
Rate of Convergence of Gradient Descent

Orestis Plevrakis

Finishing what we left

Last time we showed that the function decreases in each step:

f(xt+1) ≤ f(xt)−
1

2β
∥∇f(xt)∥2 (1)

If we knew that ∥∇f(xt)∥ was always large, we would be in good shape, because we would decrease
by a lot in each step. What if ∥∇f(xt)∥ becomes small though? Let’s take the extreme case:
∥∇f(xt)∥ = 0, i.e., ∇f(xt) = 0. Well, we have seen in class that this implies that we reached the
optimal value, so this a perfect scenario! We showed this using that at x∗, the function f is above
its linearization (at xt), i.e.,

f(x∗) ≥ f(xt) +∇f(xt) · (x∗ − xt)

We will use this again here. By rearranging, we get

f(xt)− f(x∗) ≤ −∇f(xt) · (x∗ − xt) ≤ ∥∇f(xt)∥ · ∥xt − x∗∥ ≤ ∥∇f(xt)∥ · ∥x1 − x∗∥

where in the second-to-last step, we used Cauchy-Scharz, and in the last step, we used Problem 4.
The resulting inequality: f(xt) − f(x∗) ≤ ∥∇f(xt)∥ · ∥x1 − x∗∥ tells us something very helpful: if
∥∇f(xt)∥ is small, then the current value is close to optimal! By replacing in (1), we get

f(xt+1) ≤ f(xt)−
1

2β

(f(xt)− f(x∗))
2

∥x1 − x∗∥2
(2)

Subtracting f(x∗) from both sides, letting C := 2β∥x1 − x∗∥2 and ∆t := f(xt)− f(x∗) we get

∆t+1 ≤ ∆t −∆2
t /C (3)

Before analyzing how quickly ∆t goes to zero, we first derive a bound on ∆1 in terms of β and
∥x1 − x∗∥: by convexity again, we have ∆1 ≤ ∇f(x1) · (x1 − x∗) ≤ ∥∇f(x1)∥∥x1 − x∗∥. Now, from
Theorem 5 in Lecture 5, we get ∥∇f(x1)∥ ≤ β∥x1 − x∗∥, and so ∆1 ≤ β∥x1 − x∗∥2 = C/2.

The recursive inequality

How can we analyze the recursive inequality (3)? Let’s rewrite it as ∆t+1 −∆t ≤ ∆2
t /C. If ∆t is

large we decrease by a lot. If it is very small, we are good. Here is a way to translate this intuition
into a proof of speed of convergence: bound the number of steps to go from ∆1 to ∆1/2, then from
∆1/2 to ∆1/4, then from ∆1/4 to ∆1/8 etc. Let k ≥ 1 be an integer. Suppose that the decreasing
sequence ∆1,∆2,∆3, . . . spends τk steps inside the interval (∆1/2

k,∆1/2
k−1]. Then,

(τk − 1) · 1

C
·
(
∆1

2k

)2

≤ ∆1

2k

1



(why?). So, τk ≤ 1 + C · 2k/∆1. Let ϵ > 0. We want to bound the number of steps it takes for ∆t

to become smaller or equal than ϵ. Let k∗ :=
⌈
log2

∆1
ϵ

⌉
. Then, we will start having ∆t ≤ ϵ after at

most
∑k∗

k=1 τk steps, and

k∗∑
k=1

τk ≤ k∗ +
C

∆1

k∗∑
k=1

2k = k∗ +
C

∆1
(2k∗+1 − 1) = O

(
C

ϵ

)
.

Since C = β∥x1 − x∗∥, we are done.
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