Tangent Hyperplane

Orestis Plevrakis

Let A C R” open, and f: A — R a C! function. Let xy in A. In this note, we explain why the
equation of the tangent hyperplane of Gy at (o, f(x0)) is

Tnt1 = f(x0) + Vf(20) - (¥ — o)

where © = (z1,...,zy).

1 Curves in R"

Definition 1. A parameterized curve is a C! function v : I — R”, where I C R is an open interval.

C' means here that all the components ~; are C'. The motivation behind this definition is that
we think of v as describing the trajectory of a certain particle in R”, i.e., ¢ € I represents time
and 7(t) is the position of the particle at time ¢. For example, y(t) = (cos(t),sin(t)), t € (0,2m)
parameterizes the unit circle.

Definition 2. If a parameterized curve « : I — R™ satisfies 7/(¢) # 0 for all t € I, i.e., it always
has non-zero velocity, then it is called regular.

2 Tangent vectors
Definition 3. Let v : I — R" be a parameterized curve. Let ty € I. Consider the following limits:
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If they both exist and are equal, then we call this limiting vector the unit tangent vector of v at tg.

Proposition 4. If v : I — R" is a reqular parameterized curve, then for every t € I, the unit
tangent vector exists and equals ”3,78“

Proof. Left as exercise (divide and multiply with ¢ — tg). O

So, for regular v the velocities are tangent to the curve. Here is an example that shows what
can go wrong when v is nonregular. Let v(t) = (t3,¢). It traces the curve y = |z|?/® (see figure
below). Here 7/(0) = 0, but at this point, the tangent vector is not defined. As you can see from
the graph, Ly = (0,1) while L_ = (0, —1).



We will only consider regular parameterized curves. The reason is that almost always (except in
some uninteresting to us, pathological cases like the one above) if we have a nonregular parameterized
curve v : I — R™, then the curve it traces, i.e., the set y(I), can be parameterized by a regular one.
This means that there exists 4 : I — R” regular, such that 5(I) = ~(I).

3 Tangent Hyperplane

Let A C R™ open, and f : A — R a C' function. Let 2y in A. We want to develop a reasonable
definition of the tangent hyperplane H of Gy on (xo, f(xo)), that generalizes the n =2 and n = 3
cases. It is natural to impose the following requirements on H: Let P = (z, f(z¢)). We want
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2. Take any regular parameterized curve v : I — R" that lies on G (i.e., the range of v is subset
of G¢), and also is such that 0 € I and v(0) = P. Then, we must have P +~/(0) € H.

Take one such 7, i.e., regular, lies on G, and passes from P at t = 0. We can write y(t) =
(u(t), f(u(t)), where u(t) = (71(t),...,m(t)). Observe that u(0) = x¢. From chain rule, we have
7' (0) = (u/(0), Vf(xo) - u'(0)). Now, the set of all these possible 7/(0) is a linear subspace of R"*!
and this linear subspace is exactly the hyperplane

Tni1 = Vf(wo) @

where x = (x1,...,x,). This is proved by considering the curves v(t) = (zg + tv, f(zo + tv)),
where v is some arbitrary vector in R™ (check this!). Now, what is left is to translate this hyperplane
to contain (zg, f(xp)). To this end, we add a constant term d:

Tnt1 = Vf(zg) - x+d
and we need f(xo) = Vf(xo) - xo + d, and so d = f(z9) — Vf(xo) - 0. Substituting, we get

Tnt1 = f(20) + Vf(20) - (¥ — o)
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