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Deterministic Turing Machine

A Deterministic Turing Machine (TM) is a tuple of seven elements:

M = (Q,Σ,Γ,δ ,q0,qyes,qno)

where:

1) Q,Σ,Γ are finite sets, and:

2) q0,qyes,qno ∈ Q, such that qyes ̸= qno.

Here, qyes and qno are the final states.

3) Σ ⊂ Γ

4) ▷,⊔ ∈ Γ\Σ

5) δ : Q×Γ → Q×Γ×{L,R} is the transition function (a partial function)

such that:

- After the TM reaches qyes or qno, δ does not provide further transition

(is not defined).

- ▷ cannot be deleted and represents the beginning of the tape.
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Non Deterministic Turing Machine

A Non Deterministic Turing Machine (NTM) is a tuple of seven elements:

M = (Q,Σ,Γ,δ ,q0,qyes,qno)

where:

1) Q,Σ,Γ are finite sets, and:

2) q0,qyes,qno ∈ Q, such that qyes ̸= qno.

Here, qyes and qno are the final states.

3) Σ ⊂ Γ

4) ▷,⊔ ∈ Γ\Σ

5) δ ⊆ Q×Γ×Q×Γ×{L,R} is the transition relation such that:

- After the TM reaches qyes or qno, δ does not provide with further

transition

- ▷ cannot be deleted and represents the beginning of the tape.
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Languages, Alphabets

We call alphabet a set of elements Σ (usually Σ = {0,1}).

We call Language L every Set that contains elements constructed by (finite)

selection of symbols form an alphabet Σ.

Every L ⊆ Σ∗
is called a language (where ∗ denotes the Kleene Star).

We are interested in decision problems, in other words if a string w ∈ Σ∗

belongs or not in a Language.

To do so we use algorithms to decide that.

Algorithm is defined to be everything that a Turing Machine (or an equivalent

computation model) can do.
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P and NP

P = {L ⊆ Σ
∗|∃ TM M that given an input w decides if w ∈ L or w /∈ L within

O(Q(|w|)) steps, for some polynomial Q}

NP = {L ⊆ Σ
∗|∃ NTM M that given an input w decides if w ∈ L or w /∈ L within

O(Q(|w|)) steps, for some polynomial Q}
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Reduction

It is shown that any decision problem solved by a polynomial time-bounded

nondeterministic Turing machine can be "reduced" to the problem of

determining whether a given propositional formula is a tautology.

Here "reduced" means, roughly speaking, that the first problem can be solved

deterministically in polynomial time provided an oracle is available for solving

the second.

From this notion of reducible, polynomial degrees of difficulty are defined, and

it is shown that the problem of determining tautologyhood has the same

polynomial degree as the problem of determining whether the first of two

given graphs is isomorphic to a subgraph of the second.
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Notation

We will be talking about formulas in propositional calculus,which means we will

need infinite propositional symbols (atoms). They will be represented as strings

by a member of Σ, followed by the binary representation of a number.

We use the symbols ¬,∨,∧ to denote negation, or, and respectively.

Definition ({tautologies})
The set of tautologies (denoted by tautologies) is a certain recursive set of

strings on this alphabet.
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Query TM and P-Reduction

Definition (Query TM)

A Query Machine is a Multitape Turing Machine with a distinguished tape

called the query tape, and three distinguished states called the query state,

yes state, and no state, respectively. If M is a query machine and T is a

Language, then a T -computation of M is a computation of M in which initially

M is in the initial state and has an input string w on its input tape, and each

time M assumes the query state there is a string u on the query tape, and the

next state M assumes is the yes state if u ∈ T and the no state if u /∈ T .

We think of an "oracle", which knows T , placing M in the yes state or no state.

Definition (P-Reduction)

A Language S of strings is P-reducible (P for polynomial) to a language T of

strings iff there is some query machine M and a polynomial Q(n) such that for

each input string w, the T -computation of M with input w halts within Q(|w|)
steps (|w| is the length of w) and ends in an accepting state iff w ∈ S.
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Equivalence Classes

P-reducibility is a transitive relation.

Thus the relation E on Languages, given by (S,T ) ∈ E iff each of S,T is

P-reducible to the other, is an equivalence relation.

The equivalence class containing a language S will be denoted by deg(S)
(the polynomial degree of difficulty of S).

The notation we use is: (A is reduced to B) ≡ (A ≤P B)
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Special Languages

We now define the following special Languages
2
.

1. The subgraph problem, denoted by {subgraph pairs}
2. The graph isomorphism problem, denoted by {isomorphic graphpairs}
3. The language {Primes}
4. The language {DNF tautologies}
5. The language D3

2
DNF=Disjunctive Normal Form, CNF=Conjuctive Normal Form
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Every Language in co-NP is reducible to {DNF tautologies}

Theorem ({DNF tautologies} is co-NP Complete
3
)

If a language L is decided by some nondeterministic Turing machine within

polynomial time, then L is P-reducible to {DNF tautologies} for some

polynomial P.

Corollary:
All languages (1)-(5) from the previous slide are P-reducible to

{DNF tautologies}.

3
We will define this later on
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Proof Step 0: {CNF satisfiablity} to {DNF tautologies}

Case 1: ϕ ∈ {CNF satisfiablity} ⇐⇒ ¬ϕ /∈ {DNF tautologies} and

Case 2: ϕ /∈ {CNF satisfiablity} ⇐⇒ ¬ϕ ∈ {DNF tautologies}4
.

So, it suffices to show that, every language in NP can be P-reduced to

{CNF satisfiablity}.

4
Using De Morgan’s Law
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Proof Step 1: Preliminaries

Let L ∈ NP. Then exists a TM M that decides the language within Q(n) steps

where n is the size of the input, where Q is a polynomial.

For simplicity we assume that M has only one tape, which is infinite to the right

but has a left-most square.

Let us number the squares from left to right 1, 2, . . .
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Proof Step 2: Preliminaries

Let us fix an input w to M of length n. Then there is a computation of M with

input w that ends within T := Q(n) steps.

The formula A(w) will be built from many different proposition symbols, whose

intended meanings, listed below, refer to such a computation.

Suppose the tape alphabet for M is {σ1, . . . ,σl} and the set of states is

{q1, . . . ,qr}.

Notice that since the computation has at most T = Q(n) steps, no tape

square beyond T is scanned.
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Proof Step 3: Proposition Symbols

Proposition symbols:

Pi
s,t for 1 ≤ i ≤ l, 1 ≤ s, t ≤ T .

Pi
s,t is true iff tape square number s at step t contains the symbol σi.

Qi
t for 1 ≤ i ≤ r,1 ≤ t ≤ T .

Qi
t is true iff at step t the machine is in state qi.

Ss,t for 1 ≤ s, t ≤ T .

Ss,t is true iff at time t square number s is scanned by the tape head.

The formula A(w) is a conjunction B∧C∧D∧E ∧F ∧G∧H ∧ I where each

closed will be specified later on.

Notice A(w) is in conjunctive normal form.
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Proof Step 4: Construction of B

B is a conjunction

B := B1 ∧B2 ∧ . . .∧BT

where, Bt asserts that at time t one and only one square is scanned:

Bt = (S1,t ∨ . . .∨ST,t)∧

( ∧
1≤i, j≤T,i̸= j

(¬si,t ∨¬s j,t)

)
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Proof Step 5: Construction of C

C is a conjunction

C :=
∧

1≤s,t≤T

Cs,t

where, Cs,t asserts that at square s and time t there is one and only one

symbol:

Cs,t =

(
l∨

i=1

Pi
s,t

)
∧

( ∧
1≤i1,i2≤l,i1 ̸=i2

(¬Pi1
s,t ∨¬Pi2

s,t)

)
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Proof Step 6: Construction of D

D is a conjunction

D := D1 ∧D2 ∧ . . .∧DT

where, Dt asserts that at time t one and only one state:

Dt =

(
r∧

i=1

Qi
t

)
∧

( ∨
1≤i1,i2≤T,i1 ̸=i2

(¬Qi1
t ∨¬Qi2

t )

)
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Proof Step 7: Construction of E

E asserts the initial conditions are satisfied:

E = Q0
1 ∧S1,1 ∧Pi1

1,1 ∧Pi2
2,1 ∧ . . .∧Pin

n,1 ∧P1
n+1,1 ∧·· ·∧P1

T,1

where w = σi1 . . .σin , q0 is the initial state and σ1 is the blank symbol.
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Proof Step 8: Construction of F

F asserts that for each time t the value of P is determined properly.

F is the conjunction over all t, i, j of Gt
i, j

F =
T∧

t=1

r∧
i=1

l∧
j=1

F t
i, j

where F t
i, j asserts that if at time t the machine is in cell with symbol σi, then at

time t +1 the same cell will have a new symbol σk, where σk is given by the

transition function of M.

F t
i, j =

T∧
s=1

(
¬Qt

i ∨¬Ss,t ∨¬P j
s,t ∨Pk

s,t+1

)
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Proof Step 9: Construction of G

G asserts that for each time t the value of Q is determined properly.

G is the conjunction over all t, i, j of Gt
i, j

G =
T∧

t=1

r∧
i=1

l∧
j=1

Gt
i, j

where, Gt
i, j asserts that if at time t the machine is in state qi scanning symbol

σ j , then at time t +1 the machine is in state qk , where qk is the new state

given by the transition function of M.

Gt
i, j =

T∧
s=1

(
¬Qt

i ∨¬Ss,t ∨¬P j
s,t ∨Qk

t+1

)
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Proof Step 10: Construction of H

H asserts that for each time t the values of S is determined properly.

H is the conjunction over all t, i, j of Ht
i, j

H =
T∧

t=1

r∧
i=1

l∧
j=1

Ht
i, j

where, Ht
i, j asserts that if at time t the machine is scanning the cell with

number s, then at time t +1 the machine will scan the cell with number k ,

where k is such, according direction given by the transition function of M.

Ht
i, j =

T∧
s=1

(
¬Qt

i ∨¬Ss,t ∨¬P j
s,t ∨Sk,t+1

)
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Proof Step 11: Construction of I

Finally, the formula I asserts that the machine reaches an accepting state at

some time.

I =

(
T∨

i=1

Qr
i

)
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Proof: Transition Relation

The same proof holds true for Transition Relation instead of transition function.

Also another idea is using a different (equivalent) definition of a Non

Deterministic Turing machine that instead of having a transition relation it

allows for multiple transition functions, we encode all those transition functions

as shown in the steps 8-9-10.
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Proof: Correctness

Constructing the logic formula takes polynomial time in terms of the encoding

of a TM Machine.

It is now straightforward to verify that w ∈ L ⇐⇒ A(w) ∈ {DNF tautologies}
because indeed:

Pi
s,t is true ⇐⇒ tape square number s at step t contains the symbol σi

Qi
t is true ⇐⇒ at step t the machine is in state qi

Ss,t is true ⇐⇒ at time t square number s is scanned by the tape head
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Theorem 2

The following sets are P-reducible to each other in pairs (and hence each has

the same polynomial degree of difficulty):

{tautologies}, {DNF tautologies}, D3 , {subgraph pairs}.
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Proof of Theorem 2: Step 1

By the corollary to the first Theorem: {tautologies}, D3 , {subgraph pairs} are

P-reducible to {DNF tautologies}.

Obviously, {DNF tautologies} is P-reducible to {tautologies}.

So, also D3 , {subgraph pairs} are P-reducible to {DNF tautologies}.
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Proof of Theorem 2: Step 2

It is enough to show that: {DNF tautologies} is P-reducible to D3 and

D3 is P-reducible to {subgraph pairs}.
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Proof of Theorem 2: Step 3

{DNF tautologies} ≤P D3

Let A be a proposition formula in disjunctive normal form.

Say A = B1 ∨B2∨ . . .∨Bk, where B1 = R1 ∧ . . .∧Rs, and each Ri is an atom

or negation of an atom and s > 3.

Then A is a tautology if and only if A0 is a tautology where,

A0 = (P∧R3∧ . . .∧Rs)∨ (¬P∧R1 ∧R2)∨B2∨ . . .∨Bk, where P is a new

atom.

Since we have reduced the number of conjuncts in B1, this process may be

repeated until eventually a formula is found with at most three conjuncts per

disjunct.

Clearly the entire process is bounded in time by a polynomial in the length of A.
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Proof of Theorem 2: Step 4

It remains to show that D3 is P-reducible to {subgraph pairs}.

Suppose A is a formula in disjunctive normal form with three conjuncts per

disjunct.

Thus A =C1 ∨ . . .∨Ck, where Ci = Ri1 ∧Ri2 ∧Ri3 , and each Ri j is an atom or

a negation of an atom.

Now let G1 be the complete graph with vertices {v1,v2, . . . ,vk}, and let G2
be the graph with vertices {ui, j}, 1 ≤ i ≤ k,1 ≤ j ≤ 3, such that ui, j is

connected by an edge to ur,s if and only if i ̸= r and the two literals (Ri, j,Rr,s)
do not form an opposite pair (that is they are neither of the form (P,¬P) nor of

the form (¬P,P)). Thus there is a falsifying truth assignment to the formula A iff

there is a graph homomorphism ϕ : G1 → G2 such that for each i, ϕ(i) = ui, j
for some j.

(The homomorphism tells for each i which of Ri,1,Ri2 ,Ri3 should be falsified,

and the selective lack of edges in G2 guarantees that the resulting truth

assignment is consistently specified.)
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Proof of Theorem 2: Step 5

In order to guarantee that a one-one homomorphism ϕ : G1 → G2 has the

property that for each i, ϕ(i) = ui, j for some j, we modify G1 and G2 as

follows.

We select graphs H1,H2, . . . ,Hk which are sufficiently distinct from each other

that if G′
1 is formed from G1 by attaching Hi to vi, 1 ≤ i ≤ k, and G′

2 is formed

from G2 by attaching Hi to each of ui,1 and ui,2 and ui,3, 1 ≤ i ≤ k, then

every one-one homomorphism ϕ : G′
1 → G′

2 has the property just stated.

It is not hard to see such a construction can be carried out in polynomial time.

Then G′
1 can be embedded in G′

2 if and only if A /∈ D3.

This completes the proof of theorem 2.
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Discussion

It had not been possible to add {isomorphic graphpairs} and {primes} to the

list of the above Theorem.
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NP & co-NP Completeness

Definition NP Complete

A language L ⊆ Σ∗
is called NP Complete iff:

1) L ∈ NP

2) Every L′ ∈ NP is P-reducible to L.

Definition co-NP Complete

A language L ⊆ Σ∗
is called co-NP Complete iff:

1) L ∈ co-NP

2) Every L′ ∈ co-NP is P-reducible to L.
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