
Average-case Computational Complexity
Algorithms and Complexity

Andreas Mantis

MPLA

July 10, 2014

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 1 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 2 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

However, we are only interested in instances that arise in practice.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 2 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

However, we are only interested in instances that arise in practice.

First, we define what are distributional problems and the class of
”easy” problems(distP).

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 2 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

However, we are only interested in instances that arise in practice.

First, we define what are distributional problems and the class of
”easy” problems(distP).

What are some realistic distributions?

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 2 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

However, we are only interested in instances that arise in practice.

First, we define what are distributional problems and the class of
”easy” problems(distP).

What are some realistic distributions?

How can we define reductions on average case?

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 2 / 28



Motivation and Structure of the talk

Conventional complexity theory deals with worst-case.

However, we are only interested in instances that arise in practice.

First, we define what are distributional problems and the class of
”easy” problems(distP).

What are some realistic distributions?

How can we define reductions on average case?

A class of ”hard” problems (distNP) and a complete problem for that
class.
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Distributional Problems and distP

Distributional Problem

A distributional problem is a pair < L,D > where L ⊆ {0, 1}∗ is a
language, and D = {Dn} is a sequence of distributions, with Dn being a
distribution over {0, 1}n
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Distributional Problems and distP

Distributional Problem

A distributional problem is a pair < L,D > where L ⊆ {0, 1}∗ is a
language, and D = {Dn} is a sequence of distributions, with Dn being a
distribution over {0, 1}n

For example: SAT only on inputs with more than 10n clauses u.a.r
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distP definition

Defining a class of easy problems on average is tricky.
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distP definition

Defining a class of easy problems on average is tricky.

distP first attempt

< L,D > is poly-time solvable on average if there is an algorithm A such
that A(x) = L(x) for every x and a polynomial p such that for every n,

Ex∼Dn
[timeA(x)] ≤ p(n).
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for the all-zeros input, on which it runs for 2n steps.
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distP definition

The definition is not robust.

If we change the model of computation to one with quadratic
slow-down, we lose exponentially on time.

Suppose that an algorithm A halts in n steps on every input except
for the all-zeros input, on which it runs for 2n steps.

Ex∼{0,1}n [timeA(x)] = (1− 2−n)n + 2−n2n ≤ n + 1.
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distP definition

The definition is not robust.

If we change the model of computation to one with quadratic
slow-down, we lose exponentially on time.

Suppose that an algorithm A halts in n steps on every input except
for the all-zeros input, on which it runs for 2n steps.

Ex∼{0,1}n [timeA(x)] = (1− 2−n)n + 2−n2n ≤ n + 1.

Ex∼{0,1}n [time2A(x)] = (1− 2−n)n2 + 2−n22n ≥ 2n.
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distP definition

distP

A distributional problem < L,D > is in distP if there is an algorithm A for
L and constants C and ǫ > 0 such that for every n,

Ex∼Dn
[
timeA(x)

ǫ

n
] ≤ C .
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distP definition observations

P ⊆ distP . Indeed, if L is decided by A in O(|x |c), then

timeA(x)
1/c = O(|x |) and the expectation would be bounded by a

constant.
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distP definition observations

P ⊆ distP . Indeed, if L is decided by A in O(|x |c), then

timeA(x)
1/c = O(|x |) and the expectation would be bounded by a

constant.

High probability to run in polytime. Indeed, by Markov’s inequality,

for every K > 1, Prob[ timeA(x)
ǫ

n
≥ KC ] = Prob[timeA(x) ≥ (KCn)1/ǫ]

is at most 1/K .
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distP definition observations

P ⊆ distP . Indeed, if L is decided by A in O(|x |c), then

timeA(x)
1/c = O(|x |) and the expectation would be bounded by a

constant.

High probability to run in polytime. Indeed, by Markov’s inequality,

for every K > 1, Prob[ timeA(x)
ǫ

n
≥ KC ] = Prob[timeA(x) ≥ (KCn)1/ǫ]

is at most 1/K .

Robust in minor changes. Indeed, for every d > 0 our definition is
equivalent with: there exist ǫ,C , such that

Ex∼Dn
[
timeA(x)

ǫ

nd
] ≤ C .
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Realistic distributions
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Realistic distributions

The world is indifferent to our algorithm.
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Realistic distributions

The world is indifferent to our algorithm.

P-computable distributions

The P-computable distributions have an associated deterministic
polynomial time machine that, given input x ∈ {0, 1}n, can compute the
cumulative probability µDn

(x), where

µDn
(x) =

∑

y∈{0,1}n:y≤x

Pr [y ].
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Realistic distributions

P-samplable distributions

The P-samplable distributions have an associated probabilistic polynomial
time machine that can produce samples from the distribution. Specifically,
we say that D = {Dn} is P-samplable if there is a polynomial p and a
probabilistic p(n)-time algorithm A such that for every n, the random
variables A(1n) and Dn are identically distributed.
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Realistic distributions

Theorem 2

Every P-computable distribution is also P-samplable

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 10 / 28



Realistic distributions

Theorem 2

Every P-computable distribution is also P-samplable

Proof.

Generate a truncated ρ ∈ [0, 1].
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Realistic distributions

Theorem 2

Every P-computable distribution is also P-samplable

Proof.

Generate a truncated ρ ∈ [0, 1].

Look via binary search for the unique x, such that
µDn

(x − 1) < ρ ≤ µDn
(x).
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Every P-computable distribution is also P-samplable

Proof.
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Realistic distributions

Theorem 2

Every P-computable distribution is also P-samplable

Proof.

Generate a truncated ρ ∈ [0, 1].

Look via binary search for the unique x, such that
µDn

(x − 1) < ρ ≤ µDn
(x).

Output x.

NOTE:The converse is not true unless P = P♯P .
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distNP and its complete problems

distNP

A distributional problem < L,D > is in distNP if L ∈ NP and D is
P-computable.

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 11 / 28



distNP and its complete problems

distNP

A distributional problem < L,D > is in distNP if L ∈ NP and D is
P-computable.

Average-case reduction

We say that a distributional problem < L,D > average-case reduces to a
distributional problem < L′,D ′ >, if there is a polynomial-time computable
f and polynomials p,q: N → N satisfying:
1. (Correctness) For every x ∈ {0, 1}∗, x ∈ L ⇔ f (x) ∈ L′.
2. (Length Regularity) For every x ∈ {0, 1}∗, |f (x)| = p(|x |).
3. (Domination) For every n ∈ N and y ∈ {0, 1}p(n) ,

Pr [y = f (Dn)] ≤ q(n)Pr [y = D ′
p(n)].
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distNP and its complete problems

Notes on the definition:

(Correctness) For every x ∈ {0, 1}∗, x ∈ L ⇔ f (x) ∈ L′.
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Technical. Useful for proving transitivity.
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distNP and its complete problems

Notes on the definition:

(Correctness) For every x ∈ {0, 1}∗, x ∈ L ⇔ f (x) ∈ L′.
Like any other reduction!

(Length Regularity) For every x ∈ {0, 1}∗, |f (x)| = p(|x |).
Technical. Useful for proving transitivity.

(Domination) For every n ∈ N and y ∈ {0, 1}p(n) ,

Pr [y = f (Dn)] ≤ q(n)Pr [y = D ′
p(n)].

If A’ is for < L′,D ′ >, we want the obvious algorithm A for < L,D >
to work: on x ∼ D, we compute f (x) = y and run algorithm A’ on y.
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distNP and its complete problems

Theorem 1

distP is closed under the average-case reduction.
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distNP and its complete problems

Theorem 1

distP is closed under the average-case reduction.

Proof:

A’ solves polynomially < L′,D ′ >. Therefore, there are constants C ,
ǫ > 0, such that for every m,

Ex∼D′

m
[
timeA′(x)ǫ

m
] ≤ C .
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distNP and its complete problems

Theorem 1

distP is closed under the average-case reduction.

Proof:

A’ solves polynomially < L′,D ′ >. Therefore, there are constants C ,
ǫ > 0, such that for every m,

Ex∼D′

m
[
timeA′(x)ǫ

m
] ≤ C .

We need to prove that < L,D > is in distP.
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distNP and its complete problems

Assume that for every x , |f (x)| = |x |d .
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distNP and its complete problems

Assume that for every x , |f (x)| = |x |d .

Computing f on input length n is faster than A’ on input length nd .
Therefore timeA(x) ≤ 2timeA′(f (x)).
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distNP and its complete problems

Assume that for every x , |f (x)| = |x |d .

Computing f on input length n is faster than A’ on input length nd .
Therefore timeA(x) ≤ 2timeA′(f (x)).

It suffices to show that

Ex∼Dn
[
(12 timeA(x))

ǫ

q(n)nd
] ≤ C .

where q(n) is the polynomial in the dominating condition.
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distNP and its complete problems

Ex∼Dn
[
(12timeA(x))

ǫ

q(n)nd
] ≤

∑

y∈{0,1}n
d

Pr [y = f (Dn)]
timeA′(y)ǫ

q(n)nd
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distNP and its complete problems

Ex∼Dn
[
(12timeA(x))

ǫ

q(n)nd
] ≤

∑

y∈{0,1}n
d

Pr [y = f (Dn)]
timeA′(y)ǫ

q(n)nd

≤
∑

y∈{0,1}n
d

Pr [y = D ′
nd
]
timeA′(y)ǫ

nd

= E[
timeA′(D ′

nd
)ǫ

nd
] ≤ C .

Andreas Mantis (MPLA) Average-case Computational Complexity July 10, 2014 15 / 28



distNP and its complete problems

And now a complete problem... albeit artificial
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distNP and its complete problems

And now a complete problem... albeit artificial

Theorem 2

(Existence of a distNP-complete problem) Let U contain all tuples
< M, x , 1t > where there exists a string y ∈ {0, 1}l such that a
nondeterministic TM M outputs 1 on input x on t steps.
For every n, we let Un be the following distribution on length n tuples
< M, x , 1t >: the string representing M is chosen at random from all
strings of length at most log n, t is chosen at random in the set
{0, ..., n − |M|} and x is chosen at random from {0, 1}n−t−|M|.
This distribution is polynomial-time computable.
Then < U,U > is distNP-complete.
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.
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L decidable by a p(n)-time NDTM M.

f: x 7→< M, x , 1p(n) >.
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L decidable by a p(n)-time NDTM M.

f: x 7→< M, x , 1p(n) >.

Correctness? YES. The problem is NP-complete!

Length regularity?
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.

f: x 7→< M, x , 1p(n) >.

Correctness? YES. The problem is NP-complete!

Length regularity? YES

Domination? Not necessarily. We have a problem with peaks. What
if D has an input of probability much higher than 2−n, whereas U ’s
probability is at most 2−n.
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distNP and its complete problems

L decidable by a p(n)-time NDTM M.

f: x 7→< M, x , 1p(n) >.

Correctness? YES. The problem is NP-complete!

Length regularity? YES

Domination? Not necessarily. We have a problem with peaks. What
if D has an input of probability much higher than 2−n, whereas U ’s
probability is at most 2−n.

We deal with that with our next lemma
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distNP and its complete problems

Lemma (Peak elimination)

Let D = {Dn} be a P-computable distribution. Then there is a
polynomial-time computable function g : {0, 1}∗ → {0, 1}∗ such that:
1. g is one-to-one: g(x) = g(z) iff x = z .
2. For every x ∈ {0, 1}∗, |g(x)| ≤ |x |+ 1.
3. For every string y ∈ {0, 1}m, Pr [y = g(Dm)] ≤ 2−m+1.
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distNP and its complete problems

Proof:

For any x of length n, h(x) is the largest common prefix of the binary
numbers µDn

(x) and µDn
(x − 1).
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distNP and its complete problems

Proof:

For any x of length n, h(x) is the largest common prefix of the binary
numbers µDn

(x) and µDn
(x − 1).

We know that PrDn
[x ] = µDn

(x)− µDn
(x − 1) and let’s assume that

PrDn
[x ] ≥ 2−k . Then the difference must be in the first k digits,

namely |h(x)| ≤ k .
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distNP and its complete problems

Proof:

For any x of length n, h(x) is the largest common prefix of the binary
numbers µDn

(x) and µDn
(x − 1).

We know that PrDn
[x ] = µDn

(x)− µDn
(x − 1) and let’s assume that

PrDn
[x ] ≥ 2−k . Then the difference must be in the first k digits,

namely |h(x)| ≤ k .

D is P-computable, thus h is computable in polynomial time.

h is one-to-one because only two strings can have a specific longest
prefix.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

Example:

ProbDn
[1010] = 0.10000

ProbDn
[1011] = 0.10101111

⇒ g(1011) = 1h(1011) = 110.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

g in one-to-one.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

g in one-to-one.

|g(x)| ≤ |x |+ 1.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

g in one-to-one.

|g(x)| ≤ |x |+ 1.

If y is not g(x), then Pr [y = g(Dm)] = 0 ≤ 2−m+1.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

g in one-to-one.

|g(x)| ≤ |x |+ 1.

If y is not g(x), then Pr [y = g(Dm)] = 0 ≤ 2−m+1.

If y = 0x when PrDn
[x ] ≤ 2−|x |, then Pr [y = g(Dm)] ≤ 2−|y |+1.
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distNP and its complete problems

g(x) =

{

0x , ProbDn
[x ] ≤ 2−n

1h(x) , otherwise

g in one-to-one.

|g(x)| ≤ |x |+ 1.

If y is not g(x), then Pr [y = g(Dm)] = 0 ≤ 2−m+1.

If y = 0x when PrDn
[x ] ≤ 2−|x |, then Pr [y = g(Dm)] ≤ 2−|y |+1.

Let y = 1h(x). PrDn
][x ] > 2−|x | and therefore |h(x)| ≤ |x |. So

Pr [y = g(Dm)] ≤ 2−|y |+1.
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distNP and its complete problems

And now we can prove the following theorem
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distNP and its complete problems

And now we can prove the following theorem

Theorem 3

(Existence of a distNP-complete problem) Let U contain all tuples
< M, x , 1t > where there exists a string y ∈ {0, 1}l such that a
nondeterministic TM M outputs 1 on input x on t steps.
For every n, we let Un be the following distribution on length n tuples
< M, x , 1t >: the string representing M is chosen at random from all
strings of length at most log n, t is chosen at random in the set
{0, ..., n − |M|} and x is chosen at random from {0, 1}n−t−|M|.
This distribution is polynomial-time computable.
Then < U,U > is distNP-complete.
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distNP and its complete problems

Theorem Proof:

Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.
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distNP and its complete problems

Theorem Proof:

Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

NDTM M’: On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M’.
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distNP and its complete problems

Theorem Proof:

Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

NDTM M’: On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M’.

Reduction: x 7→< M ′, g(x), 1k >, where
k = p(n) + log n + n− |M ′| − |g(x)|.
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distNP and its complete problems

Theorem Proof:

Let < L,D > be in distNP and let M be a nondeterministic TM M
accepting L.

NDTM M’: On input y, guess x such that g(x) = y and execute
M(x). Let p the polynomial running time of M’.

Reduction: x 7→< M ′, g(x), 1k >, where
k = p(n) + log n + n− |M ′| − |g(x)|.

Correctness? Yes! g is one-to-one.

Length regularity? Yes!

Domination? Yes! A legnth m tuple < M ′, y , 1t > is obtained by the
reduction with probability at most 2−|y |+1. This tuple is however
obtained by Um with probability at least 2− logm2−|y | 1

m
.
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Question:
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sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is
stronger?

sampNP

A distributional problem < L,D > is in sampNP if L ∈ NP and D is
P-samplable.

Theorem 4

if < L,D > is distNP-complete, then it is also sampNP-complete.

The choice of P-computable distributions was suitable for average-case
completeness results.
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Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of
Complexity:
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Philosophical and Practical Implications

Heuristica
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Pessiland

distNP is not in distP and there do not exist any one-way functions.

Worst possible world!

No wonderous results and no cryptography.

Minicrypt

One-way functions exist (and therefore distNP not in distP) but all
the highly structured problems in NP such as integer factorization are
solvable in polynomial time.

Although one-way functions exist, there are no public key encryption
schemes or key exchange protocols.

Those cryptographic applications achievalbe only by one-way
functions such as private key encryption and pseudorandom
generators still work.
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Cryptomania

The problem on factoring large integers is exponentially hard on
average.

Most believe that this is the world we live in!

We don’t have general-purpose algorithms and we have to resort to
heuristics, approximation, creativity and hard work.

We have a host of exciting cryptographic applications.
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