# Rate of Convergence of Gradient Descent 

Orestis Plevrakis

## Finishing what we left

Last time we showed that the function decreases in each step:

$$
\begin{equation*}
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\frac{1}{2 \beta}\left\|\nabla f\left(x_{t}\right)\right\|^{2} \tag{1}
\end{equation*}
$$

If we knew that $\left\|\nabla f\left(x_{t}\right)\right\|$ was always large, we would be in good shape, because we would decrease by a lot in each step. What if $\left\|\nabla f\left(x_{t}\right)\right\|$ becomes small though? Let's take the extreme case: $\left\|\nabla f\left(x_{t}\right)\right\|=0$, i.e., $\nabla f\left(x_{t}\right)=0$. Well, we have seen in class that this implies that we reached the optimal value, so this a perfect scenario! We showed this using that at $x_{*}$, the function $f$ is above its linearization (at $x_{t}$ ), i.e.,

$$
f\left(x_{*}\right) \geq f\left(x_{t}\right)+\nabla f\left(x_{t}\right) \cdot\left(x_{*}-x_{t}\right)
$$

We will use this again here. By rearranging, we get

$$
f\left(x_{t}\right)-f\left(x_{*}\right) \leq-\nabla f\left(x_{t}\right) \cdot\left(x_{*}-x_{t}\right) \leq\left\|\nabla f\left(x_{t}\right)\right\| \cdot\left\|x_{t}-x_{*}\right\| \leq\left\|\nabla f\left(x_{t}\right)\right\| \cdot\left\|x_{1}-x_{*}\right\|
$$

where in the second-to-last step, we used Cauchy-Scharz, and in the last step, we used Problem 4. The resulting inequality: $f\left(x_{t}\right)-f\left(x_{*}\right) \leq\left\|\nabla f\left(x_{t}\right)\right\| \cdot\left\|x_{1}-x_{*}\right\|$ tells us something very helpful: if $\left\|\nabla f\left(x_{t}\right)\right\|$ is small, then the current value is close to optimal! By replacing in (1), we get

$$
\begin{equation*}
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\frac{1}{2 \beta} \frac{\left(f\left(x_{t}\right)-f\left(x_{*}\right)\right)^{2}}{\left\|x_{1}-x_{*}\right\|^{2}} \tag{2}
\end{equation*}
$$

Subtracting $f\left(x_{*}\right)$ from both sides, letting $C:=2 \beta\left\|x_{1}-x_{*}\right\|^{2}$ and $\Delta_{t}:=f\left(x_{t}\right)-f\left(x_{*}\right)$ we get

$$
\begin{equation*}
\Delta_{t+1} \leq \Delta_{t}-\Delta_{t}^{2} / C \tag{3}
\end{equation*}
$$

Before analyzing how quickly $\Delta_{t}$ goes to zero, we first derive a bound on $\Delta_{1}$ in terms of $\beta$ and $\left\|x_{1}-x_{*}\right\|$ : by convexity again, we have $\Delta_{1} \leq \nabla f\left(x_{1}\right) \cdot\left(x_{1}-x_{*}\right) \leq\left\|\nabla f\left(x_{1}\right)\right\|\left\|x_{1}-x_{*}\right\|$. Now, from Theorem 5 in Lecture 5, we get $\left\|\nabla f\left(x_{1}\right)\right\| \leq \beta\left\|x_{1}-x_{*}\right\|$, and so $\Delta_{1} \leq \beta\left\|x_{1}-x_{*}\right\|^{2}=C / 2$.

## The recursive inequality

How can we analyze the recursive inequality (3)? Let's rewrite it as $\Delta_{t+1}-\Delta_{t} \leq \Delta_{t}^{2} / C$. If $\Delta_{t}$ is large we decrease by a lot. If it is very small, we are good. Here is a way to translate this intuition into a proof of speed of convergence: bound the number of steps to go from $\Delta_{1}$ to $\Delta_{1} / 2$, then from $\Delta_{1} / 2$ to $\Delta_{1} / 4$, then from $\Delta_{1} / 4$ to $\Delta_{1} / 8$ etc. Let $k \geq 1$ be an integer. Suppose that the decreasing sequence $\Delta_{1}, \Delta_{2}, \Delta_{3}, \ldots$ spends $\tau_{k}$ steps inside the interval $\left(\Delta_{1} / 2^{k}, \Delta_{1} / 2^{k-1}\right]$. Then,

$$
\left(\tau_{k}-1\right) \cdot \frac{1}{C} \cdot\left(\frac{\Delta_{1}}{2^{k}}\right)^{2} \leq \frac{\Delta_{1}}{2^{k}}
$$

(why?). So, $\tau_{k} \leq 1+C \cdot 2^{k} / \Delta_{1}$. Let $\epsilon>0$. We want to bound the number of steps it takes for $\Delta_{t}$ to become smaller or equal than $\epsilon$. Let $k_{*}:=\left\lceil\log _{2} \frac{\Delta_{1}}{\epsilon}\right\rceil$. Then, we will start having $\Delta_{t} \leq \epsilon$ after at $\operatorname{most} \sum_{k=1}^{k_{*}} \tau_{k}$ steps, and

$$
\sum_{k=1}^{k_{*}} \tau_{k} \leq k_{*}+\frac{C}{\Delta_{1}} \sum_{k=1}^{k_{*}} 2^{k}=k_{*}+\frac{C}{\Delta_{1}}\left(2^{k_{*}+1}-1\right)=O\left(\frac{C}{\epsilon}\right)
$$

Since $C=\beta\left\|x_{1}-x_{*}\right\|$, we are done.

