Tangent Hyperplane

Orestis Plevrakis

Let $A \subseteq \mathbb{R}^{n}$ open, and $f: A \rightarrow \mathbb{R}$ a C^{1} function. Let x_{0} in A. In this note, we explain why the equation of the tangent hyperplane of G_{f} at $\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
x_{n+1}=f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right)
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$.

1 Curves in \mathbb{R}^{n}

Definition 1. A parameterized curve is a C^{1} function $\gamma: I \rightarrow \mathbb{R}^{n}$, where $I \subseteq \mathbb{R}$ is an open interval.
C^{1} means here that all the components γ_{i} are C^{1}. The motivation behind this definition is that we think of γ as describing the trajectory of a certain particle in \mathbb{R}^{n}, i.e., $t \in I$ represents time and $\gamma(t)$ is the position of the particle at time t. For example, $\gamma(t)=(\cos (t), \sin (t)), t \in(0,2 \pi)$ parameterizes the unit circle.

Definition 2. If a parameterized curve $\gamma: I \rightarrow \mathbb{R}^{n}$ satisfies $\gamma^{\prime}(t) \neq 0$ for all $t \in I$, i.e., it always has non-zero velocity, then it is called regular.

2 Tangent vectors

Definition 3. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parameterized curve. Let $t_{0} \in I$. Consider the following limits:

$$
L_{+}:=\lim _{t \rightarrow t_{0}^{+}} \frac{\gamma(t)-\gamma\left(t_{0}\right)}{\left\|\gamma(t)-\gamma\left(t_{0}\right)\right\|}, \quad L_{-}:=\lim _{t \rightarrow t_{0}^{-}} \frac{\gamma\left(t_{0}\right)-\gamma(t)}{\left\|\gamma\left(t_{0}\right)-\gamma(t)\right\|}
$$

If they both exist and are equal, then we call this limiting vector the unit tangent vector of γ at t_{0}.
Proposition 4. If $\gamma: I \rightarrow \mathbb{R}^{n}$ is a regular parameterized curve, then for every $t \in I$, the unit tangent vector exists and equals $\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}$.

Proof. Left as exercise (divide and multiply with $t-t_{0}$).
So, for regular γ the velocities are tangent to the curve. Here is an example that shows what can go wrong when γ is nonregular. Let $\gamma(t)=\left(t^{3}, t^{2}\right)$. It traces the curve $y=|x|^{2 / 3}$ (see figure below). Here $\gamma^{\prime}(0)=0$, but at this point, the tangent vector is not defined. As you can see from the graph, $L_{+}=(0,1)$ while $L_{-}=(0,-1)$.

We will only consider regular parameterized curves. The reason is that almost always (except in some uninteresting to us, pathological cases like the one above) if we have a nonregular parameterized curve $\gamma: I \rightarrow \mathbb{R}^{n}$, then the curve it traces, i.e., the set $\gamma(I)$, can be parameterized by a regular one. This means that there exists $\tilde{\gamma}: \tilde{I} \rightarrow \mathbb{R}^{n}$ regular, such that $\tilde{\gamma}(\tilde{I})=\gamma(I)$.

3 Tangent Hyperplane

Let $A \subseteq \mathbb{R}^{n}$ open, and $f: A \rightarrow \mathbb{R}$ a C^{1} function. Let x_{0} in A. We want to develop a reasonable definition of the tangent hyperplane H of G_{f} on $\left(x_{0}, f\left(x_{0}\right)\right)$, that generalizes the $n=2$ and $n=3$ cases. It is natural to impose the following requirements on H : Let $P=\left(x_{0}, f\left(x_{0}\right)\right)$. We want

1. $P \in H$
2. Take any regular parameterized curve $\gamma: I \rightarrow \mathbb{R}^{n}$ that lies on G_{f} (i.e., the range of γ is subset of G_{f}), and also is such that $0 \in I$ and $\gamma(0)=P$. Then, we must have $P+\gamma^{\prime}(0) \in H$.

Take one such γ, i.e., regular, lies on G_{f}, and passes from P at $t=0$. We can write $\gamma(t)=$ $\left(u(t), f(u(t))\right.$, where $u(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$. Observe that $u(0)=x_{0}$. From chain rule, we have $\gamma^{\prime}(0)=\left(u^{\prime}(0), \nabla f\left(x_{0}\right) \cdot u^{\prime}(0)\right)$. Now, the set of all these possible $\gamma^{\prime}(0)$ is a linear subspace of \mathbb{R}^{n+1} and this linear subspace is exactly the hyperplane

$$
x_{n+1}=\nabla f\left(x_{0}\right) \cdot x
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)$. This is proved by considering the curves $\gamma(t)=\left(x_{0}+t v, f\left(x_{0}+t v\right)\right)$, where v is some arbitrary vector in \mathbb{R}^{n} (check this!). Now, what is left is to translate this hyperplane to contain $\left(x_{0}, f\left(x_{0}\right)\right)$. To this end, we add a constant term d :

$$
x_{n+1}=\nabla f\left(x_{0}\right) \cdot x+d
$$

and we need $f\left(x_{0}\right)=\nabla f\left(x_{0}\right) \cdot x_{0}+d$, and so $d=f\left(x_{0}\right)-\nabla f\left(x_{0}\right) \cdot x_{0}$. Substituting, we get

$$
x_{n+1}=f\left(x_{0}\right)+\nabla f\left(x_{0}\right) \cdot\left(x-x_{0}\right)
$$

