
The Ellipsoid Method

Orestis Plevrakis

1 From feasibility to optimization

The “Ellipsoid method” was introduced by N. Shor in early 1970’s as an iterative method for general
convex optimization. We will study it in the context of linear programming:

Problem 1: Linear Programming
• Input: A ∈ Qm×n, b ∈ Qm, c ∈ Qn.

• Output: A solution to the problem min{c⊤x : Ax ≥ b}.

Solution here means an optimal solution if there exists one. If the problem is infeasible or
unbounded, then we should output corresponding messages.

At first sight, the following problem might seem strictly easier than the previous.

Problem 2: Feasibility
• Input: A ∈ Qm×n, b ∈ Qm.

• Output: "Empty", if the polyhedron P := {x : Ax ≥ b} = ∅. Else, output an x ∈ P .

It turns out that these problems are equivalent. Clearly an algorithm for Problem 1 can be
directly applied to Problem 2. What about the inverse? Suppose we have a polynomial time algo-
rithm A for Problem 2, and we are given an LP: A ∈ Qm×n, b ∈ Qm, c ∈ Qn. First, we can use A
to check if the LP is feasible. Now, suppose the cost is bounded, i.e., there exists an M > 0, such
that c⊤x ∈ [−M,M], for all x ∈ P . Suppose also that this M is known to us. Then, we can use
it to do binary-search, since for every l ∈ [−M,M] we can employ A to check if there exists an x
such that Ax ≥ b and c⊤x ≤ l, and thus after log2(2M/ϵ) calls we will have an x̂ ∈ P with cost
c⊤x̂ ≤ c⊤x∗ + ϵ, where x∗ is an optimal point. To have a complete reduction, we need to answer
the following: how do we get an optimal solution, rather than an approximately-optimal one? How
do we drop the boundness assumption? These are essentially details, and at the end of the lecture,
I will comment on how we can deal with them.

The following is the most important special case of Problem 2:

1

Problem 3: Feasibility (with a promise)
• Input: A ∈ Qm×n, b ∈ Qm, and two positive r,R ∈ Q.

• Promise: the polyhedron P = {x : Ax ≥ b} is either empty, or B(x0, r) ⊆ P ⊆ B(0, R),
for some x0 ∈ Rn.

• Output: "Empty", if P = ∅. Else, output an x ∈ P .

Problem 3 is the same as Problem 2, with the exception that it requires a nonempty P to be
full-dimensional, i.e., it must have non-zero volume. To tackle Problem 3, it suffices to consider

Problem 4: Finding a feasible point (with a promise)
• Input: A ∈ Qm×n, b ∈ Qm, and two positive r,R ∈ Q.

• Promise: the polyhedron P is nonempty and B(x0, r) ⊆ P ⊆ B(0, R), for some x0 ∈ Rn.

• Output: an x ∈ P .

To see why it suffices to solve Problem 4, suppose we have a polynomial-time algorithm for it,
that runs in time at most p(⟨I⟩), where p is a polynomial, I is the instance (A, b, r, R) in binary
and ⟨I⟩ is the length of the instance. Now, we can apply the algorithm to Problem 3. If it takes
more than p(⟨I⟩) steps to complete, we stop it and output "Empty". If it terminates on time, but
its output does not satisfy the inequalities Ax ≥ b, we return "Empty". Else, the algorithm finds
an x ∈ P in at most p(⟨I⟩) steps.

2 The Ellipsoid Method

The Ellipsoid method solves Problem 4. The idea is to iteratively construct ellipsoids E0 := B(0, R),
E1, E2, . . . such that for all i, Ei ⊇ P and vol(Ei+1) < vol(Ei). We need to say 1) how we will
construct the ellipsoids and 2) how we will eventually find an x ∈ P . Let’s consider first an easy
case: suppose we know that vol(E0) ≈ vol(P), like in the figure:

2

How can find a point a point in P? Choose 0! If 0 /∈ P , then it violates some inequality:
Ai · 0 < bi ≤ Aix, for all x ∈ P (Ai is the ith row of A). Thus, all of P is above the hyperplane
passing through 0 and having Ai as orthogonal vector (Figure 1a).

Since P lies inside a hemisphere, its volume is at most half the volume of E0, contradiction.
Even though this case was easy, it taught us something crucial: if we check whether 0 ∈ P , then
we either solve the problem, or we halve our search-space. Now, for E1, we choose an ellipsoid that
contains this hemisphere, and has volume smaller than vol(E0) (Figure 1b). In a moment, we will
show how to construct E1. For E2 we follow the same process: we check if the center c1 of E1 lies in
P , by checking the linear inequalities. If it does we are done, otherwise there is a violated constraint
Aj · c1 < bj ≤ Aj · x, for all x ∈ P , and so for E2 we should choose an ellipsoid that contains the
half-ellipsoid E1 ∩ {x : Aj · x ≥ Aj · c1}, and has vol(E2) < vol(E1).

The heart of the ellipsoid method lies in Theorem 1 that follows. We will need some notation: for a
point c ∈ Rn and a PD matrix Q, we denote by E(c,Q) the ellipsoid {x : (x− c)⊤Q−1(x− c) ≤ 1}

Theorem 1. Let E(c,Q) be an ellipsoid, and let a ∈ Rn be a nonzero vector. Then, the ellipsoid
E(c′, Q′), with

c′ := c+
1

n+ 1

Qa√
a⊤Qa

Q′ :=
n2

n2 − 1

(
Q− 2

n+ 1

Qaa⊤Q

a⊤Qa

)
satisfies E(c′, Q′) ⊇ E(c,Q) ∩ {x : a⊤x ≥ a⊤c}, and vol(E(c′, Q′)) ≤ e

− 1
2(n+1) vol(E(c,Q)).

(a) P belongs to the hemisphere determined by Ai. (b) The new ellipsoid E1 contains the hemisphere.

Figure 1: Choosing E1.

3

This theorem immediately gives us an algorithm:

Algorithm 1 Ellipsoid Method
c0 ← 0
Q0 ← R2I
for k = 0, 1, 2, . . . do

if ck ∈ P then
output ck

else
Let i be such that Ai · ck < bi.
ck+1 ← ck +

1
n+1

QkAi√
A⊤

i QkAi

Qk+1 ← n2

n2−1

(
Qk − 2

n+1
QkAiA

⊤
i Qk

A⊤
i QkAi

)
end if

end for

2.1 Running time

How many iterations will be executed? Since E(ck, Qk) ⊇ P for all k, we have vol(E(ck, Qk)) ≥
vol(P) ≥ vol(B(x0, r)). At the same time, vol(E(ck, Qk)) ≤ e

− k
2(n+1) vol(B(0, R)). Thus,

e
k

2(n+1) ≤ vol(B(0, R))

vol(B(x0, r))
=

Rn

rn

where the last equality comes from the fact that for any c ∈ Rn, ρ > 0, B(c, ρ) = B(0, ρ) =
(ρI)(B(0, 1)), and since det(ρI) = ρn, we have vol(B(c, ρ)) = ρnvol(B(0, 1)). Thus, k = O(n2 log R

r).
This is a bound on the number of iterations. Each iteration takes O(mn) time to scan the inequali-
ties, and O(n2) time to compute ck+1, Qk+1. In total, ellipsoid method takes O

(
max(n,m)n3logR

r

)
time.

The algorithm for Problem 3. Note that in order to solve Problem 3, we can apply the Ellip-
soid method and halt it after O

(
n2 log R

r

)
iterations. If it hasn’t returned a point by then, we can

conclude that P is empty.

The only thing left is to prove Theorem 1.

2.2 Proof of Theorem 1

The proof will justify, where the formula for c′, Q′ comes from. To simplify notation, we use
B to denote the unit ball E(0, I). Now, from Problem 7, we know that Theorem 1 holds for
c = 0, Q = I, a = e1. We call c∗, Q∗ the corresponding c′, Q′:

c∗ =
1

n+ 1
e1

Q∗ =
n2

n2 − 1

(
I − 2

n+ 1
e1e

⊤
1

)

4

Figure 2: The reduction

Let E∗ := E(c∗, Q∗). We will reduce the general case to this special case, using the fact that any
ellipsoid can be transformed to the unit ball by applying an affine function. The reduction is depicted
in Figure 2, which we proceed explaining. First of all, E(c,Q) = Q1/2(B) + c = ϕ2(B), where we
define ϕ2(x) := Q1/2x + c. Clearly, ϕ−1

2 (x) = Q−1/2(x − c) and ϕ−1
2 (E(c,Q)) = B. How does ϕ−1

2

act on halfspaces? As we now show, any invertible affine function, maps halfspaces to halfspaces,
while sending the boundary hyperplane of the input halfspace, to the boundary hyperplane of the
output halfspace.

Notation. Let a ∈ Rn, a ̸= 0, d ∈ R. We use H(a, d) to denote the hyperplane {x : a⊤x = d},
and H≥(a, d) to denote the halfspace {x : a⊤x ≥ d}.

Proposition 2. Let a ∈ Rn, a ̸= 0, d ∈ R. Consider an affine function ϕ : Rn → Rn such that
ϕ(x) = Mx+ c, where M ∈ Rn×n is invertible, and c ∈ Rn. Let

ã :=
(
M−1

)⊤
a

d̃ := d+ a⊤M−1c

Then, ϕ(H(a, d)) = H(ã, d̃) and ϕ(H≥(a, d)) = H≥(ã, d̃)

Proof. We prove it for the hyperplane. For the halfspace the steps are identical.

x ∈ H(a, d) ⇐⇒ a⊤x = d ⇐⇒ a⊤M−1Mx = d ⇐⇒
((

M−1
)T

a
)⊤

(Mx+ c− c) = d

⇐⇒ ã⊤ϕ(x) = d̃ ⇐⇒ ϕ(x) ∈ H(ã, d̃)

This implies that ϕ(H(a, d)) = H(ã, d̃) (why?).

Thus, ϕ−1
2 (H≥(a, a

⊤c)) = H≥(ã, 0), where ã = Q1/2a. After applying ϕ−1
2 to both our ellipsoid

E(c,Q) and our halfspace H≥(a, a
⊤c), we don’t get exactly the setting of the special case, since ã

might not have the same direction with e1. To alleviate this, we apply an orthogonal transformation:

5

let U be an orthogonal matrix such that Ue1 = ã/∥ã∥, and consider the affine function ϕ1(x) := Ux.
We know that ϕ−1 maps B to itself, and also by Proposition 2, ϕ−1

1 (H≥(ã, 0)) = H≥(e1, 0). Let
ϕ := ϕ2 ◦ ϕ1(E∗). This is an ellipsoid due to the following proposition.

Proposition 3. Let ϕ1, ϕ2 : Rn → Rn be two affine functions. Then, their composition is affine.

Proof. Let ϕ1(x) = M1x + c1, ϕ2(x) = M2x + c2. Then, ϕ2(ϕ1(x)) = M2(M1x + c1) + c2 =
M2M1x+ (M2c1 + c2).

Now, we will show that ϕ(E∗) has the desired properties. First of all, since E∗ ⊇ B ∩H≥(e1, 0),

ϕ(E∗) ⊇ ϕ (B ∩H≥(e1, 0)) = ϕ (B) ∩ ϕ (H≥(e1, 0)) = E(c,Q) ∩H≥(a, a
⊤c)

where the second-to-last equality holds because ϕ is invertible. Secondly, note that ϕ(x) = Q1/2Ux+
c, and thus

vol(ϕ(E∗))

vol(E(c,Q)
=

vol(ϕ(E∗))

vol(ϕ(B))
=
|det(Q1/2U)|vol(E∗)

|det(Q1/2U)|vol(B)
=

vol(E∗)

vol(B)
≤ e

− 1
2(n+1) .

It remains to show that ϕ(E∗) = E(c′, Q′).

ϕ(E∗) = Q1/2U(E∗) + c = Q1/2U(Q
1/2
∗ (B) + c∗) + c = Q1/2UQ

1/2
∗ (B) +

(
Q1/2Uc∗ + c

)
and so the center is c+Q1/2Uc∗ = c+Q1/2U 1

n+1e1 = c+ 1
n+1

Qa√
a⊤Qa

= c′. Now, for Q′, remember

that in the previous lecture we showed that if an ellipsoid E is given in the form E = M(B)+c, where
M is invertible, then we can write it in the alternative form: E = {x : (x− c)⊤(MM⊤)−1(x− c)}
(this appears in the proof of Theorem 3 of lecture 6). Since

Q1/2UQ
1/2
∗

(
Q1/2UQ

1/2
∗

)⊤
= Q1/2UQ∗U

⊤Q1/2

and

UQ∗U
⊤ =

n2

n2 − 1

(
I − 2

n+ 1
Ue1e

⊤
1 U

⊤
)

=
n2

n2 − 1

(
I − 2

n+ 1

Q1/2aa⊤Q1/2

a⊤Qa

)

By multiplying with Q1/2 from both sides, we get Q′.

3 From Feasibility (with a promise) to solving LPs

We gave a polynomial-time algorithm for the problem "Feasibility (with a promise)". However, we
did not fully show how this implies that we can solve LPs in polynomial time. There are two things
that need to be established to have a full algorithm for LPs:

1. How the ellipsoid method can be adapted to solve the Feasibility problem (without any
promise).

2. How we can use a poly-time algorithm for Feasibility, to solve LPs in poly-time. In the
beginning of the lecture, we saw how to perform such a reduction in order to approximate
within ϵ the optimal solution, under the assumption that the LP is bounded. However, it is
possible to a) get an exact optimal solution (if one exists) in poly-time, and b) remove the
boundness condition.

6

I will only sketch the main ideas for resolving 1 and 2. The complete answers contain many details,
which are not so interesting conceptually.1 For 1), the main difficulty is that the polytope P can
be nonempty, but contained inside some hyperplane. If we run the ellipsoid method for such a P ,
after some iterations, there will be a direction along which the ellipsoid will very flat, this direction
will be almost orthogonal to the hyperplane where P lies. Using this (and some other ideas),
we can identify this hyperplane, and "jump into it", in the sense that we continue the ellipsoid
method inside it, reducing the dimension of our problem by 1 (and this cannot happen forever).
For 2), I will only comment on why it possible to get an exact optimal solution. This might seem
strange, since we are doing continuous optimization and (as in the analysis of gradient descent)
the natural guarantee is "after Tϵ steps, we reach a solution with suboptimality gap at most ϵ".
This is reasonable, because computers have finite precision and if the optimal point has irrational
coordinates, we can only hope to approximate it. But remember that for bounded polyhedra, there
is always a vertex that is an optimal solution. Now, the fact that A and b have rational entries
implies that every vertex has rational coordinates. Here is a proof: every vertex is the solution of a
linear system, consisting of n constraints that are set to be satisfied with equality. The coefficients
of this linear system are all rationals, and the solution can be produced with Gaussian elimination,
where all arithmetic operations are addition, subtraction, multiplication and division, and so the
solution will be rational. Thus, in principle we can output an exact optimal solution.2

References

[1] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization,
volume 2. Springer Science & Business Media, 2012.

1The curious reader can find all these details here [1].
2Remember that in a computer we can have an exact representation of a rational number as a pair of two integers.

7

	From feasibility to optimization
	The Ellipsoid Method
	Running time
	Proof of Theorem 1

	From Feasibility (with a promise) to solving LPs

