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Conventional complexity theory deals with worst-case.
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However, we are only interested in instances that arise in practice.

@ First, we define what are distributional problems and the class of
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Motivation and Structure of the talk

(]

Conventional complexity theory deals with worst-case.

(]

However, we are only interested in instances that arise in practice.

@ First, we define what are distributional problems and the class of
"easy” problems(distP).

What are some realistic distributions?

(]

How can we define reductions on average case?

[

A class of "hard” problems (distNP) and a complete problem for that
class.
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Distributional Problems and distP

Distributional Problem

A distributional problem is a pair < L,D > where L C {0,1}" is a
language, and D = {D,} is a sequence of distributions, with D, being a
distribution over {0,1}"
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Distributional Problems and distP

Distributional Problem

A distributional problem is a pair < L,D > where L C {0,1}" is a
language, and D = {D,} is a sequence of distributions, with D, being a
distribution over {0,1}"

For example: SAT only on inputs with more than 10n clauses u.a.r
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distP definition

@ Defining a class of easy problems on average is tricky.
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distP definition

@ Defining a class of easy problems on average is tricky.

distP first attempt

< L, D > is poly-time solvable on average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p such that for every n,

Ex~p,[timea(x)] < p(n).
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distP definition

@ The definition is not robust.

@ If we change the model of computation to one with quadratic
slow-down, we lose exponentially on time.

@ Suppose that an algorithm A halts in n steps on every input except
for the all-zeros input, on which it runs for 2" steps.
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distP definition

@ The definition is not robust.

@ If we change the model of computation to one with quadratic
slow-down, we lose exponentially on time.

@ Suppose that an algorithm A halts in n steps on every input except
for the all-zeros input, on which it runs for 2" steps.

o E, jo1y[timea(x)] = (1—27")n+27"2" < n+ 1.
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distP definition

The definition is not robust.

If we change the model of computation to one with quadratic
slow-down, we lose exponentially on time.

(]

Suppose that an algorithm A halts in n steps on every input except
for the all-zeros input, on which it runs for 2" steps.

E, o1y [timea(x)] = (1 —27")n+27"2" < n+ 1.
E,oyr[timez(x)] = (1 —27")n + 277227 > 2",

(]
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distP definition

A distributional problem < L, D > is in distP if there is an algorithm A for
L and constants C and € > 0 such that for every n,

timea(x)©
EXNDH[#] <C.
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distP definition observations

@ P C distP. Indeed, if L is decided by A in O(|x|°), then
timeA(x)l/C = O(|x]) and the expectation would be bounded by a
constant.
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distP definition observations

@ P C distP. Indeed, if L is decided by A in O(|x|°), then
timea(x)"/¢ = O(|x|) and the expectation would be bounded by a
constant.

@ High probability to run in pontime. Indeed, by Markov's inequality,
for every K > 1, Prob[t’meA(X > KC] = Prob[timea(x) > (KCn)/¢]
is at most 1/K.
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distP definition observations

@ P C distP. Indeed, if L is decided by A in O(|x|°), then
timea(x)"/¢ = O(|x|) and the expectation would be bounded by a
constant.

@ High probability to run in polytime. Indeed, by Markov's inequality,
for every K > 1, Prob[M > KC] = Prob[timea(x) > (KCn)/¢]
is at most 1/K.

@ Robust in minor changes. Indeed, for every d > 0 our definition is
equivalent with: there exist €, C, such that

timea(x)©
SN
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Realistic distributions
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Realistic distributions

@ The world is indifferent to our algorithm.
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Realistic distributions

@ The world is indifferent to our algorithm.

P-computable distributions

The P-computable distributions have an associated deterministic
polynomial time machine that, given input x € {0,1}", can compute the
cumulative probability pp,(x), where

po, ()= > Prlyl.

y€{0,1}my<x

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 8 /28



Realistic distributions

P-samplable distributions

The P-samplable distributions have an associated probabilistic polynomial
time machine that can produce samples from the distribution. Specifically,
we say that D = {D,} is P-samplable if there is a polynomial p and a
probabilistic p(n)-time algorithm A such that for every n, the random
variables A(1") and D, are identically distributed.
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Realistic distributions
Every P-computable distribution is also P-samplable l
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Realistic distributions
Every P-computable distribution is also P-samplable

@ Generate a truncated p € [0, 1].

@ Look via binary search for the unique x, such that
1o, (x — 1) < p < pp,(x).
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Realistic distributions
Every P-computable distribution is also P-samplable

@ Generate a truncated p € [0, 1].

@ Look via binary search for the unique x, such that
po,(x — 1) < p < pp,(x).
o Output x.
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Realistic distributions
Every P-computable distribution is also P-samplable

@ Generate a truncated p € [0, 1].

@ Look via binary search for the unique x, such that
po,(x — 1) < p < pp,(x).
o Output x.

NOTE:The converse is not true unless P = PP,
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distNP and its complete problems

A distributional problem < L, D > is in distNP if L € NP and D is
P-computable.
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distNP and its complete problems

A distributional problem < L, D > is in distNP if L € NP and D is
P-computable.

Average-case reduction

We say that a distributional problem < L, D > average-case reduces to a
distributional problem < L', D' >, if there is a polynomial-time computable
f and polynomials p,q: N — N satisfying:

1. (Correctness) For every x € {0,1}*, x € L < f(x) € L.

2. (Length Regularity) For every x € {0,1}*, |f(x)| = p(|x|).

3. (Domination) For every n € N and y € {0,1}P(),

Prly = f(D,)] < q(n)Prly = D,/;(n)]-
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distNP and its complete problems

Notes on the definition:

@ (Correctness) For every x € {0,1}*, x € L & f(x) € L.
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Notes on the definition:

@ (Correctness) For every x € {0,1}*, x € L & f(x) € L.
Like any other reduction!
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distNP and its complete problems

Notes on the definition:
@ (Correctness) For every x € {0,1}*, x € L & f(x) € L.
Like any other reduction!
o (Length Regularity) For every x € {0,1}*, |f(x)| = p(|x|)-
Technical. Useful for proving transitivity.
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@ (Correctness) For every x € {0,1}*, x € L & f(x) € L.
Like any other reduction!
o (Length Regularity) For every x € {0,1}*, |f(x)| = p(|x|)-
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distNP and its complete problems

Notes on the definition:
@ (Correctness) For every x € {0,1}*, x € L & f(x) € L.
Like any other reduction!
o (Length Regularity) For every x € {0,1}*, |f(x)| = p(|x|)-
Technical. Useful for proving transitivity.
@ (Domination) For every n € N and y € {0,1}P("),

Prly = f(Dn)] < q(n)Prly = D]

If A" is for < L', D’ >, we want the obvious algorithm A for < L, D >
to work: on x ~ D, we compute f(x) = y and run algorithm A’ on y.
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distNP and its complete problems
distP is closed under the average-case reduction. l
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distNP and its complete problems
distP is closed under the average-case reduction.

Proof:

@ A’ solves polynomially < L', D' >. Therefore, there are constants C,
€ > 0, such that for every m,

timen (x)¢
EXND;[$] <C.
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distNP and its complete problems
distP is closed under the average-case reduction.

Proof:

@ A’ solves polynomially < L', D' >. Therefore, there are constants C,
€ > 0, such that for every m,

timen (x)¢
EXND;[$] <C.

@ We need to prove that < L, D > is in distP.
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distNP and its complete problems

@ Assume that for every x, |f(x)| = |x|.
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distNP and its complete problems

@ Assume that for every x, |f(x)| = |x|.

e Computing f on input length n is faster than A’ on input length n9.
Therefore timea(x) < 2timear(f(x)).
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distNP and its complete problems

@ Assume that for every x, |f(x)| = |x|.

e Computing f on input length n is faster than A’ on input length n9.
Therefore timea(x) < 2timear(f(x)).

@ It suffices to show that

(Ltimea(x))*
q(n)n9

where g(n) is the polynomial in the dominating condition.

Ex~p,[ | <C.
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distNP and its complete problems

(3timea(x)) Ty timea (y)©
Bty [ a1 < e{%}nd Priy = F(ON)= 5
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distNP and its complete problems

(3timea(x)) Ty timea (y)©
Bty [ a1 < e{%}nd Priy = F(ON)= 5

< Z Prly = Dd]tlmeA/(y)

ye{0, 1}
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distNP and its complete problems

EmaJM]S Z Pr[y:f(Dn)]M

q(n)n? g q(n)n?
yE{O,l}n
< Z Prly = D, y]——7— t/meA/(y)
ye{0, 1}
11'I'I7’Ie‘,4/(D;d)E
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distNP and its complete problems

And now a complete problem... albeit artificial
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distNP and its complete problems

And now a complete problem... albeit artificial

Theorem 2

(Existence of a distNP-complete problem) Let U contain all tuples

< M, x,1t > where there exists a string y € {0,1}' such that a
nondeterministic TM M outputs 1 on input x on t steps.

For every n, we let U, be the following distribution on length n tuples
< M, x, 1 >: the string representing M is chosen at random from all
strings of length at most log n, t is chosen at random in the set
{0,...,n — |M|} and x is chosen at random from {0,1}"~t=IMI.

This distribution is polynomial-time computable.

Then < U,U > is distNP-complete.
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distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.
o fi x < M, x,1P(M >,

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.
o fi x < M, x,1P(M >,

@ Correctness?
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distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.
o fi x < M, x,1P(M >,
@ Correctness? YES. The problem is NP-complete!
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distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.

o fi x < M, x,1P(M >,

@ Correctness? YES. The problem is NP-complete!
® Length regularity?
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distNP and its complete problems

@ L decidable by a p(n)-time NDTM M.

o fi x < M, x,1P(M >,

@ Correctness? YES. The problem is NP-complete!
@ Length regularity? YES
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.
fi x —»< M,x,1P(" >

°
°
@ Correctness? YES. The problem is NP-complete!
@ Length regularity? YES

°

Domination?
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.
fi x —»< M,x,1P(" >

Length regularity? YES

Domination? Not necessarily. We have a problem with peaks. What
if D has an input of probability much higher than 27", whereas U's
probability is at most 27",

°
°
@ Correctness? YES. The problem is NP-complete!
0
°
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.
fi x —»< M,x,1P(" >

°
°
@ Correctness? YES. The problem is NP-complete!
@ Length regularity? YES

°

Domination? Not necessarily. We have a problem with peaks. What
if D has an input of probability much higher than 27", whereas U's
probability is at most 27",

We deal with that with our next lemma
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distNP and its complete problems

Lemma (Peak elimination)

Let D = {D,} be a P-computable distribution. Then there is a
polynomial-time computable function g : {0,1}* — {0,1}* such that:
1. g is one-to-one: g(x) = g(z) iffx = z.

2. For every x € {0,1}*, |g(x)| < |x] + 1.
3. For every string y € {0,1}™, Prly = g(Dp,)] < 2-™*1.
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distNP and its complete problems

Proof:

@ For any x of length n, h(x) is the largest common prefix of the binary
numbers pp, (x) and pp,(x — 1).
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distNP and its complete problems

Proof:
@ For any x of length n, h(x) is the largest common prefix of the binary
numbers pp, (x) and pp,(x — 1).
@ We know that Prp [x] = pup,(x) — up,(x — 1) and let's assume that

Prp,[x] > 27k, Then the difference must be in the first k digits,
namely |h(x)| < k.
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distNP and its complete problems

Proof:

@ For any x of length n, h(x) is the largest common prefix of the binary
numbers pp, (x) and pp,(x — 1).

@ We know that Prp [x] = pup,(x) — up,(x — 1) and let's assume that
Prp,[x] > 27k, Then the difference must be in the first k digits,
namely |h(x)| < k.

@ D is P-computable, thus h is computable in polynomial time.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 19 / 28



distNP and its complete problems

Proof:

@ For any x of length n, h(x) is the largest common prefix of the binary
numbers pp, (x) and pp,(x — 1).

@ We know that Prp [x] = pup,(x) — up,(x — 1) and let's assume that
Prp,[x] > 27k, Then the difference must be in the first k digits,
namely |h(x)| < k.

@ D is P-computable, thus h is computable in polynomial time.

@ h is one-to-one because only two strings can have a specific longest
prefix.
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distNP and its complete problems

| Ox , Probp, [x] < 27"
g(x) = { 1h(x) , otherwise

Example:
Probp,[1010] = 0.10000

Probp, [1011] = 0.10101111

= g(1011) = 1h(1011) = 110.
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distNP and its complete problems

| Ox , Probp,[x] < 27"
g(x) = { 1h(x) , otherwise

@ g in one-to-one.
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distNP and its complete problems

| Ox , Probp,[x] < 27"
g(x) = { 1h(x) , otherwise

@ g in one-to-one.
° [g(x)] < [x|+1.
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distNP and its complete problems

| Ox , Probp,[x] < 27"
g(x) = { 1h(x) , otherwise

@ g in one-to-one.
° [g(x)] < [x|+1.
o If y is not g(x), then Prly = g(Dp,)] =0 < 2-m*1,

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



distNP and its complete problems

| Ox , Probp,[x] < 27"
g(x) = { 1h(x) , otherwise

@ g in one-to-one.

o g(x)| < |x|+1.

o If y is not g(x), then Prly = g(Dp,)] =0 < 2-m*1,

o If y = Ox when Prp, [x] <27 then Pr[y = g(D,,)] < 2-WI+1.
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distNP and its complete problems

| Ox , Probp,[x] < 27"
g(x) = { 1h(x) , otherwise

@ g in one-to-one.

o g(x)| < |x|+1.

o If y is not g(x), then Prly = g(Dp,)] =0 < 2-m*1,

o If y = Ox when Prp, [x] <27 then Pr[y = g(D,,)] < 2-WI+1.
*]

Let y = 1h(x). Prp,][x] > 27| and therefore |h(x)| < |x|. So
Prly = g(Dm)] < 27V*1.
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distNP and its complete problems

And now we can prove the following theorem
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distNP and its complete problems

And now we can prove the following theorem

Theorem 3

(Existence of a distNP-complete problem) Let U contain all tuples

< M, x,1t > where there exists a string y € {0,1}' such that a
nondeterministic TM M outputs 1 on input x on t steps.

For every n, we let U, be the following distribution on length n tuples
< M, x, 1 >: the string representing M is chosen at random from all
strings of length at most log n, t is chosen at random in the set
{0,...,n — |M|} and x is chosen at random from {0,1}"~t=IMI.

This distribution is polynomial-time computable.

Then < U,U > is distNP-complete.
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distNP and its complete problems

Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.
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distNP and its complete problems

Theorem Proof:
o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.
@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.
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distNP and its complete problems

Theorem Proof:
o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.
@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.
@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.
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distNP and its complete problems

Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.

@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.

@ Correctness?
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distNP and its complete problems

Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.

@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.

@ Correctness? Yes! g is one-to-one.
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Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
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@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.

@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.
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o Length regularity?
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distNP and its complete problems

Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.

@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.

@ Correctness? Yes! g is one-to-one.

@ Length regularity? Yes!
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distNP and its complete problems

Theorem Proof:

o Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

@ NDTM M': On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M'.

@ Reduction: x —< M’ g(x),1¥ >, where
k= p(n)+logn+n—|M|—|g(x)|.

@ Correctness? Yes! g is one-to-one.

@ Length regularity? Yes!

@ Domination? Yes! A legnth m tuple < M’ y, 1t > is obtained by the
reduction with probability at most 2~¥/T1. This tuple is however
obtained by U,, with probability at least 2~ o8 ’"2_‘3’%.
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sampNP and its complete problems

Question:
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stronger?
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Question: Why not use the polynomially samplable distribution since it is
stronger?

A distributional problem < L,D > is in sampNP if L € NP and D is
P-samplable.

Theorem 4
if < L, D > is distNP-complete, then it is also sampNP-complete.
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sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is
stronger?

A distributional problem < L,D > is in sampNP if L € NP and D is
P-samplable.

Theorem 4
if < L, D > is distNP-complete, then it is also sampNP-complete.

The choice of P-computable distributions was suitable for average-case
completeness results.
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Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
Algorithmica

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
Algorithmica

@ P = NP or something equivalent like NP C BPP

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
Algorithmica

@ P = NP or something equivalent like NP C BPP

@ Computational utopia.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
Algorithmica

@ P = NP or something equivalent like NP C BPP

@ Computational utopia.

@ Quite an array of tasks could be automated.
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Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
Algorithmica

@ P = NP or something equivalent like NP C BPP

@ Computational utopia.

@ Quite an array of tasks could be automated.

@ All the current cryptographic applications will break down.
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Philosophical and Practical Implications

Heuristica
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Heuristica
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@ We have P # NP and yet distNP C distP.
@ We have efficient algorithms that "almost” solves every NP problem.

@ The kinds of inputs that fail are very rare to find in practice.
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@ The kinds of inputs that fail are very rare to find in practice.

@ Very similar to Algorithmica. Many NP optimization problems solved
in practice.
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Philosophical and Practical Implications

Heuristica
@ We have P # NP and yet distNP C distP.
@ We have efficient algorithms that "almost” solves every NP problem.
@ The kinds of inputs that fail are very rare to find in practice.

@ Very similar to Algorithmica. Many NP optimization problems solved
in practice.

@ Many cryptographic applications break down.
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Philosophical and Practical Implications

Pessiland
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@ distNP is not in distP and there do not exist any one-way functions.
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@ distNP is not in distP and there do not exist any one-way functions.
@ Worst possible world!
@ No wonderous results and no cryptography.
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@ distNP is not in distP and there do not exist any one-way functions.
@ Worst possible world!
@ No wonderous results and no cryptography.
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@ One-way functions exist (and therefore distNP not in distP) but all

the highly structured problems in NP such as integer factorization are
solvable in polynomial time.
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@ Worst possible world!
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@ One-way functions exist (and therefore distNP not in distP) but all

the highly structured problems in NP such as integer factorization are
solvable in polynomial time.

@ Although one-way functions exist, there are no public key encryption
schemes or key exchange protocols.
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Philosophical and Practical Implications

Pessiland
@ distNP is not in distP and there do not exist any one-way functions.
@ Worst possible world!
@ No wonderous results and no cryptography.
Minicrypt
@ One-way functions exist (and therefore distNP not in distP) but all

the highly structured problems in NP such as integer factorization are
solvable in polynomial time.

@ Although one-way functions exist, there are no public key encryption
schemes or key exchange protocols.

@ Those cryptographic applications achievalbe only by one-way
functions such as private key encryption and pseudorandom
generators still work.
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Philosophical and Practical Implications

Cryptomania

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014



Philosophical and Practical Implications

Cryptomania

@ The problem on factoring large integers is exponentially hard on
average.
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@ Most believe that this is the world we live in!
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Philosophical and Practical Implications

Cryptomania

@ The problem on factoring large integers is exponentially hard on
average.

@ Most believe that this is the world we live in!

@ We don’t have general-purpose algorithms and we have to resort to
heuristics, approximation, creativity and hard work.

@ We have a host of exciting cryptographic applications.
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