollary

For any functions f : {−1, 1}n → R

f̂ (S) = E
x

[f (x)xS(x)]

Proof.

E
x

[f (x)xS(x)] = E
x

[(∑
T

f̂ (T )xT (x)

)
xS(x)

]
=
∑
T

f̂ (T )E
x

[xS(x)xT (x)]

= f̂ (S)



Fourier Coefficients as Weights

Definition

The ”(Fourier) weight” of f on S is f̂ (S)2.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}



Some Illustrative Examples

Majority: Maj3(x)

Parity: Par3(x) = x1x2x3



Some Illustrative Examples

Majority: Maj3(x)

Parity: Par3(x) = x1x2x3



Some Illustrative Examples

Dictatorship: Dict1(x) = x1

Constants: Const−1(x) = −1,Const1(x) = 1



Some Illustrative Examples

Dictatorship: Dict1(x) = x1

Constants: Const−1(x) = −1,Const1(x) = 1



Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability



Linearity Testing

Definition

A function f : {−1, 1}n → {−1, 1} is linear if for some S ⊆ [n]

f (x) = xS(x) =
∏
i∈S

xi

Suppose we have black-box access to an unknown function f and
want to test if it is linear. Specifically we want to design a test
such that

If f is linear, it passes the test with probability 1− ε.
If f passes the test with probability 1− ε, then f is ε-close to
some linear function.



Linearity Testing

Definition

A function f : {−1, 1}n → {−1, 1} is linear if for some S ⊆ [n]

f (x) = xS(x) =
∏
i∈S

xi

Suppose we have black-box access to an unknown function f and
want to test if it is linear. Specifically we want to design a test
such that

If f is linear, it passes the test with probability 1− ε.
If f passes the test with probability 1− ε, then f is ε-close to
some linear function.



Linearity Testing

Definition

A function f : {−1, 1}n → {−1, 1} is linear if for some S ⊆ [n]

f (x) = xS(x) =
∏
i∈S

xi

Suppose we have black-box access to an unknown function f and
want to test if it is linear. Specifically we want to design a test
such that

If f is linear, it passes the test with probability 1− ε.

If f passes the test with probability 1− ε, then f is ε-close to
some linear function.



Linearity Testing

Definition

A function f : {−1, 1}n → {−1, 1} is linear if for some S ⊆ [n]

f (x) = xS(x) =
∏
i∈S

xi

Suppose we have black-box access to an unknown function f and
want to test if it is linear. Specifically we want to design a test
such that

If f is linear, it passes the test with probability 1− ε.
If f passes the test with probability 1− ε, then f is ε-close to
some linear function.



The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).



The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).



The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).



The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).



The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).



The BLR Test

Claim 2

If f is accepted with probability 1− ε, then there exists some S
such that Prx[f (x) 6= xS(x)] ≥ 1− ε

Proof.

1− ε = Pr[BLR accepts] = E
x ,y

[
1

2
+

1

2
f (x)f (y)f (x · y)

]
=

1

2
+

1

2
E
x

[f (x)E
y

[f (y)f (x · y)]]

=
1

2
+

1

2
E
x

[f (x)g(x)]

=
1

2
+

1

2

∑
S

f̂ (S)ĝ(S)

where g(x) = Ey[f (y)f (x · y)]



The BLR Test

Claim 2

If f is accepted with probability 1− ε, then there exists some S
such that Prx[f (x) 6= xS(x)] ≥ 1− ε

Proof.

1− ε = Pr[BLR accepts] = E
x ,y

[
1

2
+

1

2
f (x)f (y)f (x · y)

]
=

1

2
+

1

2
E
x

[f (x)E
y

[f (y)f (x · y)]]

=
1

2
+

1

2
E
x

[f (x)g(x)]

=
1

2
+

1

2

∑
S

f̂ (S)ĝ(S)

where g(x) = Ey[f (y)f (x · y)]



The BLR Test

Proof.

For g(x)

ĝ(S) = E
x

[E
y

[f (y)f (x · y)]xS(x)]

= E
x,z

[f (y)f (z)xS(y · z)]

= E
x,z

[f (y)xS(y)f (z)xS(z)]

= f̂ (S)2

Therefore,
1− ε = Pr[BLR accepts] =

1

2
+

1

2

∑
S

f̂ (S)3

≤ 1

2
+

1

2
max
S
{f̂ (S)}



The BLR Test

Proof.

Let S∗ = argmaxS{f̂ (S)}, then

1− ε ≤ 1

2
+

1

2
f̂ (S∗)

=
1

2
+

1

2
E
x

[f (x)xS∗(x)]

=
1

2
+

1

2
(Pr

x
[f (x) = xS∗(x)]− Pr

x
[f (x) 6= xS∗(x)])

= 1− Pr
x

[f (x) 6= xS∗(x)]

And therefore
Pr
x

[f (x) 6= xS∗(x)] ≤ ε



The BLR Test

We have therefore constructed 1− ε vs. 1 Linearity with 3 queries,
which uses a linear predicate for acceptance.

Any linear function passes with probability 1 (Completeness).

Any function the is ε-far from a linear function passes with
probability at most 1− ε (Soundness).

One can create similar tests for a variety of function properties,
this is a huge field known as Property Testing.



The BLR Test

We have therefore constructed 1− ε vs. 1 Linearity with 3 queries,
which uses a linear predicate for acceptance.

Any linear function passes with probability 1 (Completeness).

Any function the is ε-far from a linear function passes with
probability at most 1− ε (Soundness).

One can create similar tests for a variety of function properties,
this is a huge field known as Property Testing.



The BLR Test

We have therefore constructed 1− ε vs. 1 Linearity with 3 queries,
which uses a linear predicate for acceptance.

Any linear function passes with probability 1 (Completeness).

Any function the is ε-far from a linear function passes with
probability at most 1− ε (Soundness).

One can create similar tests for a variety of function properties,
this is a huge field known as Property Testing.



The BLR Test

We have therefore constructed 1− ε vs. 1 Linearity with 3 queries,
which uses a linear predicate for acceptance.

Any linear function passes with probability 1 (Completeness).

Any function the is ε-far from a linear function passes with
probability at most 1− ε (Soundness).

One can create similar tests for a variety of function properties,
this is a huge field known as Property Testing.



Outline

1 Fourier Structure of Boolean Functions

2 Linearity Testing

3 Dictatorship Testing and Inapproximability



The Long Code

Bellare, Goldreich, Sudan: Let i ∈ [q] that is to be coded in a
PCP proof. Then instead of representing it with log q bits we will
represent i by writing down the truth table of the i-th dictatorship
function 2q bits.

If q = 3 and i = 1 the instead of

0 1

we code i as
0 0 0 0 1 1 1 1



The Long Code

Bellare, Goldreich, Sudan: Let i ∈ [q] that is to be coded in a
PCP proof. Then instead of representing it with log q bits we will
represent i by writing down the truth table of the i-th dictatorship
function 2q bits.
If q = 3 and i = 1 the instead of

0 1

we code i as
0 0 0 0 1 1 1 1



The Long Code

The framework incorporates

An outer PCP making non-boolean queries to the proof

An inner PCP translating these queries to boolean queries
through dictatorship testing and Fourier Analysis tools.

Many (non-tight) inapproximability bounds were estabilished this
way.



The Long Code

The framework incorporates

An outer PCP making non-boolean queries to the proof

An inner PCP translating these queries to boolean queries
through dictatorship testing and Fourier Analysis tools.

Many (non-tight) inapproximability bounds were estabilished this
way.



Håstad’s optimized PCPs

Håstad:

a full dictatorship test is not needed for these Long Code
reductions

we only need to distinguish dictators from functions that are
far from dictators

Which functions are far from dictatorships?



Håstad’s optimized PCPs

Håstad:

a full dictatorship test is not needed for these Long Code
reductions

we only need to distinguish dictators from functions that are
far from dictators

Which functions are far from dictatorships?



Håstad’s optimized PCPs

Håstad:

a full dictatorship test is not needed for these Long Code
reductions

we only need to distinguish dictators from functions that are
far from dictators

Which functions are far from dictatorships?



Håstad’s optimized PCPs

Håstad:

a full dictatorship test is not needed for these Long Code
reductions

we only need to distinguish dictators from functions that are
far from dictators

Which functions are far from dictatorships?



The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using
predicate Ψ, is a randomized algorithm the queries a function f at
r points and accepts if

Ψ(f (x1), . . . , f (xr )) = 1

such that

if f is a dictator, the test accepts w.p. at least c

if f has no notable coordinates, then the test accepts w.p. at
most s



The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using
predicate Ψ, is a randomized algorithm the queries a function f at
r points and accepts if

Ψ(f (x1), . . . , f (xr )) = 1

such that

if f is a dictator, the test accepts w.p. at least c

if f has no notable coordinates, then the test accepts w.p. at
most s



The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using
predicate Ψ, is a randomized algorithm the queries a function f at
r points and accepts if

Ψ(f (x1), . . . , f (xr )) = 1

such that

if f is a dictator, the test accepts w.p. at least c

if f has no notable coordinates, then the test accepts w.p. at
most s



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}

a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy



A black box reduction

Theorem

Fix any CSP over domain {−1, 1} with predicate set Ψ.

Suppose there exists some r-query, s vs. c Dictatorship vs.
No-Notables Test using predicate Ψ

Then for any δ > 0 it is UG-hard to
(s + δ, c − δ)-approximate Max-CSPr (Ψ).



A black box reduction

Theorem

Fix any CSP over domain {−1, 1} with predicate set Ψ.

Suppose there exists some r-query, s vs. c Dictatorship vs.
No-Notables Test using predicate Ψ

Then for any δ > 0 it is UG-hard to
(s + δ, c − δ)-approximate Max-CSPr (Ψ).



A black box reduction

Theorem

Fix any CSP over domain {−1, 1} with predicate set Ψ.

Suppose there exists some r-query, s vs. c Dictatorship vs.
No-Notables Test using predicate Ψ

Then for any δ > 0 it is UG-hard to
(s + δ, c − δ)-approximate Max-CSPr (Ψ).



A black box reduction

Theorem

Fix any CSP over domain {−1, 1} with predicate set Ψ.

Suppose there exists some r-query, s vs. c Dictatorship vs.
No-Notables Test using predicate Ψ

Then for any δ > 0 it is UG-hard to
(s + δ, c − δ)-approximate Max-CSPr (Ψ).



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1

Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1



Inapproximability Results

Corollary

It is UG-Hard to (12 + δ, 1− δ)-approximate Max-E3-Lin.

With similar tests and Fourier Analysis

Corollary

It is UG-Hard to (78 + δ, 1− δ)-approximate Max-E3-Sat.

Corollary

It is UG-Hard to ((0.878 + δ)β, β)-approximate Max-Cut.



Inapproximability Results

Corollary

It is UG-Hard to (12 + δ, 1− δ)-approximate Max-E3-Lin.

With similar tests and Fourier Analysis

Corollary

It is UG-Hard to (78 + δ, 1− δ)-approximate Max-E3-Sat.

Corollary

It is UG-Hard to ((0.878 + δ)β, β)-approximate Max-Cut.



Inapproximability Results

Corollary

It is UG-Hard to (12 + δ, 1− δ)-approximate Max-E3-Lin.

With similar tests and Fourier Analysis

Corollary

It is UG-Hard to (78 + δ, 1− δ)-approximate Max-E3-Sat.

Corollary

It is UG-Hard to ((0.878 + δ)β, β)-approximate Max-Cut.



Unique Games

a set of variables (nodes)

a domain Ω (colors)

a set of bijective constraints



Unique Games Conjecture

Conjecture [Khot ’02]

For every δ > 0, (δ, 1− δ)-approximating UG is NP-Hard.

Problem Best Known NP-Hardness UGC-Hardness

Max-2-Sat 0.940 0.954+ε 0.940+ε

Max-Cut 0.878 0.941+ε 0.878+ε

Min-Vertex-Cover 2 1.360-ε 2 - ε



Unique Games Conjecture

Conjecture [Khot ’02]

For every δ > 0, (δ, 1− δ)-approximating UG is NP-Hard.

Problem Best Known NP-Hardness UGC-Hardness

Max-2-Sat 0.940 0.954+ε 0.940+ε

Max-Cut 0.878 0.941+ε 0.878+ε

Min-Vertex-Cover 2 1.360-ε 2 - ε



Further Reading

O’Donnell, Ryan. Analysis of boolean functions. Cambridge
University Press, 2014.

Khot, Subhash. ”Guest column: Inapproximability results via
long code based PCPs.” ACM SIGACT News 36.2 (2005):
25-42.

Khot, Subhash. ”Inapproximability of np-complete problems,
discrete fourier analysis, and geometry.” International Congress
of Mathematics. Vol. 5. 2010.

O’Donnell, Ryan. ”Some topics in analysis of Boolean
functions.” Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 2008. S. Jemand.



THANK YOU!


	Fourier Structure of Boolean Functions
	Linearity Testing
	Dictatorship Testing and Inapproximability

