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1 High Dimensional Data and Dimension Reduction

It is a typical case to have data which are stored as vectors with a large number of coordinates.
For example, grayscale images are stored as matrices, where the (i, j) entry corresponds to how
much white or black the pixel (i, j) is. An image with 1280 × 780 pixels is stored as a matrix in
R1280×780. If we view this matrix as a vector by concatenating its columns we will get a vector with
around a million coordinates. Another example appears in bioinformatics, where data can be DNA
sequences. These are very long sequences consisting of the 4 DNA bases (A,T,G,C).

Figure 1: Example of a (short) DNA sequence

We often use numeric encodings for the bases, e.g., 0 for T, 1 for C, 2 for A, 3 for G, and so the
sequence is represented as a large vector.

The high dimension creates running-time issues, so we would like to compress our data, i.e., re-
duce the dimension, while maintaining important information. In this lecture, we will focus on
dimension-reduction that preserves the distances among the data. To check if this is possible to do,
we first formulate it mathematically:

Question: Is it true that for any v1, v2, . . . , vn ∈ Rd, there exists an integer κ < d and
ṽ1, ṽ2, . . . , ṽn ∈ Rκ such that for all i ̸= j, ∥ṽi − ṽj∥ = ∥vi − vj∥?

The answer is no, and there is a very simple counterexample in every dimension d. Before
presenting it, we first make a remark:

Remark 1. If the answer to the question was yes, then we could also add to the required prop-
erties of ṽi’s that all norms and inner products are preserved. Here is why: consider the points
v1, . . . , vn, 0 ∈ Rd. If there exist κ < d and ṽ1, . . . , ṽn+1 ∈ Rκ such that all distances are preserved,
then we can update ṽi ← ṽi − ṽn+1, and both distances and norms will be preserved. For the inner
products, notice that for the new ṽi’s we have ∥ṽi− ṽj∥2 = ∥vi−vj∥2 ⇐⇒ ∥ṽi∥2+∥ṽj∥2−2ṽi · ṽj =
∥vi∥2 + ∥vj∥2 − 2vi · vj .

Thus, if the answer was yes, then for the standard basis e1, . . . , ed, there exist κ < d, ẽ1, . . . , ẽd ∈
Rκ which are pairwise orthogonal unit vectors. This implies that they are linearly independent,
which is a contradiction. Thus, even reducing the dimension by one (κ = d − 1), while preserving
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the distances, is impossible. Let’s relax our goals: can we reduce the dimension while approximating
the distances with up to 1% error? The answer is yes, and surprisingly, we can choose κ to be as
small as O(log d)! This is a theorem proved by Johnson and Lindenstrauss and it is called “JL
lemma” (since the authors called it lemma in their paper).

Theorem 2. Let n ≤ poly(d) and v1, . . . , vn ∈ Rd. Let ϵ ∈ (0, 1). Then, there exists a κ = O
(
log d
ϵ2

)
and ṽ1, . . . , ṽn ∈ Rκ such that for all i ̸= j,

(1− ϵ)∥vi − vj∥ ≤ ∥ṽi − ṽj∥ ≤ (1 + ϵ)∥vi − vj∥ (1)

As we will see in the proof, these ṽi’s can also be computed efficiently.

Remark 3. Notice that by repeating the argument in Remark 1, we have that Theorem 2 could
have been stated with the additional property that for all i, (1− ϵ)∥vi∥ ≤ ∥ṽi∥ ≤ (1 + ϵ)∥vi∥.

2 A Special Case

As usual in problem-solving, we won’t attack the theorem head-on; we will first prove a special
case. Which special case? We focus on the one that showed that exact distance preservation is
impossible: the standard basis!

Special case: Let d ≥ 1 be an integer, and ϵ > 0. There exists a κ = O
(
log d
ϵ2

)
and

ẽ1, . . . , ẽd ∈ Rκ such that for all i ̸= j,

(1− ϵ)
√
2 ≤ ∥ẽi − ẽj∥ ≤ (1 + ϵ)

√
2 (2)

and for all i,

1− ϵ ≤ ∥ẽi∥ ≤ 1 + ϵ (3)

In the proof of the special case, we will choose a κ = ⌊C log d
ϵ2
⌋ where C will be a large constant.

Before giving the proof, we want to highlight a surprising consequence. Take ϵ = 0.01. Using cosine
law, it can be shown that (2) and (3) imply that any pair ẽi, ẽj (with i ̸= j) forms an angle that
is between 87◦ and 93◦, i.e., almost 90◦. At the same time, d = eΩ(k). This implies the following
(why?):

Exponentially many nearly orthogonal vectors in high dimensions: There exists
an absolute constant c > 0, such that the following holds: for any integer κ ≥ 1, there are at
least eκ/c vectors in Rκ whose pairwise angles are all between 87◦ and 93◦.

To compare with what happens in low dimensions, let Aκ be the maximum number of vectors
in Rκ whose pairwise angles are all between 87◦ and 93◦. It can be shown that A2 and A3 are just
2 and 3 respectively! Finally, note that for larger c, the interval around 90◦ will be smaller. Let’s
now prove the special case:

Proof. First, some notation. For a random variable X, we write X ∼ {±1} to denote that X = 1
with probability 1/2 and X = −1 with probability 1/2. We will use probabilistic method. Let
C > 0 be a large constant that we will choose later, and let κ = ⌊C log d

ϵ2
⌋. We generate all ẽi
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randomly, by first sampling independent and indentically distributed random variables giℓ ∼ {±1},
for i = 1, . . . , d and ℓ = 1, . . . , κ, and then setting ẽi =

1√
κ
(gi1, . . . , giκ). Now, fix a pair i ̸= j. We

will show that ẽi, ẽj are nearly orthogonal.

ẽi · ẽj =
1

κ

κ∑
ℓ=1

giℓ · gjℓ

The products Wℓ := giℓ · gjℓ are independent, identically distributed and Wℓ ∼ {±1}. From the law
of large numbers, we expect that ẽi · ẽj ≈ 0. This is quantified by Hoeffding’s inequality:

Theorem 4. Let W1, . . . ,Wκ random variables taking values in [a, b]. Let M := 1
κ

∑κ
ℓ=1Wℓ. Then,

P(|M − E[M ]| ≥ t) ≤ 2 exp

(
− 2κt2

(b− a)2

)
for all t > 0.

By direct application, we get P(|ẽi · ẽj | ≥ ϵ) ≤ 2 exp
(
−κϵ2

2

)
. By union bound,

P(∃i ̸= j : |ẽi · ẽj | ≥ ϵ) ≤
(
d

2

)
· 2 exp

(
−κϵ2

2

)
Since κ = ⌊C log d

ϵ2
⌋ ≥ C log d

2ϵ2
, we have that the above bound is at most

(
d
2

)
· 2 · d−C/4 ≤ 1/d for

C = 1/12. Thus, with high probability, for all i ̸= j, |ẽi · ẽj | < ϵ, and since ∥ẽi− ẽj∥2 = 2(1− ẽi · ẽj) ∈
[2(1− ϵ), 2(1 + ϵ)] and 1− ϵ <

√
1− ϵ < 1 <

√
1 + ϵ < 1 + ϵ, we are done.

Next time, we will use the special case, to prove the general theorem.
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