# Average-case Computational Complexity 

Algorithms and Complexity

Andreas Mantis

MPLA
July 10, 2014

## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.


## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.
- However, we are only interested in instances that arise in practice.


## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.
- However, we are only interested in instances that arise in practice.
- First, we define what are distributional problems and the class of "easy" problems(distP).


## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.
- However, we are only interested in instances that arise in practice.
- First, we define what are distributional problems and the class of "easy" problems(distP).
- What are some realistic distributions?


## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.
- However, we are only interested in instances that arise in practice.
- First, we define what are distributional problems and the class of "easy" problems(distP).
- What are some realistic distributions?
- How can we define reductions on average case?


## Motivation and Structure of the talk

- Conventional complexity theory deals with worst-case.
- However, we are only interested in instances that arise in practice.
- First, we define what are distributional problems and the class of "easy" problems(distP).
- What are some realistic distributions?
- How can we define reductions on average case?
- A class of "hard" problems (distNP) and a complete problem for that class.


## Distributional Problems and distP

## Distributional Problem

A distributional problem is a pair $<L, D>$ where $L \subseteq\{0,1\}^{*}$ is a language, and $D=\left\{D_{n}\right\}$ is a sequence of distributions, with $D_{n}$ being a distribution over $\{0,1\}^{n}$

## Distributional Problems and distP

## Distributional Problem

A distributional problem is a pair $<L, D>$ where $L \subseteq\{0,1\}^{*}$ is a language, and $D=\left\{D_{n}\right\}$ is a sequence of distributions, with $D_{n}$ being a distribution over $\{0,1\}^{n}$

For example: SAT only on inputs with more than 10 n clauses u.a.r

## distP definition

- Defining a class of easy problems on average is tricky.


## distP definition

- Defining a class of easy problems on average is tricky.


## distP first attempt

$<L, D>$ is poly-time solvable on average if there is an algorithm $A$ such that $A(x)=L(x)$ for every $x$ and a polynomial $p$ such that for every $n$,

$$
\mathbb{E}_{x \sim D_{n}}\left[\operatorname{time}_{A}(x)\right] \leq p(n) .
$$

## distP definition

- The definition is not robust.


## distP definition

- The definition is not robust.
- If we change the model of computation to one with quadratic slow-down, we lose exponentially on time.


## distP definition

- The definition is not robust.
- If we change the model of computation to one with quadratic slow-down, we lose exponentially on time.
- Suppose that an algorithm A halts in $n$ steps on every input except for the all-zeros input, on which it runs for $2^{n}$ steps.


## distP definition

- The definition is not robust.
- If we change the model of computation to one with quadratic slow-down, we lose exponentially on time.
- Suppose that an algorithm A halts in $n$ steps on every input except for the all-zeros input, on which it runs for $2^{n}$ steps.
- $\mathbb{E}_{x \sim\{0,1\}^{n}}\left[\operatorname{time}_{A}(x)\right]=\left(1-2^{-n}\right) n+2^{-n} 2^{n} \leq n+1$.


## distP definition

- The definition is not robust.
- If we change the model of computation to one with quadratic slow-down, we lose exponentially on time.
- Suppose that an algorithm A halts in $n$ steps on every input except for the all-zeros input, on which it runs for $2^{n}$ steps.
- $\mathbb{E}_{x \sim\{0,1\}^{n}}\left[\operatorname{time}_{A}(x)\right]=\left(1-2^{-n}\right) n+2^{-n} 2^{n} \leq n+1$.
- $\mathbb{E}_{x \sim\{0,1\}^{n}}\left[\operatorname{time}_{A}^{2}(x)\right]=\left(1-2^{-n}\right) n^{2}+2^{-n} 2^{2 n} \geq 2^{n}$.


## distP definition

## distP

A distributional problem $<L, D>$ is in distP if there is an algorithm $A$ for $L$ and constants $C$ and $\epsilon>0$ such that for every $n$,

$$
\mathbb{E}_{x \sim D_{n}}\left[\frac{\operatorname{time}_{A}(x)^{\epsilon}}{n}\right] \leq C
$$

## distP definition observations

- $P \subseteq$ dist $P$. Indeed, if L is decided by A in $O\left(|x|^{c}\right)$, then $\operatorname{time}_{A}(x)^{1 / c}=O(|x|)$ and the expectation would be bounded by a constant.


## distP definition observations

- $P \subseteq \operatorname{dist} P$. Indeed, if L is decided by A in $O\left(|x|^{c}\right)$, then $\operatorname{time}_{A}(x)^{1 / c}=O(|x|)$ and the expectation would be bounded by a constant.
- High probability to run in polytime. Indeed, by Markov's inequality, for every $K>1, \operatorname{Prob}\left[\frac{\operatorname{time}_{A}(x)^{\epsilon}}{n} \geq K C\right]=\operatorname{Prob}\left[\operatorname{time}_{A}(x) \geq(K C n)^{1 / \epsilon}\right]$ is at most $1 / K$.


## distP definition observations

- $P \subseteq \operatorname{dist} P$. Indeed, if L is decided by A in $O\left(|x|^{c}\right)$, then $\operatorname{time}_{A}(x)^{1 / c}=O(|x|)$ and the expectation would be bounded by a constant.
- High probability to run in polytime. Indeed, by Markov's inequality, for every $K>1, \operatorname{Prob}\left[\frac{\operatorname{time}_{A}(x)^{\epsilon}}{n} \geq K C\right]=\operatorname{Prob}\left[\operatorname{time}_{A}(x) \geq(K C n)^{1 / \epsilon}\right]$ is at most $1 / K$.
- Robust in minor changes. Indeed, for every $d>0$ our definition is equivalent with: there exist $\epsilon, C$, such that

$$
\mathbb{E}_{x \sim D_{n}}\left[\frac{\operatorname{time}_{A}(x)^{\epsilon}}{n^{d}}\right] \leq C .
$$

## Realistic distributions

## Realistic distributions

- The world is indifferent to our algorithm.


## Realistic distributions

- The world is indifferent to our algorithm.


## P-computable distributions

The $P$-computable distributions have an associated deterministic polynomial time machine that, given input $x \in\{0,1\}^{n}$, can compute the cumulative probability $\mu_{D_{n}}(x)$, where

$$
\mu_{D_{n}}(x)=\sum_{y \in\{0,1\}^{n}: y \leq x} \operatorname{Pr}[y] .
$$

## Realistic distributions

## P-samplable distributions

The $P$-samplable distributions have an associated probabilistic polynomial time machine that can produce samples from the distribution. Specifically, we say that $D=\left\{D_{n}\right\}$ is $P$-samplable if there is a polynomial $p$ and a probabilistic $p(n)$-time algorithm $A$ such that for every $n$, the random variables $A\left(1^{n}\right)$ and $D_{n}$ are identically distributed.

## Realistic distributions

## Theorem 2 <br> Every $P$-computable distribution is also $P$-samplable

## Realistic distributions

## Theorem 2

Every $P$-computable distribution is also $P$-samplable

## Proof.

- Generate a truncated $\rho \in[0,1]$.


## Realistic distributions

## Theorem 2

Every $P$-computable distribution is also $P$-samplable

## Proof.

- Generate a truncated $\rho \in[0,1]$.
- Look via binary search for the unique x , such that

$$
\mu_{D_{n}}(x-1)<\rho \leq \mu_{D_{n}}(x) .
$$

## Realistic distributions

## Theorem 2

Every $P$-computable distribution is also $P$-samplable

## Proof.

- Generate a truncated $\rho \in[0,1]$.
- Look via binary search for the unique x , such that $\mu_{D_{n}}(x-1)<\rho \leq \mu_{D_{n}}(x)$.
- Output $x$.


## Realistic distributions

## Theorem 2

Every $P$-computable distribution is also $P$-samplable

## Proof.

- Generate a truncated $\rho \in[0,1]$.
- Look via binary search for the unique $\times$, such that $\mu_{D_{n}}(x-1)<\rho \leq \mu_{D_{n}}(x)$.
- Output $x$.

NOTE: The converse is not true unless $P=P^{\sharp P}$.

## distNP and its complete problems

## distNP

A distributional problem $<L, D>$ is in distNP if $L \in N P$ and $D$ is $P$-computable.

## distNP and its complete problems

## distNP

A distributional problem $<L, D>$ is in $\operatorname{distNP}$ if $L \in N P$ and $D$ is $P$-computable.

## Average-case reduction

We say that a distributional problem $<L, D>$ average-case reduces to a distributional problem $<L^{\prime}, D^{\prime}>$, if there is a polynomial-time computable $f$ and polynomials $p, q: \mathbb{N} \rightarrow \mathbb{N}$ satisfying:

1. (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$.
2. (Length Regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$.
3. (Domination) For every $n \in \mathbb{N}$ and $y \in\{0,1\}^{p(n)}$,

$$
\operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \leq q(n) \operatorname{Pr}\left[y=D_{p(n)}^{\prime}\right]
$$

## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$.


## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$. Like any other reduction!


## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$. Like any other reduction!
- (Length Regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$.


## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$. Like any other reduction!
- (Length Regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$. Technical. Useful for proving transitivity.


## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$. Like any other reduction!
- (Length Regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$. Technical. Useful for proving transitivity.
- (Domination) For every $n \in \mathbb{N}$ and $y \in\{0,1\}^{p(n)}$,

$$
\operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \leq q(n) \operatorname{Pr}\left[y=D_{p(n)}^{\prime}\right]
$$

## distNP and its complete problems

Notes on the definition:

- (Correctness) For every $x \in\{0,1\}^{*}, x \in L \Leftrightarrow f(x) \in L^{\prime}$. Like any other reduction!
- (Length Regularity) For every $x \in\{0,1\}^{*},|f(x)|=p(|x|)$. Technical. Useful for proving transitivity.
- (Domination) For every $n \in \mathbb{N}$ and $y \in\{0,1\}^{p(n)}$,

$$
\operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \leq q(n) \operatorname{Pr}\left[y=D_{p(n)}^{\prime}\right]
$$

If $\mathrm{A}^{\prime}$ is for $\left\langle L^{\prime}, D^{\prime}\right\rangle$, we want the obvious algorithm A for $\langle L, D\rangle$ to work: on $x \sim D$, we compute $f(x)=y$ and run algorithm $\mathrm{A}^{\prime}$ on y .

## distNP and its complete problems

## Theorem 1

dist $P$ is closed under the average-case reduction.

## distNP and its complete problems

## Theorem 1

dist $P$ is closed under the average-case reduction.

## Proof:

- A' solves polynomially $\left.<L^{\prime}, D^{\prime}\right\rangle$. Therefore, there are constants $C$, $\epsilon>0$, such that for every $m$,

$$
\mathbb{E}_{x \sim D_{m}^{\prime}}\left[\frac{\text { time }_{A^{\prime}}(x)^{\epsilon}}{m}\right] \leq C
$$

## distNP and its complete problems

## Theorem 1

dist $P$ is closed under the average-case reduction.

## Proof:

- A' solves polynomially $\left.<L^{\prime}, D^{\prime}\right\rangle$. Therefore, there are constants $C$, $\epsilon>0$, such that for every $m$,

$$
\mathbb{E}_{x \sim D_{m}^{\prime}}\left[\frac{\operatorname{time}_{A^{\prime}}(x)^{\epsilon}}{m}\right] \leq C
$$

- We need to prove that $<L, D>$ is in distP.


## distNP and its complete problems

- Assume that for every $x,|f(x)|=|x|^{d}$.


## distNP and its complete problems

- Assume that for every $x,|f(x)|=|x|^{d}$.
- Computing $f$ on input length $n$ is faster than $A^{\prime}$ on input length $n^{d}$. Therefore $\operatorname{time}_{A}(x) \leq 2$ time $_{A^{\prime}}(f(x))$.


## distNP and its complete problems

- Assume that for every $x,|f(x)|=|x|^{d}$.
- Computing $f$ on input length $n$ is faster than $A^{\prime}$ on input length $n^{d}$. Therefore $\operatorname{time}_{A}(x) \leq 2$ time $_{A^{\prime}}(f(x))$.
- It suffices to show that

$$
\mathbb{E}_{x \sim D_{n}}\left[\frac{\left(\frac{1}{2} \operatorname{time}_{A}(x)\right)^{\epsilon}}{q(n) n^{d}}\right] \leq C
$$

where $q(n)$ is the polynomial in the dominating condition.

## distNP and its complete problems

$$
\mathbb{E}_{x \sim D_{n}}\left[\frac{\left(\frac{1}{2} \operatorname{time}_{A}(x)\right)^{\epsilon}}{q(n) n^{d}}\right] \leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{\epsilon}}{q(n) n^{d}}
$$

## distNP and its complete problems

$$
\begin{gathered}
\mathbb{E}_{x \sim D_{n}}\left[\frac{\left(\frac{1}{2} \operatorname{time}_{A}(x)\right)^{\epsilon}}{q(n) n^{d}}\right] \leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{\epsilon}}{q(n) n^{d}} \\
\leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=D_{n^{d}}^{\prime}\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{\epsilon}}{n^{d}}
\end{gathered}
$$

## distNP and its complete problems

$$
\begin{gathered}
\mathbb{E}_{x \sim D_{n}}\left[\frac{\left(\frac{1}{2} \operatorname{time}_{A}(x)\right)^{\epsilon}}{q(n) n^{d}}\right] \leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=f\left(D_{n}\right)\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{\epsilon}}{q(n) n^{d}} \\
\leq \sum_{y \in\{0,1\}^{n^{d}}} \operatorname{Pr}\left[y=D_{n^{d}}^{\prime}\right] \frac{\operatorname{time}_{A^{\prime}}(y)^{\epsilon}}{n^{d}} \\
=\mathbb{E}\left[\frac{\operatorname{time}_{A^{\prime}}\left(D_{n^{d}}^{\prime}\right)^{\epsilon}}{n^{d}}\right] \leq C .
\end{gathered}
$$

## distNP and its complete problems

## And now a complete problem... albeit artificial

## distNP and its complete problems

And now a complete problem... albeit artificial

## Theorem 2

(Existence of a distNP-complete problem) Let $U$ contain all tuples $<M, x, 1^{t}>$ where there exists a string $y \in\{0,1\}^{\prime}$ such that a nondeterministic TM M outputs 1 on input $x$ on $t$ steps.
For every $n$, we let $\mathcal{U}_{n}$ be the following distribution on length $n$ tuples $<M, x, 1^{t}>$ : the string representing $M$ is chosen at random from all strings of length at most $\log n, t$ is chosen at random in the set $\{0, \ldots, n-|M|\}$ and $x$ is chosen at random from $\{0,1\}^{n-t-|M|}$. This distribution is polynomial-time computable. Then $\langle U, \mathcal{U}\rangle$ is distNP-complete.

## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness?


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!
- Length regularity?


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!
- Length regularity? YES


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!
- Length regularity? YES
- Domination?


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!
- Length regularity? YES
- Domination? Not necessarily. We have a problem with peaks. What if $D$ has an input of probability much higher than $2^{-n}$, whereas $\mathcal{U}$ 's probability is at most $2^{-n}$.


## distNP and its complete problems

- L decidable by a $p(n)$-time NDTM M.
- f: $x \mapsto<M, x, 1^{p(n)}>$.
- Correctness? YES. The problem is NP-complete!
- Length regularity? YES
- Domination? Not necessarily. We have a problem with peaks. What if $D$ has an input of probability much higher than $2^{-n}$, whereas $\mathcal{U}$ 's probability is at most $2^{-n}$.
- We deal with that with our next lemma


## distNP and its complete problems

## Lemma (Peak elimination)

Let $D=\left\{D_{n}\right\}$ be a $P$-computable distribution. Then there is a polynomial-time computable function $g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ such that:

1. $g$ is one-to-one: $g(x)=g(z)$ iff $x=z$.
2. For every $x \in\{0,1\}^{*},|g(x)| \leq|x|+1$.
3. For every string $y \in\{0,1\}^{m}, \operatorname{Pr}\left[y=g\left(D_{m}\right)\right] \leq 2^{-m+1}$.

## distNP and its complete problems

## Proof:

- For any x of length $\mathrm{n}, h(x)$ is the largest common prefix of the binary numbers $\mu_{D_{n}}(x)$ and $\mu_{D_{n}}(x-1)$.


## distNP and its complete problems

## Proof:

- For any x of length $\mathrm{n}, h(x)$ is the largest common prefix of the binary numbers $\mu_{D_{n}}(x)$ and $\mu_{D_{n}}(x-1)$.
- We know that $\operatorname{Pr}_{D_{n}}[x]=\mu_{D_{n}}(x)-\mu_{D_{n}}(x-1)$ and let's assume that $\operatorname{Pr}_{D_{n}}[x] \geq 2^{-k}$. Then the difference must be in the first $k$ digits, namely $|h(x)| \leq k$.


## distNP and its complete problems

## Proof:

- For any x of length $\mathrm{n}, h(x)$ is the largest common prefix of the binary numbers $\mu_{D_{n}}(x)$ and $\mu_{D_{n}}(x-1)$.
- We know that $\operatorname{Pr}_{D_{n}}[x]=\mu_{D_{n}}(x)-\mu_{D_{n}}(x-1)$ and let's assume that $\operatorname{Pr}_{D_{n}}[x] \geq 2^{-k}$. Then the difference must be in the first $k$ digits, namely $|h(x)| \leq k$.
- $D$ is P -computable, thus h is computable in polynomial time.


## distNP and its complete problems

## Proof:

- For any x of length $\mathrm{n}, h(x)$ is the largest common prefix of the binary numbers $\mu_{D_{n}}(x)$ and $\mu_{D_{n}}(x-1)$.
- We know that $\operatorname{Pr}_{D_{n}}[x]=\mu_{D_{n}}(x)-\mu_{D_{n}}(x-1)$ and let's assume that $\operatorname{Pr}_{D_{n}}[x] \geq 2^{-k}$. Then the difference must be in the first $k$ digits, namely $|h(x)| \leq k$.
- $D$ is P-computable, thus h is computable in polynomial time.
- $h$ is one-to-one because only two strings can have a specific longest prefix.


## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

## Example:

$$
\begin{gathered}
\operatorname{Prob}_{D_{n}}[1010]=0.10000 \\
\operatorname{Prob}_{D_{n}}[1011]=0.10101111 \\
\Rightarrow g(1011)=1 h(1011)=110
\end{gathered}
$$

## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

- g in one-to-one.


## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

- $g$ in one-to-one.
- $|g(x)| \leq|x|+1$.


## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

- $g$ in one-to-one.
- $|g(x)| \leq|x|+1$.
- If $y$ is not $g(x)$, then $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right]=0 \leq 2^{-m+1}$.


## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

- $g$ in one-to-one.
- $|g(x)| \leq|x|+1$.
- If $y$ is not $g(x)$, then $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right]=0 \leq 2^{-m+1}$.
- If $y=0 x$ when $\operatorname{Pr}_{D_{n}}[x] \leq 2^{-|x|}$, then $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right] \leq 2^{-|y|+1}$.


## distNP and its complete problems

$$
g(x)= \begin{cases}0 x & , \text { Prob }_{D_{n}}[x] \leq 2^{-n} \\ 1 h(x) & , \text { otherwise }\end{cases}
$$

- $g$ in one-to-one.
- $|g(x)| \leq|x|+1$.
- If $y$ is not $g(x)$, then $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right]=0 \leq 2^{-m+1}$.
- If $y=0 x$ when $\operatorname{Pr}_{D_{n}}[x] \leq 2^{-|x|}$, then $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right] \leq 2^{-|y|+1}$.
- Let $y=1 h(x)$. $\left.\operatorname{Pr}_{D_{n}}\right][x]>2^{-|x|}$ and therefore $|h(x)| \leq|x|$. So $\operatorname{Pr}\left[y=g\left(D_{m}\right)\right] \leq 2^{-|y|+1}$.


## distNP and its complete problems

## And now we can prove the following theorem

## distNP and its complete problems

And now we can prove the following theorem

## Theorem 3

(Existence of a distNP-complete problem) Let $U$ contain all tuples $<M, x, 1^{t}>$ where there exists a string $y \in\{0,1\}^{\prime}$ such that a nondeterministic TM M outputs 1 on input $x$ on $t$ steps.
For every $n$, we let $\mathcal{U}_{n}$ be the following distribution on length $n$ tuples $<M, x, 1^{t}>$ : the string representing $M$ is chosen at random from all strings of length at most $\log n, t$ is chosen at random in the set $\{0, \ldots, n-|M|\}$ and $x$ is chosen at random from $\{0,1\}^{n-t-|M|}$. This distribution is polynomial-time computable. Then $\langle U, \mathcal{U}\rangle$ is distNP-complete.

## distNP and its complete problems

Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L .


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness?


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness? Yes! g is one-to-one.


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness? Yes! g is one-to-one.
- Length regularity?


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness? Yes! g is one-to-one.
- Length regularity? Yes!


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness? Yes! g is one-to-one.
- Length regularity? Yes!
- Domination?


## distNP and its complete problems

## Theorem Proof:

- Let $\langle L, D\rangle$ be in distNP and let M be a nondeterministic TM M accepting L.
- NDTM M': On input $y$, guess $x$ such that $g(x)=y$ and execute $M(x)$. Let p the polynomial running time of $\mathrm{M}^{\prime}$.
- Reduction: $x \mapsto<M^{\prime}, g(x), 1^{k}>$, where $k=p(n)+\log n+n-\left|M^{\prime}\right|-|g(x)|$.
- Correctness? Yes! g is one-to-one.
- Length regularity? Yes!
- Domination? Yes! A legnth m tuple $<M^{\prime}, y, 1^{t}>$ is obtained by the reduction with probability at most $2^{-|y|+1}$. This tuple is however obtained by $U_{m}$ with probability at least $2^{-\log m} 2^{-|y|} \frac{1}{m}$.


## sampNP and its complete problems

## Question:

## sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is stronger?

## sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is stronger?

## sampNP

A distributional problem $<L, D>$ is in sampNP if $L \in N P$ and $D$ is $P$-samplable.

## sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is stronger?
> sampNP
> A distributional problem $<L, D>$ is in sampNP if $L \in N P$ and $D$ is $P$-samplable.

## Theorem 4

if $\langle L, D\rangle$ is distNP-complete, then it is also sampNP-complete.

## sampNP and its complete problems

Question: Why not use the polynomially samplable distribution since it is stronger?

## sampNP

A distributional problem $<L, D>$ is in sampNP if $L \in N P$ and $D$ is $P$-samplable.

## Theorem 4

if $\langle L, D\rangle$ is distNP-complete, then it is also sampNP-complete.
The choice of P -computable distributions was suitable for average-case completeness results.

## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Algorithmica

## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Algorithmica

- $\mathrm{P}=\mathrm{NP}$ or something equivalent like $N P \subseteq B P P$


## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Algorithmica

- $\mathrm{P}=\mathrm{NP}$ or something equivalent like $N P \subseteq B P P$
- Computational utopia.


## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Algorithmica

- $\mathrm{P}=\mathrm{NP}$ or something equivalent like $N P \subseteq B P P$
- Computational utopia.
- Quite an array of tasks could be automated.


## Philosophical and Practical Implications

Impagliazzo has considered the following possible scenarios for the world of Complexity:

## Algorithmica

- $\mathrm{P}=\mathrm{NP}$ or something equivalent like $N P \subseteq B P P$
- Computational utopia.
- Quite an array of tasks could be automated.
- All the current cryptographic applications will break down.


## Philosophical and Practical Implications

## Heuristica

## Philosophical and Practical Implications

## Heuristica

- We have $P \neq N P$ and yet distNP $\subseteq \operatorname{dist} P$.


## Philosophical and Practical Implications

## Heuristica

- We have $P \neq N P$ and yet distNP $\subseteq \operatorname{dist} P$.
- We have efficient algorithms that "almost" solves every NP problem.


## Philosophical and Practical Implications

## Heuristica

- We have $P \neq N P$ and yet dist $N P \subseteq \operatorname{dist} P$.
- We have efficient algorithms that "almost" solves every NP problem.
- The kinds of inputs that fail are very rare to find in practice.


## Philosophical and Practical Implications

## Heuristica

- We have $P \neq N P$ and yet dist $N P \subseteq \operatorname{dist} P$.
- We have efficient algorithms that "almost" solves every NP problem.
- The kinds of inputs that fail are very rare to find in practice.
- Very similar to Algorithmica. Many NP optimization problems solved in practice.


## Philosophical and Practical Implications

## Heuristica

- We have $P \neq N P$ and yet distNP $\subseteq \operatorname{dist} P$.
- We have efficient algorithms that "almost" solves every NP problem.
- The kinds of inputs that fail are very rare to find in practice.
- Very similar to Algorithmica. Many NP optimization problems solved in practice.
- Many cryptographic applications break down.


## Philosophical and Practical Implications

Pessiland

## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.


## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!


## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!
- No wonderous results and no cryptography.


## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!
- No wonderous results and no cryptography.


## Minicrypt

## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!
- No wonderous results and no cryptography.


## Minicrypt

- One-way functions exist (and therefore distNP not in distP) but all the highly structured problems in NP such as integer factorization are solvable in polynomial time.


## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!
- No wonderous results and no cryptography.


## Minicrypt

- One-way functions exist (and therefore distNP not in distP) but all the highly structured problems in NP such as integer factorization are solvable in polynomial time.
- Although one-way functions exist, there are no public key encryption schemes or key exchange protocols.


## Philosophical and Practical Implications

## Pessiland

- distNP is not in distP and there do not exist any one-way functions.
- Worst possible world!
- No wonderous results and no cryptography.


## Minicrypt

- One-way functions exist (and therefore distNP not in distP) but all the highly structured problems in NP such as integer factorization are solvable in polynomial time.
- Although one-way functions exist, there are no public key encryption schemes or key exchange protocols.
- Those cryptographic applications achievalbe only by one-way functions such as private key encryption and pseudorandom generators still work.


## Philosophical and Practical Implications

## Cryptomania

## Philosophical and Practical Implications

## Cryptomania

- The problem on factoring large integers is exponentially hard on average.


## Philosophical and Practical Implications

## Cryptomania

- The problem on factoring large integers is exponentially hard on average.
- Most believe that this is the world we live in!


## Philosophical and Practical Implications

## Cryptomania

- The problem on factoring large integers is exponentially hard on average.
- Most believe that this is the world we live in!
- We don't have general-purpose algorithms and we have to resort to heuristics, approximation, creativity and hard work.


## Philosophical and Practical Implications

## Cryptomania

- The problem on factoring large integers is exponentially hard on average.
- Most believe that this is the world we live in!
- We don't have general-purpose algorithms and we have to resort to heuristics, approximation, creativity and hard work.
- We have a host of exciting cryptographic applications.

