
Advanced Algorithms: Solution of Problem 6

Observe that it suffices to prove the inequality

E[eλX ] ≤ eCλ2
(1)

under the additional assumptions that λ > 0 and |X| ≤ 1. To see why this is without loss of
generality, observe that we can get the result for λ < 0 be setting X ← −X. For general bound B,
we can set λ← λ ·B. I will give two proofs of (1). The first will give C = e/2. The second will give
the optimal constant C = 1/2.

Solution 1: C = e/2

The most obvious thing to do is to bound λ · X ≤ λ =⇒ eλ·X ≤ eλ ≤ eλ
2 , for λ ≥ 1. So, the

inequality is proven for λ ≥ 1. It remains to show it for λ ∈ (0, 1). Let’s think about the extreme
case where λ is very small. Then, we can approximate eλX using the first terms of the Taylor
expansion of f(y) = ey. From Taylor’s theorem, we have that

eλX = 1 + λX +
eξ

2
(λX)2

where ξ is between 0 and λX (notice that ξ is a random variable). Using that λ, |X| ≤ 1, we get
that

eλX ≤ 1 + λX +
e

2
λ2X2

Taking expectations and using that E[X] = 0 and |X| ≤ 1, we get

E[eλX ] ≤ 1 +
e

2
λ2E[X2] ≤ 1 +

e

2
λ2 ≤ e

e
2
λ2

Solution 2: C = 1/2

It is intuitive that the worst-case X should be the one which deviates the most from 0 among all
X’s such that E[X] = 0, |X| ≤ 1. It is also intuitive that this random variable is 1 with probability
1/2 and -1 with probability 1/2 (we will prove this in a bit). Let’s first prove (1) for this particular
random variable. First of all,

E[eλX ] =
eλ + e−λ

2
=

∞∑
k=0

λ2k

(2k)!

On the other hand, eλ2/2 =
∑∞

k=0
λ2k

2k·k! . Since 2k · k! ≤ (2k)!, we have proved the inequality for our
special case.
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Now, we will show that this is indeed the worst-case X. We need to somehow upper-bound the
function f(y) = eλy using its values at the boundary of its domain: [−1, 1]. But this is exactly what
convexity gives us! I.e.,

eλX ≤ 1 +X

2
eλ +

1−X

2
e−λ

Taking expectations, we get E[eλX ] ≤ eλ+e−λ

2 .
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