
NP and coNP

Theorem

Let L ∈ NP then there exists a polynomial decidable and balanced relation
RL such that for all string x ∈ L: there exists a string y such that RL(x , y)
if and only if x ∈ L.

L ∈ NP iff L ∈ coNP

if L ∈ NP then all x ∈ L have succint certificates.

if L ∈ coNP then all x ∈ L have succint disqualifications.

A ”no”-instance of a problem in coNP possesses a short proof of being a
”no”-instance.
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NP and coNP

Validity ∈ coNP: all Boolean expressions φ that are valid

If φ is not valid formula then there is an assignment such that φ = FALSE.

HAMILTON PATH COMPLEMENT ∈ coNP: all graphs that have no
Hamilton path.

All ”no”-instances of HAMILTON PATH COMPLEMENT have at least
one Hamilton path.

Theorem

Validity and HAMILTON PATH COMPLEMENT are coNP-complete
problems.
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NP and coNP

Theorem

If L is NP-complete problem then L = Σ∗ − L is coNP-complete problem.

Theorem

P ⊆ NP ∩ coNP

Proof.

P ⊆ NP and P is closed are complement. Thus, P ⊆ coNP. As a result,
P ⊆ NP ∩ coNP.

We don’t know whether P = NP ∩ coNP.
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NP ∩ coNP

Let L ∈ NP ∩ coNP: Each ”yes”-instance of L has a succint certificate and
each ”no”-instance of L has a succint disqualification.

Theorem

PRIMES ∈ NP ∩ coNP

MaxFlow

Given a network G and a goal K , whether there is a flow from s to t of
value K

MinCut

Given a network G and a budget B, whether there is a set of edges of
total capacity B or less s.t. deleting these edges disconnects s form t
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NP ∩ coNP

Corollary

MaxFlow ∈ NP ∩ coNP

Proof.

Given a yes-instance the verifier will be the flow of value K

Given a no-instance the disqualifier will be the cut of capacity K − 1

Unfortunately, both PRIMES and MaxFlow proved to be in P
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Function Problems

We have dealt with decision (yes/no)-problems. We are not only interested
in deciding whether a graph has a Hamilton path, but also in finding one.

We call such problems Function Problems.

Definition

FSAT: Given a Boolean expression φ, if φ is satisfiable then return a
satisfying true assignment of φ, else return “no”.

FSAT is as hard as SAT (Why?)
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Function Problems

Let L ∈ NP then there exists a polynomial decidable and balanced relation
RL such that for all string x ∈ L: there exists a string y such that RL(x , y)
if and only if x ∈ L.

Let FL be the function problem associated with L ∈ NP

Definition

FL: Given x, find y such that RL(x , y) if such string exists; else return
“no”.

Definition

The class of functions associated as above with languages in NP is called
FNP
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FP and Reductions

Definition

FP ⊆ FNP is the subclass of problems in FNP that can be solved in
polynomial time.

Definition

A functional problem A reduces to functional problem B if:
There exist string function R,S s.t.:

R,S computable functions in logarithmic space

for any x instance of A: the string z = R(x) is an instance of B

S(z) is the correct output of the input x
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TFNP

Theorem

FSAT is FNP-complete.

Theorem

FP= FNP if and only if P=NP.

Definition

A “Total” FPN problem(TFNP) is a problem whose solution always exists.

TFNP

A problem FL is in TFNP if for every string x there exists at least one
string y such that RL(x , y).
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TFNP

Primality ∈ TFNP

Primality ∈ TFNP: Given a integer N find its prime decomposition
N = pk1

1 · p
k2
2 ...p

kn
n together with the primality certificates p1, p2, ..., pn.

It is certain that every integer N has a prime decomposition, but it is not
believed that there exists polynomial time algorithm.

Theorem

FP ⊆ TFNP ⊆ FNP

FP = TFNP =⇒ P = NP ∩ coNP

TFNP = FNP =⇒ NP = coNP
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TFNP = FP?

We are looking for problems in TFNP - FP

TFNP-complete problems are candidates

It is believed that there are no TFNP-complete problems!!

What we will do?

We can define subclasses of TFNP that have complete problems. The
complete problems for these classes are good candidates.

We will present two of these classes:

PLS

PPAD
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Polynomial Time Local Search (PLS)

Generally

Polynomial Local Search (PLS) is a complexity class that models the
difficulty of finding a locally optimal solution to an optimization problem.

In a combinatorial optimization problem A, every instance I has an
associated finite set S(I) of solutions, every solution s ∈ S(I) has a cost
pI (s) that is to be maximized or minimized ,every solution s has a
neighbourhood NI (s) ⊆ S(I ).

Definition

A problem A is in PLS if solutions are polynomially bounded in the input
size and there are polynomial-time algorithms for the following tasks:

test whether a given string I is an instance of A and if so compute a
(initial) solution in S(I)

given I,s test whether s ∈ S(I) and if so compute its value pI (s)

given I,s test whether s is a local optimum and if not, compute a
better neighbor s ′ ∈ NI (s).
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Polynomial Time Local Search (PLS)

PLS ⊆ TFNP

Argument of existence

Every finite directed acyclic graph has a sink.

PLS-complete problems

Stable configuration for neural networks.

TSP, under the Kernighan-Lin neighborhood

MAX-CUT, under the flip neighborhood.

These problems are complete in the sense that if there exists a polynomial
time algorithm for finding a local optimum for these problems. Then, we
can find in polynomial time a local optimum in any problem in PLS.
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Stable configuration for neural networks

Example

Stable configuration for neural networks

G = (V ,E )

S : V → {−1, 1} (Nodes)

Stable Configuration: ∀i ∈ V : S(i) ·
∑
{i ,j}∈E

S(j) · wij ≥ 0

Define:

Cost: c(x , S) =
∑
{i ,j}∈E

S(i)S(j)wij

Neigborhood: S’ ∈ N(x,S) ⇐⇒ Hamming distance(S,S’)=1
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Stable configuration for neural networks

SCNN ∈ TFNP(why?)

SCNN is PLS-complete

the standard algorithm can need exponential number of steps

we don’t know a polynomial algorithm for this problem

PLS-complete problems

CIRCUIT FLIP

STABLE CONFIGURATION FOR A NEURAL NETWORK

PURE NASH EQUILIBRIUM IN CONGESTION GAMES

Skoulakis Stratis NP,coNP and Funtion Problems EuroCG ’14, Ein-Gedi, Israel 15 / 18



Stable configuration for neural networks

SCNN ∈ TFNP(why?)

SCNN is PLS-complete

the standard algorithm can need exponential number of steps

we don’t know a polynomial algorithm for this problem

PLS-complete problems

CIRCUIT FLIP

STABLE CONFIGURATION FOR A NEURAL NETWORK

PURE NASH EQUILIBRIUM IN CONGESTION GAMES
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Polynomial Parity Arguments on Directed graphs(PPAD)

Let P,N two boolean circuits that take as an input a {0, 1}n string and
output another {0, 1}n. These two circuits define implicitly a directed
graph, where the nodes are the {0, 1}n. There is a directed edge (v1, v2) iff

P(v2) = v1

N(v1) = v2

END OF LINE

Given two circuits P and N as above, if 0n is an unbalanced node in the
graph, find another unbalanced node; otherwise, return “yes ′′

PPAD

Is the class all of search problems that are polynomial-time reducible to
END OF LINE
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Polynomial Parity Arguments on Directed graphs(PPAD)

PPAD ⊆ TFNP

In a directed graph at which ∀v ∈ V :
1 6 indegree(v) + outdegree(v) 6 2. Since y0 has indegree =0 and
outdegree =1. Then, there exists another node y ′ s.t.
indegree(y ′) + outdegree(y ′) = 1

PPAD complete problems

1 Finding the Nash equilibrium on a 2-player game

2 Finding a three-colored point in Sperner’s Lemma

3 Brouwer fixed point theorem
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