Advanced Algorithms: Solution of Problem 7

Comment. By no means your solutions are expected to be as long as the ones I am providing. Mine are long because I describe the discovery process.

We will employ the $2^{\text {nd }}$ and the $4^{\text {th }}$ strategy (special cases and formulating questions).

Special case: $n=2$

We will focus on ellipses ${ }^{1}$ with centers $(a, 0)$ for $a \in(0,1)$ and axes along the vectors $(1,0)$ and $(0,1)$. A natural question is "out of all these ellipses, how does the one that contains H and has minimum possible area look like?". We now claim that this ellipse - let's call it E_{*} - must touch H at all three points $(0,1),(0,-1),(1,0)$.

Here is why: first of all, note that either both $(0,1)$ and $(0,-1)$ belong to the boundary of E_{*}, or none of them does (since E_{*} is constrained to be symmetric). Suppose that the second case holds. Then, for a small enough $\epsilon>0$, if we translate E_{*} by ϵ towards the right, we will still contain H.

But then, we could slightly decrease the axis-lengths and still contain H, contradiction. On the other hand, if $(1,0)$ does not belong to the boundary of E_{*}, we can again reach a contradiction by translating E_{*} towards the left.

Based on these observations, we are looking for an ellipse:

$$
\begin{equation*}
\frac{\left(x_{1}-a\right)^{2}}{\lambda_{1}^{2}}+\frac{x_{2}^{2}}{\lambda_{2}^{2}} \leq 1 \tag{1}
\end{equation*}
$$

[^0]such that $a \in(0,1), \lambda_{1}, \lambda_{2}>0$, and $(0,1),(0,-1)$ and $(1,0)$ satisfy (1) with equality. This gives $\frac{(1-a)^{2}}{\lambda_{1}^{2}}=1 \Rightarrow \lambda_{1}=1-a$, and
$$
\frac{a^{2}}{\lambda_{1}^{2}}+\frac{1}{\lambda_{2}^{2}}=1 \Rightarrow \lambda_{2}^{2}=\frac{(1-a)^{2}}{1-2 a}
$$
which implies that $a \in(0,1 / 2)$ and $\lambda_{2}=(1-a) / \sqrt{1-2 a}$. The area of this ellipse is
$$
\lambda_{1} \lambda_{2} \pi=\frac{(1-a)^{2}}{\sqrt{1-2 a}} \pi
$$

By taking the derivative, we get that the $a \in(0,1 / 2)$ that minimizes it is $a=1 / 3$. For this ellipse, $\lambda_{1}=2 / 3, \lambda_{2}=2 / \sqrt{3}$ and the area is $\frac{4}{3 \sqrt{3}} \pi<e^{-1 / 6}$.

It is left to show that it contains H. To this end, let (x_{1}, x_{2}) with $x_{1} \geq 0$ and $x_{1}^{2}+x_{2}^{2} \leq 1$. Then,

$$
\frac{\left(x_{1}-1 / 3\right)^{2}}{(2 / 3)^{2}}+\frac{x_{2}^{2}}{(2 / \sqrt{3})^{2}} \leq \frac{\left(x_{1}-1 / 3\right)^{2}}{(2 / 3)^{2}}+\frac{1-x_{1}^{2}}{(2 / \sqrt{3})^{2}}
$$

The above is a convex quadratic as a function of x_{1}, and since $x_{1} \in[0,1]$, it is maximized either at $x_{1}=0$ or at $x_{1}=1$. In both cases the above is equal to one.

General case

We consider an ellipsoid of the form

$$
\frac{\left(x_{1}-a\right)^{2}}{\lambda_{1}^{2}}+\frac{x_{2}^{2}}{\lambda_{2}^{2}}+\cdots+\frac{x_{n}^{2}}{\lambda_{2}^{2}} \leq 1
$$

where $a \in(0,1), \lambda_{1}, \lambda_{2}>0$. Observe that due to symmetry, excluding the first axis-length, we choose all the others to be equal. Furthermore, we impose the constraint that the boundary contains $e_{1}, \pm e_{2}, \ldots, \pm e_{n}$, i.e., $\frac{(1-a)^{2}}{\lambda_{1}^{2}}=1 \Rightarrow \lambda_{1}=1-a$ and

$$
\frac{a^{2}}{\lambda_{1}^{2}}+\frac{1}{\lambda_{2}^{2}}=1 \Rightarrow \lambda_{2}^{2}=\frac{(1-a)^{2}}{1-2 a}
$$

which implies that $a \in(0,1 / 2)$ and $\lambda_{2}=(1-a) / \sqrt{1-2 a}$. Now,

$$
\frac{\operatorname{vol}(E)}{\operatorname{vol}(B)}=\lambda_{1} \lambda_{2}^{n-1}=(1-a)\left(\frac{1-a}{\sqrt{1-2 a}}\right)^{n-1}=\frac{(1-a)^{n}}{(1-2 a)^{\frac{n-1}{2}}}
$$

By taking the derivative of the above function and setting it to zero, we get $a=\frac{1}{n+1}$. For this a,

$$
\frac{\operatorname{vol}(E)}{\operatorname{vol}(B)}=\lambda_{1} \lambda_{2}^{n-1}=\left(1-\frac{1}{n+1}\right)\left(\frac{1-\frac{1}{n+1}}{\sqrt{1-\frac{2}{n+1}}}\right)^{n-1}=
$$

and since $\frac{1-\frac{1}{n+1}}{\sqrt{1-\frac{2}{n+1}}}=\frac{n}{\sqrt{n-1} \sqrt{n+1}}=\frac{n}{\sqrt{n^{2}-1}}$, we have

$$
\begin{aligned}
\frac{\operatorname{vol}(E)}{\operatorname{vol}(B)}=\left(1-\frac{1}{n+1}\right)\left(\frac{n}{\sqrt{n^{2}-1}}\right)^{n-1} & =\left(1-\frac{1}{n+1}\right)\left(\frac{n^{2}}{n^{2}-1}\right)^{\frac{n-1}{2}} \\
& =\left(1-\frac{1}{n+1}\right)\left(1+\frac{1}{n^{2}-1}\right)^{\frac{n-1}{2}} \\
& \leq e^{-\frac{1}{n+1}} \cdot\left(e^{\frac{1}{n^{2}-1}}\right)^{\frac{n-1}{2}} \\
& =e^{-\frac{1}{2(n+1)}}
\end{aligned}
$$

The inequality describing our ellipsoid is

$$
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq 1
$$

We show now that it contains H. To this end, let $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{1} \geq 0$ and $x_{1}^{2}+\ldots x_{n}^{2} \leq 1$. Then,

$$
\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}} \sum_{i=2}^{n} x_{i}^{2} \leq\left(\frac{n+1}{n}\right)^{2}\left(x_{1}-\frac{1}{n+1}\right)^{2}+\frac{n^{2}-1}{n^{2}}\left(1-x_{1}^{2}\right)
$$

This is a convex quadratic as a function of x_{1}. Since $x_{1} \in[0,1]$, the maximum is attained either at $x_{1}=0$ or at $x_{1}=1$. In both cases the last expression is equal to one.

[^0]: ${ }^{1}$ When we say ellipse we mean the union of the curve and its interior.

