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Before proving the JL lemma, we will see some alternative constructions of ẽi’s, that rely on
some useful properties of the multivariate Gaussian distribution.

1 Multivariate Gaussian Distribution

In your probability class, you saw that multivariate Gaussians N (µ,Σ) are parametrized with their
mean µ and their covariance matrix Σ ≽ 0. Here, we will only need the case µ = 0,Σ = I. Remember
that a random vector X ∼ N (0, I) has coordinates independent and identically distributed according
to the standard normal distribution N (0, 1).

1.1 Sampling uniformly from the unit sphere

We define Sκ−1 := {x ∈ Rκ : ∥x∥ = 1}. How can we sample a point uniformly at random from Sκ−1?
A very efficient way is to first sample X ∼ N (0, I) in Rκ, and then normalize to get a unit vector
X̂ := X/∥X∥. Why X̂ is uniformly distributed on Sκ−1? Remember that since X = (X1, . . . , Xκ)
and Xℓ’s are independent, the probability density function of X at a point x ∈ Rκ is

fX(x) = fX1(x1) · · · · · fXκ(xκ) =
1√
2π

e−x2
1/2 · · · 1√

2π
e−x2

κ/2 =
1

(2π)κ/2
e−∥x∥2/2

Since the density depends only on the norm of ∥x∥ and not on its direction, it follows that the distri-
bution N (0, I) has no bias toward any particular direction, and so X/∥X∥ is uniformly distributed
on Sκ−1.

Figure 1: The case κ = 2. Observe the rotational symmetry of the graph.

First alternative construction of ẽi’s. Previously, we chose ẽi’s to be random vectors from
Sκ−1 (but not uniformly distributed). Using arguments similar to the ones from the previous
lecture, it can be shown that if we choose large enough κ = O

(
log d
ϵ2

)
and ẽi’s independent and

uniformly distributed on Sκ−1, then the requirements of the special case will be satisfied with high
probability.
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2 Norm of a Gaussian vector

Let X ∼ N (0, I) in Rκ. Then, E[∥X∥2] = E[
∑κ

ℓ=1X
2
ℓ ] =

∑κ
ℓ=1 E[X2

ℓ ] = κ. Thus, E[∥X/
√
κ∥2] = 1.

The following simulation indicates that for large κ, the random vector X/
√
κ is very close to the

unit sphere with high probability:

Figure 2: One hundred samples from X/
√
κ for κ = 2, 100 and 100, 000. The second and third

figure illustrate the distance from the unit sphere.

Why is this happening? Law of large numbers again!∥∥∥∥ X√
κ

∥∥∥∥2 = 1

κ

κ∑
ℓ=1

X2
ℓ ≈ 1

for large κ. This is made quantitative using the Chernoff-bound for the χ2 distribution (a random
variable Y has distribution χ2 if Y = X2, where X ∼ N (0, 1)). This Chernoff bound is

P

(∣∣∣∣∣1κ
κ∑

ℓ=1

X2
ℓ − 1

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
−κt2

8

)
(1)

for all t ∈ (0, 1). Thus, for large κ, if we want to normalize an X ∼ N (0, I) to make it a unit vector,
we can divide with

√
κ instead of ∥X∥ and we will make it unit up to a small error.

Second alternative construction of ẽi’s. Combining the last comment with the first alternative
construction, it seems natural to consider ẽi =

1√
κ
gi, where gi ∼ N (0, I) and the different gi’s are

chosen independently. This construction indeed satisfies the requirements of the special case for
large enough κ = O

(
log d
ϵ2

)
. We will not prove this, as the proof of the general case (which we will

see) implies this statement.

3 The General Case

We now prove the JL lemma. Let’s remember the statement.

Theorem 1. Let n ≤ poly(d) and v1, . . . , vn ∈ Rd. Let ϵ ∈ (0, 1). Then, there exists a κ = O
(
log d
ϵ2

)
and ṽ1, . . . , ṽn ∈ Rκ such that for all i ̸= j,

(1− ϵ)∥vi − vj∥ ≤ ∥ṽi − ṽj∥ ≤ (1 + ϵ)∥vi − vj∥ (2)

As you will see in the proof, without assuming n ≤ poly(d), we will get κ = O
(
logn
ϵ2

)
.
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Proof. Fix an ϵ ∈ (0, 1). The dimension κ will be chosen in a bit. We will construct a dimension-
reduction map ϕ : Rd → Rκ and we will set ṽi := ϕ(vi). Since we know how to reduce the dimension
of the standard basis, a natural map ϕ is

ϕ(x) = x1ẽ1 + · · ·+ xdẽd

We will choose the ẽi according to the second alternative construction (the other two constructions
also work, but this one is the easiest to analyze). Observe that for an x ∈ Rd, ϕ(x) = 1√

κ
Gx, where

G ∈ Rκ×d is a random matrix with independent entries drawn from N (0, 1). We start with the
following lemma for ϕ.

Lemma 2. Let δ ∈ (0, 1). If κ ≥ 8 log(2/δ)
ϵ2

, then for all x ∈ Rd,

P ((1− ϵ)∥x∥ ≤ ∥ϕ(x)∥ ≤ (1 + ϵ)∥x∥) ≥ 1− δ (3)

Note that the ϵ in the lemma is the ϵ we fixed in the beginning of the proof. From Lemma
2, we can get the theorem as follows: let δ := 1

100n2 (this choice will be justified in a bit). Let

κ :=
⌈
8 log (200n2)

ϵ2

⌉
. Then, for any fixed pair i ̸= j, by applying the lemma for x← vi − vj , we get

P ((1− ϵ)∥vi − vj∥ ≤ ∥ϕ(vi)− ϕ(vj)∥ ≤ (1 + ϵ)∥vi − vj∥) ≥ 1− δ

where we used that ϕ is linear. This says that every fixed pair’s distance is preserved with high
probability. We want to know that with high probability all the distances are preserved, so we apply
union bound:

P (∀i ̸= j, (1− ϵ)∥vi − vj∥ ≤ ∥ϕ(vi)− ϕ(vj)∥ ≤ (1 + ϵ)∥vi − vj∥) ≥ 1−
(
n

2

)
δ ≥ 0.99

Thus, with 99% probability over the choice of G, the function ϕ will preserve all distances up to
error ϵ.

We now prove Lemma 2. Fix a nonzero x ∈ Rd (for x = 0 the statement trivially holds). Let-
ting Gℓ be the ℓth row of G, we have

∥ϕ(x)∥2 = 1

κ

κ∑
ℓ=1

(Gℓ · x)2 = ∥x∥2 ·
1

κ

κ∑
ℓ=1

(
Gℓ ·

x

∥x∥

)2

Let Zℓ := Gℓ · x
∥x∥ . Since Gℓ ∼ N (0, I) we have Zℓ ∼ N (0, 1) (why?). Furthermore, since Gℓ’s are

independent random vectors, the Zℓ’s are independent random variables. From the Chernoff bound
from the χ2-distribution, we get that for all ϵ ∈ (0, 1),

P

(∣∣∣∣∣1κ
κ∑

ℓ=1

Z2
ℓ − 1

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−κϵ2

8

)

Note that this bound is at most δ for κ ≥ 2 log(2/δ)
ϵ2

. Thus, with probability at least 1−δ, (1−ϵ)∥x∥2 ≤
∥ϕ(x)∥2 ≤ (1 + ϵ)∥x∥2 which gives

√
1− ϵ∥x∥ ≤ ∥ϕ(x)∥ ≤

√
1 + ϵ∥x∥

Using that 1− ϵ <
√
1− ϵ < 1 <

√
1 + ϵ < 1 + ϵ, we are done.

We conclude with a geometric interpretation of ϕ.
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3.1 Geometric Interpretation: Random Projection

Let uℓ := Gℓ/
√
d and observe that

ϕ(x) =

√
d

κ

u1 · x
...

uκ · x


From Section 2, we know that u1, . . . , uκ are nearly unit and nearly pairwise orthogonal. Let’s
assume for the moment that the last statement is exact, i.e., u1, . . . , uκ form an orthonormal basis
of the subspace S that they span. Then, the map x 7→ (u1 · x)u1 + · · · + (uκ · x)uκ projects the
inputs on S. So, the first part of ϕ, i.e., Π(x) = ((u1 · x), . . . , (uκ · x)) projects x to S and then
keeps the coordinates of the projection (with respect to the basis of the ui’s). If we had used Π in
place of ϕ, then each initial distance ∥vi − vj∥ would either have decreased or remained the same.
This is general fact: if we project a bunch of points on a subspace, then each distance will either
decrease or stay the same (prove this to yourself!). However, a consequence of JL lemma is that
(with high probability) Π shrinks all distances almost by the same factor:

√
κ
d , and thus by having

in ϕ the scaling factor
√

d
κ we approximately preserve them. Thus, up to a small error (remember

that ui’s are not exactly orthonormal), ϕ(x) projects on a random κ-dimensional subspace, keeps
the coordinates, and then rescales.
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