Advanced Algorithms: Solution of Problem 5

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

Exercise 1

Monotonicity is trivial. For submodularity, note that for any e € F and S C E, we have
f(SuU{e}) — f(S) =|e\ Uges e1], which immediately gives the desired property.

Exercise 2

Notation. In the solution I sometimes use f(e;,,...,e;,. ) to denote f({e;,,..., e }).

The special case

Here is perhaps the simplest non-trivial special case:
e Three elements: E = {ej, e, e3}.
o k=2

e f:2F - R, monotone, submodular, and such that f(e;,e2) = f(e1, ez, e3), and thus OPT =

{61, 62}.
e Finally, suppose that Greedy first picks es, and then picks e;.

We will prove that Greedy here achieves a 3/4-approximation, i.e., f(e1,es) > % f(e1,e2). The proof
will reveal how to tackle the general case.

Even though we have simplified things a great deal by considering this special case, things are
still a bit abstract. Let’s look at a concrete example of an f to elucidate the situation.

Coverage. Consider eq,es,e3 to be subsets of a set U, and assume that e; Ueys = U. The
function f here is f(S) = | Uees €|, where S C {e1, ea,e3} (see Figure 1 for an illustration).
We know how to prove the approximation ratio here. We start by arguing that the first set
that Greedy picks (i.e., eg) is large. Concretely,

S leil +lea| | lerUes|
- 2 - 2

les| > max(|e1], |e2])

or equivalently,

f(e3) > max(f(e1), f(e2)) > fle) ;‘ f(e2) > f(€127 e2) 1)




€1 S

Figure 1: Illustration of the coverage example.

Going back to our special case, it is natural to ask: is 1 true here? It suffices to prove that

fler,e2) < fler) + fle2) (2)

Here is the proof: using submodularity and that f(@) > 0, we get

fler,e2) = fler) < f(OU {ea}) — f(0) < f(e2) (3)

So, we know that f(es) is at least half the optimal: f(e3) > @. Now, we need to analyze the
second step of the Greedy: picking e;. We go back to the Coverage example for inspiration.

Coverage continued. As you know from the analysis of Max-Coverage, to analyze the
second step of the Greedy here, we need to use that

le1 \ e3| +[e2 \ e3] > [(e1 Uez) \ e3| = |e1 U ea| — es|

The RHS is f(e1,e2) — f(e3) = f(e1,e2,e3) — f(e3). How to express the LHS using f? Here
is the inequality rewritten:

(f(e1,e3) — f(es)) + (f(ea, e3) — f(e3)) > f(e1, e2,e3) — f(e3) (4)

We will prove 4 for our special case. First, let’s observe that a particular function shows up in
4: the function g : 2¥ — R, defined as g(S) := f(S U {e3}) — f(e3), and using g, inequality 4 can
be rewritten as g(e1) + g(e2) > g(e1, e2). Exactly the inequality 2, but for ¢! It is natural to ask
the question:

Is g submodular?

Yes, it is! (why?) Thus, the steps in 3 hold for g. Now that we have proven inequality 4, we
can show the 3/4-approximation ratio: since the Greedy selected e; at the second step, we have
flei,e3) > f(ea,e3), and thus

(f(e1,e3) — fles)) + (f(e2,e3) — f(es)) > fle1,ea,e3) — fles)

fler,e3) — fles) > 5 5 (5)

which gives that f(ej,e3) > w. We have showed that f(e3) > f(Osz), which completes
the proof.



The general case

Here E = {ej,ea,...,e,} and f is monotone and submodular. We first generalize inequality 2:

Claim 1. Let g : 2% — Ry submodular. Let S C E such that S # 0. Then, g(S) < 3 .cq 9(e).
This property is called "subadditivity". Here is the proof:

Proof. Suppose S = {e;,,...,e;, }. Using submodularity,
9(8) = g(S\{ei,}) < 9@ U{es, }) — 9(0)

and by rearranging and using that g(0)) > 0, we have

g(5) < gl(ei,,) +9(S\ {ei,. })

Thus, an induction finishes the proof. O

Now, suppose Greedy chooses the elements e;,, ..., e;, (with this order). Let OPT C E be the
optimal subset of size k. Inequality 5 (of the special case) indicates what inequality we should be
aiming for: let Sj := {e;,,...,¢€;;}, i.e., the set collected by Greedy up to step j. We define Sy := 0.
We want to show that for all j € {0,1,...,k—1},

f(S;UOPT) — f(5;)

f(Sj U {eij+1}) - f(Sj) > L (6)
Now inequality 4 (of the special case) indicates that to prove 6, we need to first prove that
Y. (F(Sju{el) = £(5) > f(S;UOPT) - f(5)) (7)
e€OPT\S;

Observe that 7 indeed implies 6, because of the way Greedy chose e;;, ,. To prove 7, we generalize
the function g of the special case: for any A C E, we define g4 : 28 — R, given by ga(9) :=
f(AUS) — f(A). Then, g4 is submodular (why?)!. Now, 7 can be rewritten as

> gs,(e) = g5, (OPT\ S;)
e€OPT\S;

which is true from Claim 1. Thus, we have proved 6. To show the (1 — 1/e)-approximation ratio,
we follow the same strategy as in the proof for Max-Coverage, i.e., we consider (for each step) the
difference from the optimal value: A; := f(OPT) — f(S;). By adding and subtracting f(OPT) in
the LHS of 6, we get

f(S;VOPT) — f(S;) _ fOPT) — f(5)) _ Aj
k - k k

and so Aji1 < (1 —1/k)A; for all j € {0,1,...,k — 1}, which gives that

Aj—Ajr 2

FOPT) — f(Sk) = A < (1= 1/k)FAg = (1 — 1/k)*(f(OPT) — f(1))
< (1-1/W}F(OPT) < L f(OPT)

Rearranging finishes the proof.

Tt is also monotone, but why don’t need that.
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