Advanced Algorithms: Solution of Problem 6

Observe that it suffices to prove the inequality
E[eAX] < 60)\2 (1)

under the additional assumptions that A > 0 and |X| < 1. To see why this is without loss of
generality, observe that we can get the result for A < 0 be setting X < —X. For general bound B,
we can set A <— A+ B. I will give two proofs of (1). The first will give C' = e¢/2. The second will give
the optimal constant C' = 1/2.

Solution 1: C' =¢/2

The most obvious thing to do is to bound A - X < A = e*¥ < e* < e)‘2, for A > 1. So, the
inequality is proven for A > 1. It remains to show it for A € (0,1). Let’s think about the extreme

case where \ is very small. Then, we can approximate e’ using the first terms of the Taylor

expansion of f(y) = e¥. From Taylor’s theorem, we have that

¢
M =14 AX + %(AX)2

where ¢ is between 0 and AX (notice that £ is a random variable). Using that A, |X| < 1, we get
that

N <14 AX + 50X
Taking expectations and using that E[X]| = 0 and | X| < 1, we get

E[e*¥] <1+ ng[X?] <1+ g)\Q < 5N

Solution 2: C'=1/2

It is intuitive that the worst-case X should be the one which deviates the most from 0 among all
X’s such that E[X] =0, |X| < 1. It is also intuitive that this random variable is 1 with probability
1/2 and -1 with probability 1/2 (we will prove this in a bit). Let’s first prove (1) for this particular
random variable. First of all,

On the other hand, N2 = o 2’\%’;, Since 2% - k! < (2k)!, we have proved the inequality for our
special case.



Now, we will show that this is indeed the worst-case X. We need to somehow upper-bound the
function f(y) = ™ using its values at the boundary of its domain: [—1,1]. But this is exactly what
convexity gives us! Le.,

1+ X 1-X
X < J; At . o

. . AX )\+ —A
Taking expectations, we get E[e* ] < “=F—.



