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Approximation Algorithms

Desired Algorithm Properties:

For every input...
runs in polynomial time
returns the optimal solution
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Approximation Algorithms

Approximation algorithm:

For every input...
runs in polynomial time
returns an approximate solution.

.Definition..

......

A ρ-approximate solution S for a maximization (respectively, minimization)
problem with cost function V and ρ ≥ 1 is a feasible solution with
V(S) ≥ 1

ρV(OPT) (respectively, V(S) ≤ ρV(OPT)).

.Definition..

......
A ρ-approximate algorithm returns a ρ-approximate solution for every
input.
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Classes of Optimization Problems

PO  (LP)

FPTAS  (KNAPSACK)

PTAS  (BIN PACKING)

    APX  (MIN VERTEX COVER, 
MAX 3SAT, METRIC TSP)

log-APX  (MIN SET COVER)

poly-APX  (MAX CLIQUE)

NPO  (TSP)
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Hardness of Approximation
Using classic NP-complete reductions, we sometimes get inapproximability
results:
.Theorem..
......There is no constant factor approximation for TSP, unless P = NP.

In general, we need a new type of reduction:
.Theorem..

......

Let a language L and w.l.o.g. a maximization problem P. If the following
holds:

x ∈ L ⇒ V(SOPT
R(x) ) ≥ c

x /∈ L ⇒ V(SOPT
R(x) ) < s

then: if there is a polynomial time c/s-approximate algorithm for P and L
is NP-complete, then P = NP.
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The PCP Theorem: Characterization of NP

.
Theorem (Arora, Lund, Motwani, Sudan, Szegedy ’92)
..
......NP = PCP[O

(
log n

)
,O

(
1
)
]
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MAX-3SAT Inapproximability

.Theorem..

......

The PCP Theorem implies that there is an ϵ1 such that there is no
polynomial time (1 + ϵ1)-approximation algorithm for MAX-3SAT, unless
P = NP.

Let L ∈ PCP[O
(
log n

)
, q] be an NP-complete language.

We construct a 3CNF formula such that for some ϵ1 > 0:

x ∈ L ⇒ ϕx is satisfiable
x /∈ L ⇒ no assignment satisfies more than (1− ϵ1)m clauses of ϕx
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MAX-3SAT Inapproximability

For every random string r ∈ {0, 1}O
(

log n
)
, the Verifier checks q bits

i1r , . . . , i
q
r of the proof y and accepts iff fxr (yi1r , . . . , yiqr ) = true.

fxr can be simulated by a qCNF formula of at most 2q clauses:
fxr = Cx

r,1 ∧ . . . ∧ Cx
r,2q

...which is a 3CNF formula of at most (q − 2)2q clauses:
fxr = Cx

r,1 ∧ . . . ∧ Cx
r,(q−2)2q
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MAX-3SAT Inapproximability

How many “r”s are there? → 2O
(

log n
)
= 2k log n = nk for some constant k.

x ∈ L ⇒ Pr[V accepts] = 1 ⇒ fxr1 ∧ . . . ∧ fxrnk = true

x /∈ L ⇒ Pr[V accepts] ≤ 1/2 ⇒≤ nk(q − 2)2q − nk
2 clauses satisfied

→ ϵ1 =
1

2·(q−2)·2q
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MAX-3SAT Inapproximability

The converse holds:
.Theorem..

......
If there is a reduction like the previous one for an NP-complete L, then
the PCP Theorem holds.

Hint: The Verifier constructs ϕx, picks O
(
1
ϵ1

)
clauses at random and

accepts iff they are satisfied.
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MAX-3SAT-d Inapproximability
.Theorem..

......
If there is an approximation algorithm for MAX-E3SAT-d with performance
better than (1− ϵ2), then P = NP.

Similar reductions show that if P = NP, then there is no approximation
for:

MAX-IS in degree-(d + 2) graphs with performance ratio better than
1/(1− ϵ2)

Let ϕ have n variables and m clauses. Construct a graph Gϕ with one
vertex for every occurence of a variable (3m) and edges between the
variables of a clause and their negations. There is an IS of size ≥ t iff there
is an assignment satisfying ≥ t clauses.

Zakynthinou (NTUA) PCPs and Hardness of Approximation February 2, 2015 15 / 25



MAX-3SAT-d Inapproximability
.Theorem..

......
If there is an approximation algorithm for MAX-E3SAT-d with performance
better than (1− ϵ2), then P = NP.

Similar reductions show that if P = NP, then there is no approximation
for:

MAX-IS in degree-(d + 2) graphs with performance ratio better than
1/(1− ϵ2)

Let ϕ have n variables and m clauses. Construct a graph Gϕ with one
vertex for every occurence of a variable (3m) and edges between the
variables of a clause and their negations. There is an IS of size ≥ t iff there
is an assignment satisfying ≥ t clauses.

Zakynthinou (NTUA) PCPs and Hardness of Approximation February 2, 2015 15 / 25



MAX-3SAT-d Inapproximability
.Theorem..

......
If there is an approximation algorithm for MAX-E3SAT-d with performance
better than (1− ϵ2), then P = NP.

Similar reductions show that if P = NP, then there is no approximation
for:

MAX-IS in degree-(d + 2) graphs with performance ratio better than
1/(1− ϵ2)

Let ϕ have n variables and m clauses. Construct a graph Gϕ with one
vertex for every occurence of a variable (3m) and edges between the
variables of a clause and their negations. There is an IS of size ≥ t iff there
is an assignment satisfying ≥ t clauses.

Zakynthinou (NTUA) PCPs and Hardness of Approximation February 2, 2015 15 / 25



MAX-3SAT-d Inapproximability

Similar reductions show that if P = NP, then there is no approximation
for:

MAX-IS in degree-(d + 2) graphs with performance ratio better than
1/(1− ϵ2)

MIN VERTEX COVER in degree-(d + 2) graphs with performance
ratio better than 1 + ϵ2/2

MIN METRIC STEINER TREE with performance ratio 1 + ϵ3
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MAX-3SAT-d Inapproximability

Similar reductions show that if P = NP, then there is no approximation
for:

MIN METRIC STEINER TREE with performance ratio 1 + ϵ3

Let G be a graph in the MIN VERTEX COVER problem. We construct a
new G′ with one vertex for every vertex of G and one for every edge of G.

For every edge (u, v) of G: dG′([u], [u, v]) = 1.
For every two vertices of G: dG′([u], [v]) = 1.
Every other vertex pair of G′ has distance 2.

There is a vertex cover of k vertices in G iff there is a Steiner Tree of cost
≤ m − k in G′.
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IS Inapproximability

Let L ∈ PCPc,s[O
(
log n

)
,O

(
1
)
]. Configuration is the computation of the

Verifier for random bits r and queries q (→ 2q2k log n configurations).
Consider the graph of accepting configurations Gx, where there is an edge
between every inconsistent configurations.

x ∈ L ⇒ there is an IS in Gx of size ≥ c · 2k log n

x /∈ L ⇒ every IS in Gx has size ≤ s · 2k log n
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IS Inapproximability

.Theorem..

......There is no 2-approximation algorithm for MAX-IS, unless P = NP.

.Theorem..

......
There is a constant c > 1 such than there is no nc-approximation algorithm
for MAX-IS, unless P = NP.
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Optimized PCP

.
Theorem (Håstad ’01)
..
......NP = PCP1−ϵ,1/2+ϵ[O

(
log n

)
, 3] with a 3-XOR verifier.
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Tight Inapproximability for MAX-3SAT

An XOR is represented by a 4-clause CNF formula.

x ∈ L ⇒ Pr[V accepts] ≥ 1− ϵ ⇒ (4− ϵ)nk satified clauses
x /∈ L ⇒ Pr[V accepts] ≤ 1/2 + ϵ ⇒ (3.5− ϵ)nk satified clauses

.Theorem..

......There is no ρ-approximation for MAX-3SAT with ρ < 8/7 unless P = NP.

Zakynthinou (NTUA) PCPs and Hardness of Approximation February 2, 2015 22 / 25



More Results

.Theorem..

......
There is no ρ-approximation for MAX-CUT with ρ < 17/16 unless
P = NP.
.Theorem..
......There is no n1−ϵ-approximation for MAX-IS unless ZPP = NP.

More results using the Unique Games Conjecture (Khot ’02).
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