
Advanced Algorithms: Solution of Problem 7

Comment. By no means your solutions are expected to be as long as the ones I am providing.
Mine are long because I describe the discovery process.

We will employ the 2nd and the 4th strategy (special cases and formulating questions).

Special case: n = 2

We will focus on ellipses1 with centers (a, 0) for a ∈ (0, 1) and axes along the vectors (1, 0) and
(0, 1). A natural question is “out of all these ellipses, how does the one that contains H and has
minimum possible area look like?”. We now claim that this ellipse - let’s call it E∗ - must touch H
at all three points (0, 1), (0,−1), (1, 0).

Here is why: first of all, note that either both (0, 1) and (0,−1) belong to the boundary of E∗, or
none of them does (since E∗ is constrained to be symmetric). Suppose that the second case holds.
Then, for a small enough ϵ > 0, if we translate E∗ by ϵ towards the right, we will still contain H.

But then, we could slightly decrease the axis-lengths and still contain H, contradiction. On the
other hand, if (1, 0) does not belong to the boundary of E∗, we can again reach a contradiction by
translating E∗ towards the left.

Based on these observations, we are looking for an ellipse:
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1When we say ellipse we mean the union of the curve and its interior.
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such that a ∈ (0, 1), λ1, λ2 > 0, and (0, 1), (0,−1) and (1, 0) satisfy (1) with equality. This gives
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which implies that a ∈ (0, 1/2) and λ2 = (1− a)/
√
1− 2a. The area of this ellipse is

λ1λ2π =
(1− a)2√
1− 2a

π

By taking the derivative, we get that the a ∈ (0, 1/2) that minimizes it is a = 1/3. For this ellipse,
λ1 = 2/3, λ2 = 2/

√
3 and the area is 4

3
√
3
π < e−1/6.

It is left to show that it contains H. To this end, let (x1, x2) with x1 ≥ 0 and x21 + x22 ≤ 1.
Then,
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The above is a convex quadratic as a function of x1, and since x1 ∈ [0, 1], it is maximized either at
x1 = 0 or at x1 = 1. In both cases the above is equal to one.

General case

We consider an ellipsoid of the form
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where a ∈ (0, 1), λ1, λ2 > 0. Observe that due to symmetry, excluding the first axis-length, we
choose all the others to be equal. Furthermore, we impose the constraint that the boundary contains
e1,±e2, . . . ,±en, i.e., (1−a)2
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which implies that a ∈ (0, 1/2) and λ2 = (1− a)/
√
1− 2a. Now,
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By taking the derivative of the above function and setting it to zero, we get a = 1
n+1 . For this a,
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and since
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The inequality describing our ellipsoid is(
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We show now that it contains H. To this end, let (x1, . . . , xn) with x1 ≥ 0 and x21 + . . . x2n ≤ 1.
Then,(
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This is a convex quadratic as a function of x1. Since x1 ∈ [0, 1], the maximum is attained either at
x1 = 0 or at x1 = 1. In both cases the last expression is equal to one.
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