PCPs and Hardness of Approximation

Lydia Zakynthinou

MPLA, NTUA

February 2, 2015

Outline

1 Introduction to Approximation

Inapproximability

3 Tight Inapproximability

Outline

1 Introduction to Approximation

Inapproximability

3 Tight Inapproximability

- For every input...
- runs in polynomial time
- returns the optimal solution

- For every input...
- runs in polynomial time
- returns the optimal solution

- For every input...
- runs in polynomial time
- returns the optimal solution

- For every input...
- runs in polynomial time
- returns the optimal solution

Approximation algorithm:

- For every input...
- runs in polynomial time
- returns an approximate solution.

Definition

A ρ -approximate solution S for a maximization (respectively, minimization) problem with cost function V and $\rho \ge 1$ is a feasible solution with $V(S) \ge \frac{1}{\rho}V(OPT)$ (respectively, $V(S) \le \rho V(OPT)$).

Definition

A ρ -approximate algorithm returns a ρ -approximate solution for every input.

Approximation algorithm:

- For every input...
- runs in polynomial time
- returns an approximate solution.

Definition

A ρ -approximate solution S for a maximization (respectively, minimization) problem with cost function V and $\rho \ge 1$ is a feasible solution with $V(S) \ge \frac{1}{\rho}V(OPT)$ (respectively, $V(S) \le \rho V(OPT)$).

Definition

A ρ -approximate algorithm returns a ρ -approximate solution for every input.

Approximation algorithm:

- For every input...
- runs in polynomial time
- returns an approximate solution.

Definition

A ρ -approximate solution S for a maximization (respectively, minimization) problem with cost function V and $\rho \ge 1$ is a feasible solution with $V(S) \ge \frac{1}{\rho}V(OPT)$ (respectively, $V(S) \le \rho V(OPT)$).

Definition

A $\rho\text{-approximate}$ algorithm returns a $\rho\text{-approximate}$ solution for every input.

Zakynthinou (NTUA)

Classes of Optimization Problems

Using classic $\mathbf{NP}\text{-}\mathsf{complete}$ reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

- $x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$
- $x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$

then: if there is a polynomial time c/s-approximate algorithm for P and L is NP-complete, then $\mathbf{P} = \mathbf{NP}$.

Using classic $\mathbf{NP}\text{-}\mathsf{complete}$ reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

- $x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$
- $x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$

then: if there is a polynomial time c/s-approximate algorithm for P and L is ${f NP}$ -complete, then ${f P}={f NP}.$

Using classic $\mathbf{NP}\text{-}\mathsf{complete}$ reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

- $x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$
- $x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$

then: if there is a polynomial time c/s-approximate algorithm for P and L is ${f NP}$ -complete, then ${f P}={f NP}$.

Using classic $\ensuremath{\mathbf{NP}}\xspace$ -complete reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

• $x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$

•
$$x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$$

then: if there is a polynomial time c/s-approximate algorithm for P and L is NP-complete, then P = NP.

Using classic $\ensuremath{\mathbf{NP}}\xspace$ -complete reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

- $x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$
- $x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$

then: if there is a polynomial time c/s-approximate algorithm for P and L is NP-complete, then P = NP.

Using classic $\ensuremath{\mathbf{NP}}\xspace$ -complete reductions, we sometimes get inapproximability results:

Theorem

There is no constant factor approximation for TSP, unless $\mathbf{P} = \mathbf{NP}$.

In general, we need a new type of reduction:

Theorem

Let a language L and w.l.o.g. a maximization problem P. If the following holds:

•
$$x \in L \Rightarrow V(S_{R(x)}^{OPT}) \ge c$$

•
$$x \notin L \Rightarrow V(S_{R(x)}^{OPT}) < s$$

then: if there is a polynomial time c/s-approximate algorithm for P and L is NP-complete, then $\mathbf{P} = \mathbf{NP}$.

Theorem (Arora, Lund, Motwani, Sudan, Szegedy '92)

 $\mathbf{NP} = \mathbf{PCP}[\mathsf{O}(\log n), \mathsf{O}(1)]$

Outline

Introduction to Approximation

Inapproximability

3 Tight Inapproximability

The PCP Theorem implies that there is an ϵ_1 such that there is no polynomial time $(1 + \epsilon_1)$ -approximation algorithm for MAX-3SAT, unless $\mathbf{P} = \mathbf{NP}$.

Let $L \in \mathbf{PCP}[\mathsf{O}ig(\mathsf{log}\, nig), q]$ be an $\mathbf{NP} ext{-complete}$ language.

We construct a 3CNF formula such that for some $\epsilon_1 > 0$:

• $x \in L \Rightarrow \phi_x$ is satisfiable

• $x \notin L \Rightarrow$ no assignment satisfies more than $(1 - \epsilon_1)m$ clauses of ϕ_x

The PCP Theorem implies that there is an ϵ_1 such that there is no polynomial time $(1 + \epsilon_1)$ -approximation algorithm for MAX-3SAT, unless $\mathbf{P} = \mathbf{NP}$.

Let $L \in \mathbf{PCP}[O(\log n), q]$ be an **NP**-complete language.

We construct a 3CNF formula such that for some $\epsilon_1 > 0$:

• $x \in L \Rightarrow \phi_x$ is satisfiable

• $x \notin L \Rightarrow$ no assignment satisfies more than $(1 - \epsilon_1)m$ clauses of ϕ_x

The PCP Theorem implies that there is an ϵ_1 such that there is no polynomial time $(1 + \epsilon_1)$ -approximation algorithm for MAX-3SAT, unless $\mathbf{P} = \mathbf{NP}$.

Let $L \in \mathbf{PCP}[O(\log n), q]$ be an **NP**-complete language.

We construct a 3CNF formula such that for some $\epsilon_1 > 0$:

- $x \in L \Rightarrow \phi_x$ is satisfiable
- $x \notin L \Rightarrow$ no assignment satisfies more than $(1 \epsilon_1)m$ clauses of ϕ_x

For every random string $r \in \{0,1\}^{O(\log n)}$, the Verifier checks q bits i_r^1, \ldots, i_r^q of the proof y and accepts iff $f_r^{x}(y_{i_r^1}, \ldots, y_{i_r^q}) =$ true.

 f_r^x can be simulated by a *q*CNF formula of at most 2^q clauses: $f_r^x = C_{r,1}^x \wedge \ldots \wedge C_{r,2^q}^x$

...which is a 3CNF formula of at most $(q-2)2^q$ clauses: $f_r^{\mathsf{x}} = C_{r,1}^{\mathsf{x}} \wedge \ldots \wedge C_{r,(q-2)2^q}^{\mathsf{x}}$ For every random string $r \in \{0,1\}^{O(\log n)}$, the Verifier checks q bits i_r^1, \ldots, i_r^q of the proof y and accepts iff $f_r^{\chi}(y_{i_r^1}, \ldots, y_{i_r^q}) =$ true.

 f_r^x can be simulated by a *q*CNF formula of at most 2^q clauses: $f_r^x = C_{r,1}^x \wedge \ldots \wedge C_{r,2^q}^x$

...which is a 3CNF formula of at most $(q-2)2^q$ clauses: $f_r^{\mathsf{x}} = C_{r,1}^{\mathsf{x}} \wedge \ldots \wedge C_{r,(q-2)2^q}^{\mathsf{x}}$ For every random string $r \in \{0,1\}^{O(\log n)}$, the Verifier checks q bits i_r^1, \ldots, i_r^q of the proof y and accepts iff $f_r^x(y_{i_r^1}, \ldots, y_{i_r^q}) =$ true.

 f_r^x can be simulated by a *q*CNF formula of at most 2^q clauses: $f_r^x = C_{r,1}^x \land \ldots \land C_{r,2^q}^x$

...which is a 3CNF formula of at most $(q-2)2^q$ clauses: $f^x_r = C^x_{r,1} \wedge \ldots \wedge C^x_{r,(q-2)2^q}$ For every random string $r \in \{0,1\}^{O(\log n)}$, the Verifier checks q bits i_r^1, \ldots, i_r^q of the proof y and accepts iff $f_r^{\chi}(y_{i_r^1}, \ldots, y_{i_r^q}) =$ true.

 f_r^x can be simulated by a *q*CNF formula of at most 2^q clauses: $f_r^x = C_{r,1}^x \land \ldots \land C_{r,2^q}^x$

...which is a 3CNF formula of at most $(q-2)2^q$ clauses: $f_r^x = C_{r,1}^x \land \ldots \land C_{r,(q-2)2^q}^x$

• $x \in L \Rightarrow \mathbf{Pr}[V \text{ accepts}] = 1 \Rightarrow f_{r_1}^x \land \ldots \land f_{r_{n^k}}^x = \mathbf{true}$ • $x \notin L \Rightarrow \mathbf{Pr}[V \text{ accepts}] \le 1/2 \Rightarrow \le n^k(q-2)2^q - \frac{n^k}{2}$ clauses satisfied

 $\rightarrow \epsilon_1 = \frac{1}{2 \cdot (q-2) \cdot 2q}$

• $x \in L \Rightarrow \mathbf{Pr}[V \text{ accepts}] = 1 \Rightarrow f_{r_1}^x \land \ldots \land f_{r_{n^k}}^x = \mathbf{true}$ • $x \notin L \Rightarrow \mathbf{Pr}[V \text{ accepts}] \le 1/2 \Rightarrow \le n^k(q-2)2^q - \frac{n^k}{2}$ clauses satisfied $\Rightarrow \epsilon_1 = -\frac{1}{2}$

•
$$x \in L \Rightarrow \mathbf{Pr}[V \text{ accepts}] = 1 \Rightarrow f_{r_1}^x \land \dots \land f_{r_{n^k}}^x = \mathbf{true}$$

• $x \notin L \Rightarrow \mathbf{Pr}[V \text{ accepts}] \le 1/2 \Rightarrow \le n^k(q-2)2^q - \frac{n^k}{2}$ clauses satisfied
 $\Rightarrow \epsilon_1 = \frac{1}{2(q-2)2^q}$

• $x \in L \Rightarrow \mathbf{Pr}[V \text{ accepts}] = 1 \Rightarrow f_{r_1}^x \land \dots \land f_{r_{n^k}}^x = \mathbf{true}$ • $x \notin L \Rightarrow \mathbf{Pr}[V \text{ accepts}] \le 1/2 \Rightarrow \le n^k(q-2)2^q - \frac{n^k}{2}$ clauses satisfied

•
$$x \in L \Rightarrow \mathbf{Pr}[V \text{ accepts}] = 1 \Rightarrow f_{r_1}^x \land \ldots \land f_{r_{n^k}}^x = \mathbf{true}$$

• $x \notin L \Rightarrow \mathbf{Pr}[V \text{ accepts}] \le 1/2 \Rightarrow \le n^k(q-2)2^q - \frac{n^k}{2}$ clauses satisfied
 $\Rightarrow \epsilon_1 = \frac{1}{2 \cdot (q-2) \cdot 2^q}$

The converse holds:

Theorem

If there is a reduction like the previous one for an \mathbf{NP} -complete L, then the PCP Theorem holds.

Hint: The Verifier constructs ϕ_x , picks $O(\frac{1}{\epsilon_1})$ clauses at random and accepts iff they are satisfied.

MAX-3SAT-d Inapproximability

Theorem

If there is an approximation algorithm for MAX-E3SAT-d with performance better than $(1 - \epsilon_2)$, then $\mathbf{P} = \mathbf{NP}$.

Similar reductions show that if $\mathbf{P} = \mathbf{NP}$, then there is no approximation for:

• MAX-IS in degree-(d+2) graphs with performance ratio better than $1/(1-\epsilon_2)$

Let ϕ have *n* variables and *m* clauses. Construct a graph G_{ϕ} with one vertex for every occurrence of a variable (3m) and edges between the variables of a clause and their negations. There is an IS of size $\geq t$ iff there is an assignment satisfying $\geq t$ clauses.

If there is an approximation algorithm for MAX-E3SAT-d with performance better than $(1 - \epsilon_2)$, then $\mathbf{P} = \mathbf{NP}$.

Similar reductions show that if $\mathbf{P}=\mathbf{NP}$, then there is no approximation for:

 $\bullet\,$ MAX-IS in degree-(d+2) graphs with performance ratio better than $1/(1-\epsilon_2)$

Let ϕ have *n* variables and *m* clauses. Construct a graph G_{ϕ} with one vertex for every occurrence of a variable (3m) and edges between the variables of a clause and their negations. There is an IS of size $\geq t$ iff there is an assignment satisfying $\geq t$ clauses.

If there is an approximation algorithm for MAX-E3SAT-d with performance better than $(1 - \epsilon_2)$, then $\mathbf{P} = \mathbf{NP}$.

Similar reductions show that if $\mathbf{P}=\mathbf{NP}$, then there is no approximation for:

 $\bullet\,$ MAX-IS in degree-(d+2) graphs with performance ratio better than $1/(1-\epsilon_2)$

Let ϕ have *n* variables and *m* clauses. Construct a graph G_{ϕ} with one vertex for every occurence of a variable (3m) and edges between the variables of a clause and their negations. There is an IS of size $\geq t$ iff there is an assignment satisfying $\geq t$ clauses.

Similar reductions show that if $\mathbf{P}=\mathbf{NP}$, then there is no approximation for:

- $\bullet\,$ MAX-IS in degree-(d+2) graphs with performance ratio better than $1/(1-\epsilon_2)$
- $\bullet\,$ MIN VERTEX COVER in degree-(d+2) graphs with performance ratio better than $1+\epsilon_2/2$

• MIN METRIC STEINER TREE with performance ratio $1+\epsilon_3$

Similar reductions show that if $\mathbf{P}=\mathbf{NP}$, then there is no approximation for:

- MAX-IS in degree-(d+2) graphs with performance ratio better than $1/(1-\epsilon_2)$
- $\bullet\,$ MIN VERTEX COVER in degree-(d+2) graphs with performance ratio better than $1+\epsilon_2/2$
- MIN METRIC STEINER TREE with performance ratio $1 + \epsilon_3$

Similar reductions show that if $\mathbf{P} = \mathbf{NP}$, then there is no approximation for:

• MIN METRIC STEINER TREE with performance ratio $1 + \epsilon_3$

Let G be a graph in the MIN VERTEX COVER problem. We construct a new G' with one vertex for every vertex of G and one for every edge of G.

- For every edge (u, v) of G: $d_{G'}([u], [u, v]) = 1$.
- For every two vertices of G: $d_{G'}([u], [v]) = 1$.
- Every other vertex pair of G' has distance 2.

There is a vertex cover of k vertices in G iff there is a Steiner Tree of cost $\leq m - k$ in G'.

Let $L \in \mathbf{PCP}_{c,s}[O(\log n), O(1)]$. Configuration is the computation of the Verifier for random bits r and queries $q \to 2^{q}2^{k\log n}$ configurations). Consider the graph of accepting configurations G_x , where there is an edge between every inconsistent configurations.

• $x \in L \Rightarrow$ there is an IS in G_x of size $\ge c \cdot 2^{k \log n}$ • $x \notin L \Rightarrow$ every IS in G_x has size $\le s \cdot 2^{k \log n}$ Let $L \in \mathbf{PCP}_{c,s}[O(\log n), O(1)]$. Configuration is the computation of the Verifier for random bits r and queries $q \to 2^{q}2^{k\log n}$ configurations). Consider the graph of accepting configurations G_x , where there is an edge between every inconsistent configurations.

There is no 2-approximation algorithm for MAX-IS, unless $\mathbf{P} = \mathbf{NP}$.

Theorem

There is a constant c > 1 such than there is no n^c-approximation algorithm for MAX-IS, unless $\mathbf{P} = \mathbf{NP}$.

There is no 2-approximation algorithm for MAX-IS, unless $\mathbf{P} = \mathbf{NP}$.

Theorem

There is a constant c > 1 such than there is no n^c-approximation algorithm for MAX-IS, unless $\mathbf{P} = \mathbf{NP}$.

Outline

Introduction to Approximation

2 Inapproximability

3 Tight Inapproximability

4 Bibliography

Theorem (Håstad '01)

$\mathbf{NP} = \mathbf{PCP}_{1-\epsilon,1/2+\epsilon}[O(\log n),3]$ with a 3-XOR verifier.

An XOR is represented by a 4-clause CNF formula.

Theorem

There is no ρ -approximation for MAX-3SAT with $\rho < 8/7$ unless $\mathbf{P} = \mathbf{NP}$.

There is no ρ -approximation for MAX-CUT with $\rho < 17/16$ unless $\mathbf{P} = \mathbf{NP}$.

Theorem

There is no $n^{1-\epsilon}$ -approximation for MAX-IS unless $\mathbf{ZPP} = \mathbf{NP}$.

More results using the Unique Games Conjecture (Khot '02).

Outline

Introduction to Approximation

2 Inapproximability

3 Tight Inapproximability

- Inapproximability of Combinatorial Optimization Problems, Luca Trevisan (2004)
- Subhash Khot's Lecture Notes on PCPs and Hardness of approximation (2008)
- Some optimal inapproximability results, Johan Håstad (2001)