
Fast Fourier Transform

Μιχάλης Βιταντζάκης

ΑΛΜΑ - Αλγόριθμοι και Πολυπλοκότητα

October 16, 2024

Μιχάλης Βιταντζάκης Fast Fourier Transform



Introduction

Fast Fourier transform (FFT) is a divide and conquer algorithm
that was invented by Gauss in the early 1800s and later reinvented
by John Tukey in 1963 who published it in 1965 along with John
Cooley as co-author.

The main application of FFT is in signal processing. In fact it is
one of the most important algorithms in this field because it allows
the fast decomposition of a signal to its frequencies.

Fast Fourier transform has also applications outside of signal
processing. One example is polynomial multiplication.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Polynomial Multiplication

Let two polynomials of degree d A(x) = α0 + α1x + αdx
d and

B(x) = b0 + b1x + bdx
d .

Their product C (x) = A(x) · B(x) = c0 + c1x + c2dx
2d is a

polynomial of degree 2d with coefficients:

ck = α0bk + α1bk−1 + . . .+ αkb0 =
k∑

i=0

αibk − i

Using the above formula the computation of each ck takes k + 1
steps. So, the naive algorithm for polynomial multiplication takes:

2d+1∑
0

k + 1 = 2d + 2 +
(2d + 1)(2d + 2)

2
= Θ(d2)

This means that the naive algorithm is not too slow but we can do
something better.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Polynomial Representation

The simplest way of specifying a polynomial is by its coefficients.
This is called coefficient representation of a polynomial.

We will represent a polynomial in a different way, with a set of
point - value pairs (xi ,A(xi ))s. This is called the value
representation of a polynomial and it is more helpful for our
problem.

The following theorem tells us that in order to create a value
representation for a polynomial of degree d we only need a finite
amount of distinct points:

Theorem

A degree-d polynomial is uniquely characterized by its values at
any d + 1 distinct points.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Proof

Let A be a polynomial of degree at most n− 1 and x0, x1, . . . , xn−1

be distinct points. We can write the n equations of the form
A(xi ) = α0 + α1xi + α2xi

2 + αn−1xi
n−1 as a matrix equation

v = Mc :
A(x0)
A(x1)

...
A(xn−1)

 =


1 x0 x0

2 . . . x0
n−1

1 x1 x1
2 . . . x1

n−1

...
1 xn−1 xn−1

2 . . . xn−1
n−1




α0

α1
...

αn−1


The specialized format of M is called Vandermonde matrix and one
of its properties is:

If x0, x1, . . . , xn−1 are distinct then M is invertible.

This means that given the n pairs (xi ,A(xi ) for i ∈ {0, . . . , n − 1}
there is a single coefficient vector, which means a single polynomial
of degree n − 1 that can satisfy the equation.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Polynomial Representation

The previous theorem tells us that, given two polynomials A and B
of degree d , their product C can be identified by 2d + 1 points
because the degree of C is 2d . This means that if we evaluated A
and B at x0, x1, . . . , x2d distinct points then we can linearly
evaluate C at the same 2d + 1 points by doing C (xi ) = A(xi )B(xi )
for every i ∈ {0, 1, . . . , 2d}.
One problem with this idea is that the we want the input
polynomials A, B and the output polynomial C to be in coefficient
representation. So we need a way to convert a polynomial from the
coefficient representation to the value representation and back.
The conversion from the coefficient representation to the value
representation is called evaluation. The inverse transformation is
called interpolation.

Μιχάλης Βιταντζάκης Fast Fourier Transform



High Level Overview

1 Selection: Pick some points x0, x1, . . . , xn−1 where n
n ≥ 2d + 1.

2 Evaluation: Compute A(x0),A(x1), . . . ,A(xn−1) and
B(x0),B(x1), . . . ,B(xn−1).

3 Multiplication: Compute C (xk) = A(xk)B(xk) for
k = 0, . . . , n − 1

4 Interpolation: Recover C (x) = c0 + c1x + . . .+ c2dx
2d .

In order for the above algorithm to be useful it needs to take less
time than the naive one. We already know that the multiplication
step can be done in linear time. The selection step can also be
done linearly because we will select points that take each O(1)
time to compute.

The naive algorithm for the evaluation step works in Θ(n2)
because it evaluates each of the n points in Θ(d) time so we need
something better for this step. We will now see how FFT evaluates
a polynomial in O(nlogn) time.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Evaluation using Divide and Conquer

In order for a divide and conquer algorithm to be effective we need
to find enough overlaps in the calculations.

Lets look at a simple case. If A is an even function, because
A(−x) = A(x), we only need to evaluate A at n

2 distinct positive
points in order to know the value of A at n points. Similarly, if A is
an odd function, we can use that A(−x) = −A(x) in order to halve
the amount of computations.

We will generalize the idea mentioned above in more complex
cases. Let A be the following polynomial:

15 + 2x + x2 + 10x3 + 14x4 + 67x5

We can split A into its even and odd powers and then factor x
from the odd powers to get:

(15 + x2 + 14x4) + x(2 + 10x2 + 67x4)

Notice that the terms in the parentheses are polynomials in x2.
Μιχάλης Βιταντζάκης Fast Fourier Transform



Evaluation using Divide and Conquer

More generally, we can write any polynomial A as:

A(x) = Ae(x
2) + xAo(x

2)

Where Ae and Ao are polynomials of degree at most n
2 .

Because x2 = (−x)2 it is true that:

A(−x) = Ae(x
2)− xAo(x

2)

So, if we use plus-minus paired points, we can use the values that
we already have calculated for A(x) to calculate A(−x).

We can recursively repeat this for Ae and Ao until we have a
polynomial of degree zero which we can easily evaluate in O(1).

Μιχάλης Βιταντζάκης Fast Fourier Transform



Time Complexity

If we have a polynomial of degree n the recursion needs O(n) time
to calculate the squares of the points and splits the polynomial
into two polynomials of size n/2.

Therefore, the equation that describes the time complexity of the
algorithm is:

T (n) = 2T
(n
2

)
+ O(n)

Solution of T :

T (n) = 2T
(n
2

)
+ n = 2(T

(n
4

)
) + n + n =

= 2((T
(n
8

)
) +

n

2
+ n + n = n + n

log n∑
i=0

1

2i
< n + n

∞∑
i=0

1

2i

Because
∑∞

i=0
1
2i

= O(log n) it is true that T (n) = O(n log n).

Μιχάλης Βιταντζάκης Fast Fourier Transform



Selecting the points

This algorithm is fast enough but there is a problem with the
recursive step. In order for the recursion to work the points need to
be in plus-minus pairs but the second step of the recursion will
evaluate the polynomial at x0

2, x1
2, . . . x2n

2
−1 which are all positive,

unless we expand the domain of the polynomials to allow complex
numbers as inputs. But how can we choose the n points to ensure
that every recursive step will work?

We could try to find n points by hand which is easy when n is low
enough but we want a generalized formula. The n points that are
chosen by FFT to evaluate a polynomial are the nth roots of unity.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Nth Roots of Unity

Definition

The nth roots of unity are the n complex solutions to the formula
xn = 1.

The nth roots of unity are 1, ω, ω2, . . . , ωn−1 where e
2πi
n .

Two important properties of the nth roots of unity are:

They are plus-minus paired. Specifically, it holds true that for
every j ∈ {0, 1, . . . , n2} ωn/2+j = −ωj .

If ωi is a nth root of unity then
(
ωi
)2

is a n
2 th root of unity.

Therefore, if we evaluate the polynomials using the roots of unity,
then the recursive step of the algorithm described before will be
well-defined.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Nth Roots of Unity

Bellow are the 2nd, 4th, 8th and 16th roots of unity:

We can notice that the roots of unity lie on the unit circle. Also,
the n

2 th roots of unity are also nth roots of unity.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Interpolation

Interpolation is the inverse transform of evaluation. This means
that if we invert the Vandermonde matrix used by FFT we can find
the coefficient vector of the polynomial.

Let Mn(ω) be the Vandermonde matrix used by FFT which is the
following:

Mn(ω) =



1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...

1 ωj ωj2 . . . ωj(n−1)

...

1 ωn−1 ω(n−1)2 . . . ω(n−1)(n−1)


We will prove that Mn(ω)

−1 = 1
nMn(ω)

∗ where
Mn(ω)

∗ = Mn(ω
−1) is the complex conjugate of Mn(ω).
Μιχάλης Βιταντζάκης Fast Fourier Transform



Proof of Mn(ω)
−1 = 1

nMn(ω)
∗

We will prove that Mn(ω)
−1 = 1

nMn(ω)
∗ by proving that:

Lemma

The columns of Mn(ω) are orthogonal to each other.

Proof: The inner product of the jth row and the kth column of
Mn(ω) is:

1 + ωj−k + ω2(j−k) + ω(n−1)(j−k)

If j = k then the sum is equal to n.

If j ̸= i then we can rewrite the sum as a geometric sequence:

n−1∑
m=0

ωm(j−k) =
1− ω(n−1)(j−k)

1− ωj−k
= 0

Μιχάλης Βιταντζάκης Fast Fourier Transform



Proof of Mn(ω)
−1 = 1

nMn(ω)
∗

This orthogonality property can be summarized in the single
equation:

MM∗ = nI

Where (Mn(ω)Mn(ω)
∗)ij is the inner product of the jth row and

the kth column of Mn(ω).

From the above we get Mn(ω)
−1 = 1

nMn(ω)
∗ = 1

nMn(ω
1). This

means that in order to perform interpolation wee just need to
perform FFT using ω−1 instead of ω and then multiply the final
result with 1

n .

A fact that arises from this proof is, because Mn(ω) is orthogonal,
FFT can be viewed as a change of basis. In order to perform
polynomial multiplication FFT transforms the coefficient vector to
another basis, the Fourier basis, the multiplication is performed in
Fourier basis in linear time and then Inverse FFT transforms the
result back.

Μιχάλης Βιταντζάκης Fast Fourier Transform



Pseudocodes

The pseudocode for FFT is:

function FFT(α,ω, n)
if n = 1 then return α
s0, s1, . . . , s n

2
−1 = FFT(α0, α2, . . . , αn−2,ω

2,n2 )

s ′0, s
′
1, . . . , s

′
n
2
−1 = FFT(α0, α2, . . . , αn−2,ω

2,n2 )

for j = 0 to n
2 − 1 do

rj = sj + ωjs ′j
rj+ n

2
= sj − ωjs ′j

return r0, r1, . . . , rn−1

Using the FFT function for FFT, the pseudocode for Inverse FFT
is simply:

function IFFT(α,ω, n)
return 1

n FFT(α,ω−1, n)

Μιχάλης Βιταντζάκης Fast Fourier Transform



References

Demaine, E.
Fast fourier transfor.

S. Dasgupta, C. H. Papadimitriou, U. V. V. (2006).
Algorithms.

Μιχάλης Βιταντζάκης Fast Fourier Transform


