## Advanced Algorithms: Solution of Problem 6

Observe that it suffices to prove the inequality

$$
\begin{equation*}
\mathbb{E}\left[e^{\lambda X}\right] \leq e^{C \lambda^{2}} \tag{1}
\end{equation*}
$$

under the additional assumptions that $\lambda>0$ and $|X| \leq 1$. To see why this is without loss of generality, observe that we can get the result for $\lambda<0$ be setting $X \leftarrow-X$. For general bound $B$, we can set $\lambda \leftarrow \lambda \cdot B$. I will give two proofs of (1). The first will give $C=e / 2$. The second will give the optimal constant $C=1 / 2$.

Solution 1: $C=e / 2$
The most obvious thing to do is to bound $\lambda \cdot X \leq \lambda \Longrightarrow e^{\lambda \cdot X} \leq e^{\lambda} \leq e^{\lambda^{2}}$, for $\lambda \geq 1$. So, the inequality is proven for $\lambda \geq 1$. It remains to show it for $\lambda \in(0,1)$. Let's think about the extreme case where $\lambda$ is very small. Then, we can approximate $e^{\lambda X}$ using the first terms of the Taylor expansion of $f(y)=e^{y}$. From Taylor's theorem, we have that

$$
e^{\lambda X}=1+\lambda X+\frac{e^{\xi}}{2}(\lambda X)^{2}
$$

where $\xi$ is between 0 and $\lambda X$ (notice that $\xi$ is a random variable). Using that $\lambda,|X| \leq 1$, we get that

$$
e^{\lambda X} \leq 1+\lambda X+\frac{e}{2} \lambda^{2} X^{2}
$$

Taking expectations and using that $\mathbb{E}[X]=0$ and $|X| \leq 1$, we get

$$
\mathbb{E}\left[e^{\lambda X}\right] \leq 1+\frac{e}{2} \lambda^{2} \mathbb{E}\left[X^{2}\right] \leq 1+\frac{e}{2} \lambda^{2} \leq e^{\frac{e}{2} \lambda^{2}}
$$

Solution 2: $C=1 / 2$
It is intuitive that the worst-case $X$ should be the one which deviates the most from 0 among all $X$ 's such that $\mathbb{E}[X]=0,|X| \leq 1$. It is also intuitive that this random variable is 1 with probability $1 / 2$ and -1 with probability $1 / 2$ (we will prove this in a bit). Let's first prove (1) for this particular random variable. First of all,

$$
\mathbb{E}\left[e^{\lambda X}\right]=\frac{e^{\lambda}+e^{-\lambda}}{2}=\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{(2 k)!}
$$

On the other hand, $e^{\lambda^{2} / 2}=\sum_{k=0}^{\infty} \frac{\lambda^{2 k}}{2^{k} \cdot k!}$. Since $2^{k} \cdot k!\leq(2 k)$ !, we have proved the inequality for our special case.

Now, we will show that this is indeed the worst-case $X$. We need to somehow upper-bound the function $f(y)=e^{\lambda y}$ using its values at the boundary of its domain: $[-1,1]$. But this is exactly what convexity gives us! I.e.,

$$
e^{\lambda X} \leq \frac{1+X}{2} e^{\lambda}+\frac{1-X}{2} e^{-\lambda}
$$

Taking expectations, we get $\mathbb{E}\left[e^{\lambda X}\right] \leq \frac{e^{\lambda}+e^{-\lambda}}{2}$.

