
Advanced Algorithms: Solution of Problem 5

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

Exercise 1

Monotonicity is trivial. For submodularity, note that for any e ∈ E and S ⊆ E, we have
f(S ∪ {e})− f(S) = |e \ ∪e1∈S e1|, which immediately gives the desired property.

Exercise 2

Notation. In the solution I sometimes use f(ei1 , . . . , eir) to denote f({ei1 , . . . , eir}).

The special case

Here is perhaps the simplest non-trivial special case:

• Three elements: E = {e1, e2, e3}.

• k = 2.

• f : 2E → R+ monotone, submodular, and such that f(e1, e2) = f(e1, e2, e3), and thus OPT =
{e1, e2}.

• Finally, suppose that Greedy first picks e3, and then picks e1.

We will prove that Greedy here achieves a 3/4-approximation, i.e., f(e1, e3) ≥ 3
4f(e1, e2). The proof

will reveal how to tackle the general case.

Even though we have simplified things a great deal by considering this special case, things are
still a bit abstract. Let’s look at a concrete example of an f to elucidate the situation.

Coverage. Consider e1, e2, e3 to be subsets of a set U , and assume that e1 ∪ e2 = U . The
function f here is f(S) = | ∪e∈S e|, where S ⊆ {e1, e2, e3} (see Figure 1 for an illustration).
We know how to prove the approximation ratio here. We start by arguing that the first set
that Greedy picks (i.e., e3) is large. Concretely,

|e3| ≥ max(|e1|, |e2|) ≥
|e1|+ |e2|

2
≥ |e1 ∪ e2|

2

or equivalently,

f(e3) ≥ max(f(e1), f(e2)) ≥
f(e1) + f(e2)

2
≥ f(e1, e2)

2
(1)

1



Figure 1: Illustration of the coverage example.

Going back to our special case, it is natural to ask: is 1 true here? It suffices to prove that

f(e1, e2) ≤ f(e1) + f(e2) (2)

Here is the proof: using submodularity and that f(∅) ≥ 0, we get

f(e1, e2)− f(e1) ≤ f(∅ ∪ {e2})− f(∅) ≤ f(e2) (3)

So, we know that f(e3) is at least half the optimal: f(e3) ≥ f(OPT )
2 . Now, we need to analyze the

second step of the Greedy: picking e1. We go back to the Coverage example for inspiration.

Coverage continued. As you know from the analysis of Max-Coverage, to analyze the
second step of the Greedy here, we need to use that

|e1 \ e3|+ |e2 \ e3| ≥ |(e1 ∪ e2) \ e3| = |e1 ∪ e2| − |e3|

The RHS is f(e1, e2)− f(e3) = f(e1, e2, e3)− f(e3). How to express the LHS using f? Here
is the inequality rewritten:

(f(e1, e3)− f(e3)) + (f(e2, e3)− f(e3)) ≥ f(e1, e2, e3)− f(e3) (4)

We will prove 4 for our special case. First, let’s observe that a particular function shows up in
4: the function g : 2E → R+ defined as g(S) := f(S ∪ {e3})− f(e3), and using g, inequality 4 can
be rewritten as g(e1) + g(e2) ≥ g(e1, e2). Exactly the inequality 2, but for g! It is natural to ask
the question:

Is g submodular?

Yes, it is! (why?) Thus, the steps in 3 hold for g. Now that we have proven inequality 4, we
can show the 3/4-approximation ratio: since the Greedy selected e1 at the second step, we have
f(e1, e3) ≥ f(e2, e3), and thus

f(e1, e3)− f(e3) ≥
(f(e1, e3)− f(e3)) + (f(e2, e3)− f(e3))

2
≥ f(e1, e2, e3)− f(e3)

2
(5)

which gives that f(e1, e3) ≥ f(OPT )+f(e3)
2 . We have showed that f(e3) ≥ f(OPT )

2 , which completes
the proof.
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The general case

Here E = {e1, e2, . . . , en} and f is monotone and submodular. We first generalize inequality 2:

Claim 1. Let g : 2E → R+ submodular. Let S ⊆ E such that S ̸= ∅. Then, g(S) ≤
∑

e∈S g(e).

This property is called "subadditivity". Here is the proof:

Proof. Suppose S = {ei1 , . . . , eim}. Using submodularity,

g(S)− g(S \ {eim}) ≤ g(∅ ∪ {eim})− g(∅)

and by rearranging and using that g(∅) ≥ 0, we have

g(S) ≤ g(eim) + g(S \ {eim})

Thus, an induction finishes the proof.

Now, suppose Greedy chooses the elements ei1 , . . . , eik (with this order). Let OPT ⊆ E be the
optimal subset of size k. Inequality 5 (of the special case) indicates what inequality we should be
aiming for: let Sj := {ei1 , . . . , eij}, i.e., the set collected by Greedy up to step j. We define S0 := ∅.
We want to show that for all j ∈ {0, 1, . . . , k − 1},

f(Sj ∪ {eij+1})− f(Sj) ≥
f(Sj ∪OPT )− f(Sj)

k
(6)

Now inequality 4 (of the special case) indicates that to prove 6, we need to first prove that∑
e∈OPT\Sj

(f(Sj ∪ {e})− f(Sj)) ≥ f(Sj ∪OPT )− f(Sj) (7)

Observe that 7 indeed implies 6, because of the way Greedy chose eij+1 . To prove 7, we generalize
the function g of the special case: for any A ⊆ E, we define gA : 2E → R+, given by gA(S) :=
f(A ∪ S)− f(A). Then, gA is submodular (why?)1. Now, 7 can be rewritten as∑

e∈OPT\Sj

gSj (e) ≥ gSj (OPT \ Sj)

which is true from Claim 1. Thus, we have proved 6. To show the (1 − 1/e)-approximation ratio,
we follow the same strategy as in the proof for Max-Coverage, i.e., we consider (for each step) the
difference from the optimal value: ∆j := f(OPT )− f(Sj). By adding and subtracting f(OPT ) in
the LHS of 6, we get

∆j −∆j+1 ≥
f(Sj ∪OPT )− f(Sj)

k
≥ f(OPT )− f(Sj)

k
=

∆j

k

and so ∆j+1 ≤ (1− 1/k)∆j for all j ∈ {0, 1, . . . , k − 1}, which gives that

f(OPT )− f(Sk) = ∆k ≤ (1− 1/k)k∆0 = (1− 1/k)k(f(OPT )− f(∅))

≤ (1− 1/k)kf(OPT ) ≤ 1

e
f(OPT )

Rearranging finishes the proof.
1It is also monotone, but why don’t need that.
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