Dinur's Proof of the PCP Theorem

Zampetakis Manolis

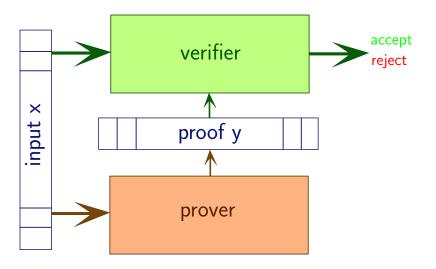
School of Electrical and Computer Engineering National Technical University of Athens

December 22, 2014

Table of contents

- Introduction
- PCP Theorem Proof
 - Expaderize the Graph
 - Gap Amplification
 - Alphabet Reduction
 - Finishing the proof
- Conclusions

Characterization of NP



Characterization of NP

Prover

The prover of a language L has to output a correct proof y with $|y| \le poly(|x|)$ when $x \in L$. When $x \notin L$ prover could output anything.

Verifier

The verifier of a language $L \in NP$ has to be efficient (polynomialy time bounded).

Characterization of NP

NP prover-verifier

For every language $L \in NP$ there exists a prover P and an efficient verifier V, that reads :

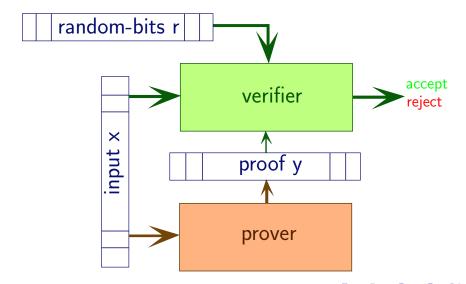
- the input string *x*
- the proof string y

and accepts or rejects such that:

Completeness : If $x \in L$ then P outputs a proof y such that V accepts.

Soundness: If $x \notin L$ then V rejects every proof y.

New characterization of NP [Arora, Safra]



New characterization of NP [Arora, Safra]

Probabilistically Checkable of Proofs

Definition : PCP [p(n), q(n)]

For every $L \in PCP[p(n), q(n)]$ there exists a prover P and an efficient verifier V, that reads :

- an input string x with length n
- a random string r with length p(n)
- q(n) bits randomly from the proof y

and accepts or rejects, such that :

Completeness : If $x \in L$ then P outputs a proof y such that V accepts with probability 1.

Soundness: If $x \notin L$ then V accepts with probability $\leq \frac{1}{2}$.

New characterization of NP [Arora, Safra]

Probabilistically Checkable of Proofs

Definition : $PCP[O(\log n), O(1)]$

For every $L \in PCP[O(\log n), O(1)]$ there exists a prover P and an efficient verifier V, that reads :

- an input string x with length n
- a random string r with length c log n
- k bits randomly from the proof y

with $c,k\in\mathbb{R}^+$ and accepts or rejects, such that :

Completeness : If $x \in L$ then P outputs a proof y such that V accepts with probability 1.

Soundness: If $x \notin L$ then V accepts with probability $\leq \frac{1}{2}$.

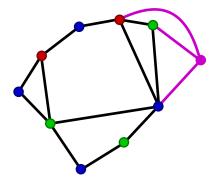
New characterization of NP [Arora, Safra] Probabilistically Checkable of Proofs

PCP Theorem [Arora-Lund-Motwani-Sudan-Szegedy 92]

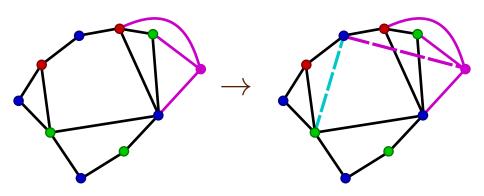
NP = PCP[O(log n), O(1)]

Key Idea

Graph Coloring Problem - Constraint Graph Problem

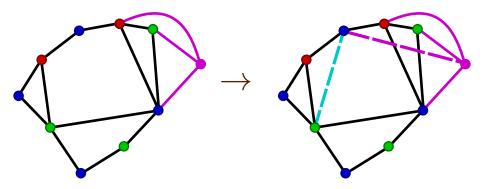


Key Idea Graph Coloring Problem - Constraint Graph Problem



Key Idea

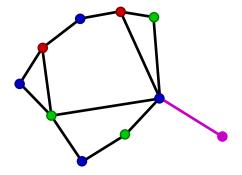
Graph Coloring Problem - Constraint Graph Problem



Key Idea

Add contraints for every path with length $\leq t$ in the graph G.

Good Idea but...



A Lemma on expanders...

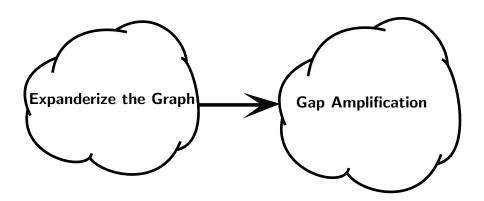
from Trevisan's lectures

Lemma

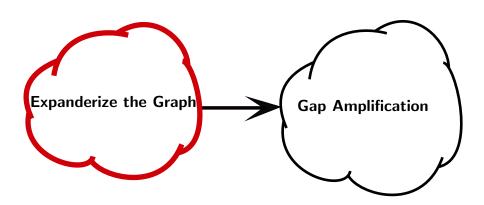
Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$Pr[p \ completely \ misses \ F] \le \left(1 - t \frac{|F|}{|E|}\right)$$

Proof Overview



Proof Overview



Definition

The edge expansion of a graph G = (V, E), denoted by $\phi(G)$, is defined as

$$\phi(G) = \min_{S \subseteq V, |S| \le |V|/2} \frac{|E(S, \bar{S})|}{|S|}$$

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$Pr[p \ completely \ misses \ F] \le \left(1 - t \frac{|F|}{|E|}\right)$$

Lemma

There exists a constant ϕ_0 such that for every $n \in \mathbb{N}$ and d < n there is an efficient algorithm to construct a d-regular graph G with $\phi(G) \ge \phi_0$.

Lemma

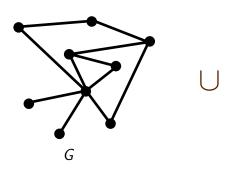
Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

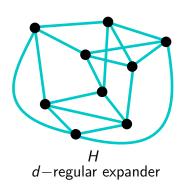
$$\Pr[p \text{ completely misses } F] \le \left(1 - t \frac{|F|}{|E|}\right)$$

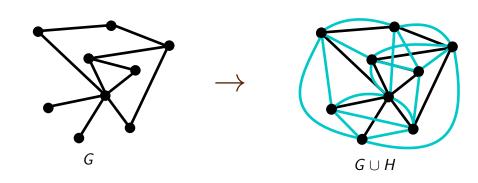
useful property: If a we add edges to a graph which is expander then the graph remains expander.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めぬぐ

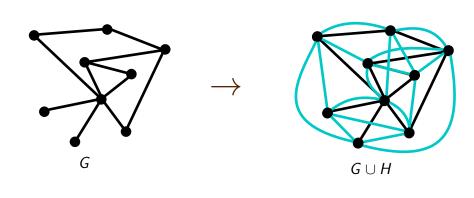
16 / 42



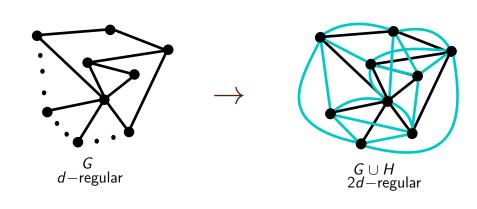




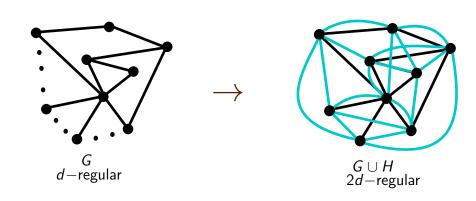
G is satisfiable iff $G \cup H$ is satisfiable



what about gap?

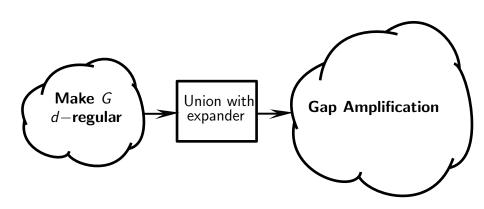


G is satisfiable iff $G \cup H$ is satisfiable

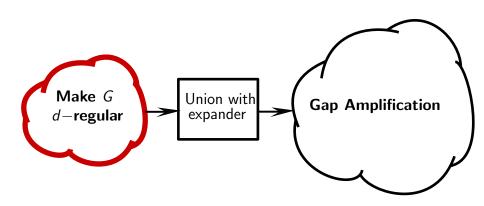


$$gap(G \cup H) \ge 1/2gap(G)$$

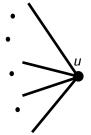
Proof Overview



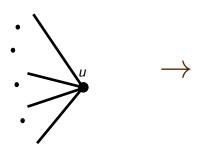
Proof Overview

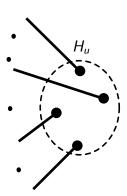


Make *G d*—regular Papadimitriou and Yannakakis

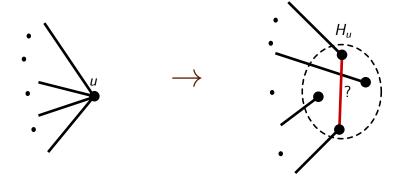


Make *G d*—regular Papadimitriou and Yannakakis



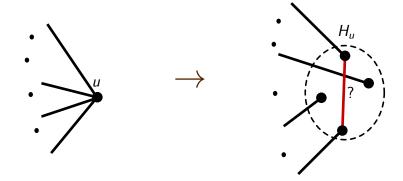


Make *G d*—regular Papadimitriou and Yannakakis



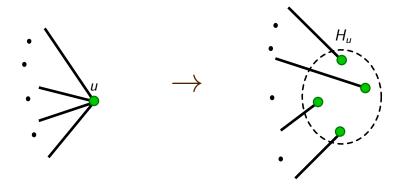
What kind of constraints in H_{ii} ?

Make G d—regular Papadimitriou and Yan<u>nakakis</u>



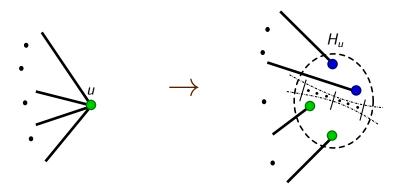
What kind of constraints in H_u ? EQUALITY

Make *G d*—regular Papadimitriou and Yan<u>nakakis</u>



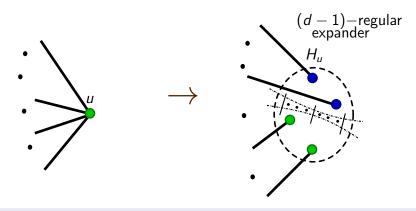
G is satisfiable iff G' is satisfiable

Make *G d*—regular Papadimitriou and Yannakakis



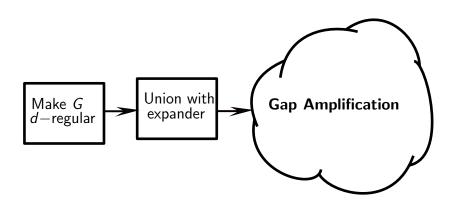
What about gap?

Make G d—regular Papadimitriou and Yan<u>nakakis</u>

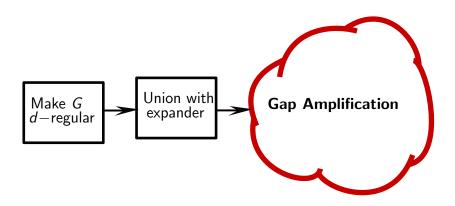


$$gap(G') \ge 1/O(1)gap(G)$$

Proof Overview



Proof Overview



Key Idea

Add contraints for every path with length $\leq t$ in the graph G.

Key Idea

Add contraints for every path with length $\leq t$ in the graph G.

for t = 2

Our initial alphabet is $\Sigma = \{red, green, blue\}$.

Now every vertex u has an opinion about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d$.

For every path $\{u, w, v\}$ with length 2 we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about w is the same as the opinion v has about w.

Key Idea

Add contraints for every path with length $\leq t$ in the graph G.

for every t

Our initial alphabet is $\Sigma = \{red, green, blue\}$.

Now every vertex u has an *opinion* about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d \times \cdots \times \Sigma^{d^t}$. For every path $\{u, w, \ldots, v\}$ with length t we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about every internal vertex w is the same as the opinion v has about w, and every internal edge of G is valid using this opinion.

Key Idea

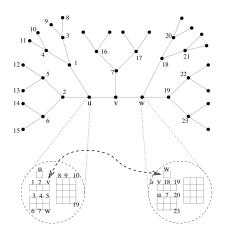
Add contraints for every path with length $\leq t$ in the graph G.

for every t

Our initial alphabet is $\Sigma = \{red, green, blue\}$.

Now every vertex u has an *opinion* about the color of the vertices in N(u) and therefore the alphabet becomes $\Sigma' = \Sigma \times \Sigma^d \times \cdots \times \Sigma^{d^t}$. For every path $\{u, w, \ldots, v\}$ with length t we add an edge $\{u, v\}$ with constraint : $c_{\{u,v\}}$ is true if the opinion u has about every internal vertex w is the same as the opinion v has about w, and every internal edge of G is valid using this opinion.

G is satisfiable iff G' is satisfiable



Computational Complexity Oded Goldreich

We have now to use the following:

Lemma

Let G = (V, E) be an expander and $F \subseteq E$ then for every path p in G with length t

$$\Pr[p \text{ completely misses } F] \le \left(1 - t \frac{|F|}{|E|}\right)$$

Where we set F the set of unsatisfied constraints in G.

Lemma

$$gap(G') \geq \frac{t}{O(1)}gap(G)$$

Proof Sketch

$$egin{aligned} ⪆(G') \geq 1/3 \Pr_{e'}[e' ext{ passes through } F] \ &\geq 1/3 (1 - \Pr_{e'}[e' ext{ completely misses } F]) \ &\geq 1/3 (1 - (t \cdot gap(G))) \ &= rac{t}{O(1)} gap(G) \end{aligned}$$

If we set t = O(n) we have finished!

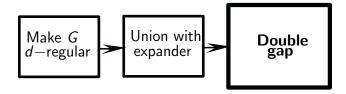
If we set t = O(n) we have finished! But we cannot do this because then $size(G') = O(d^t) = O(d^{O(n)})$ which is inefficient !!!

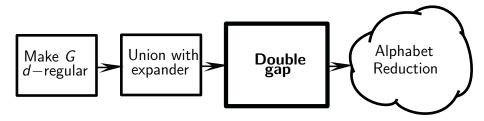
If we set t = O(n) we have finished!

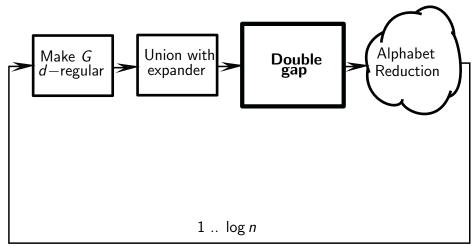
But we cannot do this because then $size(G') = O(d^t) = O(d^{O(n)})$

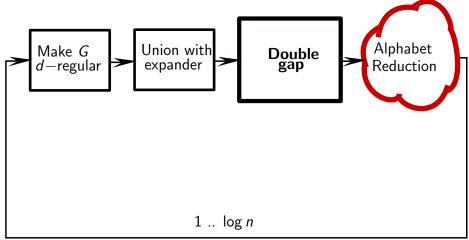
which is inefficient !!!

Therefore t must be a constant!









Alphabet Reduction

Effects of the Reduction

- Size increases a constant factor
- Gap decreases a constant factor
- Alphabet size redused to 16

Alphabet Reduction

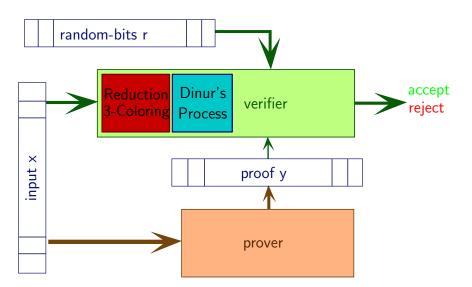
Effects of the Reduction

- Size increases a constant factor
- Gap decreases a constant factor
- Alphabet size redused to 16

Proof Techniques

- Hadamard Codes
- Linearity Testing
- Fourier Analysis

Finishing the proof



Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

One side

PCP Theorem

Let's flip the coin

Coin

For every language L in NP there is a way to write proofs such that for every instance x:

- If $x \in L$ then there is a correct proof
- If $x \notin L$ then every proof has a lot of errors

One side

PCP Theorem

The other side

Hardness of Approximation

Thanks!

Thank you! :)