Advanced Algorithms: Solution of Problem 5

Comment. By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

Exercise 1

Monotonicity is trivial. For submodularity, note that for any $e \in E$ and $S \subseteq E$, we have $f(S \cup\{e\})-f(S)=\left|e \backslash \cup_{e_{1} \in S} e_{1}\right|$, which immediately gives the desired property.

Exercise 2

Notation. In the solution I sometimes use $f\left(e_{i_{1}}, \ldots, e_{i_{r}}\right)$ to denote $f\left(\left\{e_{i_{1}}, \ldots, e_{i_{r}}\right\}\right)$.

The special case

Here is perhaps the simplest non-trivial special case:

- Three elements: $E=\left\{e_{1}, e_{2}, e_{3}\right\}$.
- $k=2$.
- $f: 2^{E} \rightarrow \mathbb{R}_{+}$monotone, submodular, and such that $f\left(e_{1}, e_{2}\right)=f\left(e_{1}, e_{2}, e_{3}\right)$, and thus OPT $=$ $\left\{e_{1}, e_{2}\right\}$.
- Finally, suppose that Greedy first picks e_{3}, and then picks e_{1}.

We will prove that Greedy here achieves a $3 / 4$-approximation, i.e., $f\left(e_{1}, e_{3}\right) \geq \frac{3}{4} f\left(e_{1}, e_{2}\right)$. The proof will reveal how to tackle the general case.

Even though we have simplified things a great deal by considering this special case, things are still a bit abstract. Let's look at a concrete example of an f to elucidate the situation.

Coverage. Consider e_{1}, e_{2}, e_{3} to be subsets of a set U, and assume that $e_{1} \cup e_{2}=U$. The function f here is $f(S)=\left|\cup_{e \in S} e\right|$, where $S \subseteq\left\{e_{1}, e_{2}, e_{3}\right\}$ (see Figure 1 for an illustration). We know how to prove the approximation ratio here. We start by arguing that the first set that Greedy picks (i.e., e_{3}) is large. Concretely,

$$
\left|e_{3}\right| \geq \max \left(\left|e_{1}\right|,\left|e_{2}\right|\right) \geq \frac{\left|e_{1}\right|+\left|e_{2}\right|}{2} \geq \frac{\left|e_{1} \cup e_{2}\right|}{2}
$$

or equivalently,

$$
\begin{equation*}
f\left(e_{3}\right) \geq \max \left(f\left(e_{1}\right), f\left(e_{2}\right)\right) \geq \frac{f\left(e_{1}\right)+f\left(e_{2}\right)}{2} \geq \frac{f\left(e_{1}, e_{2}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 1: Illustration of the coverage example.

Going back to our special case, it is natural to ask: is 1 true here? It suffices to prove that

$$
\begin{equation*}
f\left(e_{1}, e_{2}\right) \leq f\left(e_{1}\right)+f\left(e_{2}\right) \tag{2}
\end{equation*}
$$

Here is the proof: using submodularity and that $f(\emptyset) \geq 0$, we get

$$
\begin{equation*}
f\left(e_{1}, e_{2}\right)-f\left(e_{1}\right) \leq f\left(\emptyset \cup\left\{e_{2}\right\}\right)-f(\emptyset) \leq f\left(e_{2}\right) \tag{3}
\end{equation*}
$$

So, we know that $f\left(e_{3}\right)$ is at least half the optimal: $f\left(e_{3}\right) \geq \frac{f(O P T)}{2}$. Now, we need to analyze the second step of the Greedy: picking e_{1}. We go back to the Coverage example for inspiration.

Coverage continued. As you know from the analysis of Max-Coverage, to analyze the second step of the Greedy here, we need to use that

$$
\left|e_{1} \backslash e_{3}\right|+\left|e_{2} \backslash e_{3}\right| \geq\left|\left(e_{1} \cup e_{2}\right) \backslash e_{3}\right|=\left|e_{1} \cup e_{2}\right|-\left|e_{3}\right|
$$

The RHS is $f\left(e_{1}, e_{2}\right)-f\left(e_{3}\right)=f\left(e_{1}, e_{2}, e_{3}\right)-f\left(e_{3}\right)$. How to express the LHS using f ? Here is the inequality rewritten:

$$
\begin{equation*}
\left(f\left(e_{1}, e_{3}\right)-f\left(e_{3}\right)\right)+\left(f\left(e_{2}, e_{3}\right)-f\left(e_{3}\right)\right) \geq f\left(e_{1}, e_{2}, e_{3}\right)-f\left(e_{3}\right) \tag{4}
\end{equation*}
$$

We will prove 4 for our special case. First, let's observe that a particular function shows up in 4: the function $g: 2^{E} \rightarrow \mathbb{R}_{+}$defined as $g(S):=f\left(S \cup\left\{e_{3}\right\}\right)-f\left(e_{3}\right)$, and using g, inequality 4 can be rewritten as $g\left(e_{1}\right)+g\left(e_{2}\right) \geq g\left(e_{1}, e_{2}\right)$. Exactly the inequality 2 , but for g ! It is natural to ask the question:

Is g submodular?
Yes, it is! (why?) Thus, the steps in 3 hold for g. Now that we have proven inequality 4, we can show the $3 / 4$-approximation ratio: since the Greedy selected e_{1} at the second step, we have $f\left(e_{1}, e_{3}\right) \geq f\left(e_{2}, e_{3}\right)$, and thus

$$
\begin{equation*}
f\left(e_{1}, e_{3}\right)-f\left(e_{3}\right) \geq \frac{\left(f\left(e_{1}, e_{3}\right)-f\left(e_{3}\right)\right)+\left(f\left(e_{2}, e_{3}\right)-f\left(e_{3}\right)\right)}{2} \geq \frac{f\left(e_{1}, e_{2}, e_{3}\right)-f\left(e_{3}\right)}{2} \tag{5}
\end{equation*}
$$

which gives that $f\left(e_{1}, e_{3}\right) \geq \frac{f(O P T)+f\left(e_{3}\right)}{2}$. We have showed that $f\left(e_{3}\right) \geq \frac{f(O P T)}{2}$, which completes the proof.

The general case

Here $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ and f is monotone and submodular. We first generalize inequality 2 :
Claim 1. Let $g: 2^{E} \rightarrow \mathbb{R}_{+}$submodular. Let $S \subseteq E$ such that $S \neq \emptyset$. Then, $g(S) \leq \sum_{e \in S} g(e)$.
This property is called "subadditivity". Here is the proof:
Proof. Suppose $S=\left\{e_{i_{1}}, \ldots, e_{i_{m}}\right\}$. Using submodularity,

$$
g(S)-g\left(S \backslash\left\{e_{i_{m}}\right\}\right) \leq g\left(\emptyset \cup\left\{e_{i_{m}}\right\}\right)-g(\emptyset)
$$

and by rearranging and using that $g(\emptyset) \geq 0$, we have

$$
g(S) \leq g\left(e_{i_{m}}\right)+g\left(S \backslash\left\{e_{i_{m}}\right\}\right)
$$

Thus, an induction finishes the proof.
Now, suppose Greedy chooses the elements $e_{i_{1}}, \ldots, e_{i_{k}}$ (with this order). Let $O P T \subseteq E$ be the optimal subset of size k. Inequality 5 (of the special case) indicates what inequality we should be aiming for: let $S_{j}:=\left\{e_{i_{1}}, \ldots, e_{i_{j}}\right\}$, i.e., the set collected by Greedy up to step j. We define $S_{0}:=\emptyset$. We want to show that for all $j \in\{0,1, \ldots, k-1\}$,

$$
\begin{equation*}
f\left(S_{j} \cup\left\{e_{i_{j+1}}\right\}\right)-f\left(S_{j}\right) \geq \frac{f\left(S_{j} \cup O P T\right)-f\left(S_{j}\right)}{k} \tag{6}
\end{equation*}
$$

Now inequality 4 (of the special case) indicates that to prove 6, we need to first prove that

$$
\begin{equation*}
\sum_{e \in O P T \backslash S_{j}}\left(f\left(S_{j} \cup\{e\}\right)-f\left(S_{j}\right)\right) \geq f\left(S_{j} \cup O P T\right)-f\left(S_{j}\right) \tag{7}
\end{equation*}
$$

Observe that 7 indeed implies 6, because of the way Greedy chose $e_{i_{j+1}}$. To prove 7, we generalize the function g of the special case: for any $A \subseteq E$, we define $g_{A}: 2^{E} \rightarrow \mathbb{R}_{+}$, given by $g_{A}(S):=$ $f(A \cup S)-f(A)$. Then, g_{A} is submodular (why?) ${ }^{1}$. Now, 7 can be rewritten as

$$
\sum_{e \in O P T \backslash S_{j}} g_{S_{j}}(e) \geq g_{S_{j}}\left(O P T \backslash S_{j}\right)
$$

which is true from Claim 1. Thus, we have proved 6 . To show the $(1-1 / e)$-approximation ratio, we follow the same strategy as in the proof for Max-Coverage, i.e., we consider (for each step) the difference from the optimal value: $\Delta_{j}:=f(O P T)-f\left(S_{j}\right)$. By adding and subtracting $f(O P T)$ in the LHS of 6 , we get

$$
\Delta_{j}-\Delta_{j+1} \geq \frac{f\left(S_{j} \cup O P T\right)-f\left(S_{j}\right)}{k} \geq \frac{f(O P T)-f\left(S_{j}\right)}{k}=\frac{\Delta_{j}}{k}
$$

and so $\Delta_{j+1} \leq(1-1 / k) \Delta_{j}$ for all $j \in\{0,1, \ldots, k-1\}$, which gives that

$$
\begin{aligned}
f(O P T)-f\left(S_{k}\right)=\Delta_{k} & \leq(1-1 / k)^{k} \Delta_{0}=(1-1 / k)^{k}(f(O P T)-f(\emptyset)) \\
& \leq(1-1 / k)^{k} f(O P T) \leq \frac{1}{e} f(O P T)
\end{aligned}
$$

Rearranging finishes the proof.

[^0]
[^0]: ${ }^{1}$ It is also monotone, but why don't need that.

