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Introduction to Boolean Functions

We will study boolean functions

f : {−1, 1}n → {−1, 1}

For examply consider the Majority Function

Maj3(−1,−1,−1) = −1, Maj3(−1,−1,+1) = −1

Maj3(−1,+1,−1) = −1, Maj3(+1,−1,−1) = −1

Maj3(−1,+1,+1) = +1, Maj3(+1,−1,+1) = +1

Maj3(+1,+1,−1) = +1, Maj3(+1,+1,+1) = +1
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Interpolating Boolean Functions

We can interpolate any boolean function with a polynomial
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”Fourier Expansion” of Boolean Functions

Theorem

Every function f : {−1, 1}n → {−1, 1} can be expressed as

f (x) =
∑
S⊆[n]

f̂ (S)xS(x)

where xS(x) =
∏

i∈S xi

Example: Maj3(x) = 1
2x1 + 1

2x2 + 1
2x3 −

1
2x1x2x3

M̂aj3(∅) = 0

M̂aj3({1}) = M̂aj3({2}) = M̂aj3({3}) =
1

2

M̂aj3({1, 2}) = M̂aj3({1, 3}) = M̂aj3({2, 3}) = 0

M̂aj3({1, 2, 3}) =
1

2
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Plancheler Theorem

We will study the behavior of functions on uniformly random
strings

x ∼ {−1, 1}n

Theorem (Plancheler)

For any functions f , g : {−1, 1}n → R

E
x

[f (x)g(x)] =
∑
S⊆[n]

f̂ (S)ĝ(S)
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Plancheler Theorem

Proof.

E
x

[xS(x)] =

{
0, if S 6= ∅
1, otherwise

E
x

[f (x)g(x)] = E
x
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∑
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Parseval Theorem

Corollary (Parseval’s Theorem)

For any functions f , g : {−1, 1}n → R

E
x

[f 2(x)] =
∑
S⊆[n]

f̂ (S)2

And therefore for functions f : {−1, 1}n → {−1, 1}∑
S⊆[n]

f̂ (S)2 = 1
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Formula for Fourier Coefficients

Corollary
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Fourier Coefficients as Weights

Definition

The ”(Fourier) weight” of f on S is f̂ (S)2.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}



Some Illustrative Examples

Majority: Maj3(x)

Parity: Par3(x) = x1x2x3
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Some Illustrative Examples

Dictatorship: Dict1(x) = x1

Constants: Const−1(x) = −1,Const1(x) = 1
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Linearity Testing

Definition

A function f : {−1, 1}n → {−1, 1} is linear if for some S ⊆ [n]

f (x) = xS(x) =
∏
i∈S

xi

Suppose we have black-box access to an unknown function f and
want to test if it is linear. Specifically we want to design a test
such that

If f is linear, it passes the test with probability 1− ε.
If f passes the test with probability 1− ε, then f is ε-close to
some linear function.
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The BLR Test

The Blum-Luby-Rubinfield Linearity Test:

Pick x ∼ {−1, 1}n and y ∼ {−1, 1}n independently

Query f at x, y and x · y (where · the pointwise product of
x,y)

Accept if f (x) · f (y) = f (x · y)

Claim 1 (obvious)

If f is a linear (or ε-close to a linear) function, then it passes the
test with probability 1 (or at least 1− ε).
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The BLR Test

Claim 2

If f is accepted with probability 1− ε, then there exists some S
such that Prx[f (x) 6= xS(x)] ≥ 1− ε
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where g(x) = Ey[f (y)f (x · y)]
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The BLR Test

Proof.

For g(x)
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x
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The BLR Test

Proof.

Let S∗ = argmaxS{f̂ (S)}, then
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The BLR Test

We have therefore constructed 1− ε vs. 1 Linearity with 3 queries,
which uses a linear predicate for acceptance.

Any linear function passes with probability 1 (Completeness).

Any function the is ε-far from a linear function passes with
probability at most 1− ε (Soundness).

One can create similar tests for a variety of function properties,
this is a huge field known as Property Testing.
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The Long Code

Bellare, Goldreich, Sudan: Let i ∈ [q] that is to be coded in a
PCP proof. Then instead of representing it with log q bits we will
represent i by writing down the truth table of the i-th dictatorship
function 2q bits.

If q = 3 and i = 1 the instead of

0 1

we code i as
0 0 0 0 1 1 1 1
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The Long Code

The framework incorporates

An outer PCP making non-boolean queries to the proof

An inner PCP translating these queries to boolean queries
through dictatorship testing and Fourier Analysis tools.

Many (non-tight) inapproximability bounds were estabilished this
way.
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Håstad’s optimized PCPs

Håstad:

a full dictatorship test is not needed for these Long Code
reductions

we only need to distinguish dictators from functions that are
far from dictators

Which functions are far from dictatorships?
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The Dictatorship vs. No-Notables Test

Definition

An r-query, s vs. c Dictatorship vs. No-Notables Test using
predicate Ψ, is a randomized algorithm the queries a function f at
r points and accepts if

Ψ(f (x1), . . . , f (xr )) = 1

such that

if f is a dictator, the test accepts w.p. at least c

if f has no notable coordinates, then the test accepts w.p. at
most s
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Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}

a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

a set of n variables, x1, . . . , xn

a domain Ω, e.g. {−1, 1}
a (multi)set of constraints, which we try to satisfy

Examples:

Max-E3-Sat

(x1 ∨ x2 ∨ ¬x5)
(x2 ∨ x4 ∨ ¬x3)

. . .
(¬x10 ∨ ¬x21 ∨ x50)

Max-E3-Lin

x1 + x2 + x5 = 0
x6 + x7 + x9 = 1

. . .
x1 + x20 + x50 = 0

Max-Cut

x1 6= x5
x2 6= x3
. . .

x10 6= x42



Constraint Satisfaction Problems

Definition

An algorithm (α, β)-approximates a CSP if for every instance

the βest assignment satisfies a fraction β of the constraints

the αlgorithms satisfies at least a fraction α

Facts:

(β, β)-approximating most CSPs is NP-Hard

(1, 1)-approximating Max-E3-Lin is easy

(12 , β)-approximating Max-3-Lin is easy

(78 , β)-approximating Max-3-Sat is easy
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A black box reduction

Theorem

Fix any CSP over domain {−1, 1} with predicate set Ψ.

Suppose there exists some r-query, s vs. c Dictatorship vs.
No-Notables Test using predicate Ψ

Then for any δ > 0 it is UG-hard to
(s + δ, c − δ)-approximate Max-CSPr (Ψ).
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A 1
2 vs. 1− δ Dictator vs. No-Notables Test

The BLR Linearity tests whether a function is a parity or not

Dictators pass w.p. 1 (small parities too but this is ok)

we need to reject large parities (Parn):
Add a little ε-noise to x · y

dictators still pass w.p. 1− ε
large parities fail with large probability

we need to reject the constant 1 Instead of testing whether
f (x)f (y)f (x · y) = 1 we test w.p. 1/2

if f (x)f (y)f (x · y) = 1
if f (x)f (y)f (x · y) = −1
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Inapproximability Results

Corollary

It is UG-Hard to (12 + δ, 1− δ)-approximate Max-E3-Lin.

With similar tests and Fourier Analysis

Corollary

It is UG-Hard to (78 + δ, 1− δ)-approximate Max-E3-Sat.

Corollary

It is UG-Hard to ((0.878 + δ)β, β)-approximate Max-Cut.
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Unique Games

a set of variables (nodes)

a domain Ω (colors)

a set of bijective constraints



Unique Games Conjecture

Conjecture [Khot ’02]

For every δ > 0, (δ, 1− δ)-approximating UG is NP-Hard.

Problem Best Known NP-Hardness UGC-Hardness

Max-2-Sat 0.940 0.954+ε 0.940+ε

Max-Cut 0.878 0.941+ε 0.878+ε

Min-Vertex-Cover 2 1.360-ε 2 - ε
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