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Ising Model

The Ising model:
I Standard model from statistical physics
I Models ferromagnetism
I Shows how microscopic particles create macroscopic magnetic

properties



Ising Model

I The lattice Λ is structured as an L× L grid.
I Each lattice node contains a particle with a spin, either "up" (+1) or

"down" (-1): σ : Λ→ {±1}
I Interactions between neighboring spins affect the energy of the

system: H(σ) = −
∑

i∼j σ(i)σ(j)
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Hamiltonian

I Interactions between neighboring spins affect the energy of the
system: H(σ) = −

∑
i∼j σ(i)σ(j)
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Observe that energy maximazes when we have complete disorder and
minimizes when all 1 or -1



Gibbs Measure

Probability of a configuration:

π(σ) =
1

Z (β)
e−βH(σ)

where:
I πu(σ) = e−βH(σ)

I Z (β) =
∑

σ e
−βH(σ)
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I Observe that because β > 0, Gibbs measure assigns bigger
probability at states with lower energy. That is, states for which
neighboring particles have the same spin.



Gibbs Measure

Probability of a configuration:

π(σ) =
1

Z (β)
e−βH(σ)

where:
I πu(σ) = e−βH(σ)

I Z (β) =
∑

σ e
−βH(σ)

I β = 1
T (inverse temperature)

I Observe that because β > 0, Gibbs measure assigns bigger
probability at states with lower energy. That is, states for which
neighboring particles have the same spin.

I As expected from our natural understanding, at low temperature the
magnet has his ferromagnetic properties



To get a better understanding. . .

Consider the edge cases:
I T → 0 (β →∞):

I Gibbs measure tends to concetrate on the states with the lowest
possible energy

I Spins align, all +1 or all −1
I T →∞ (β → 0):

I All configurations have the same probability
I Disorder dominates



To get a better understanding. . .

Consider the edge cases:
I T → 0 (β →∞):

I Gibbs measure tends to concetrate on the states with the lowest
possible energy

I Spins align, all +1 or all −1
I T →∞ (β → 0):

I All configurations have the same probability
I Disorder dominates

Remark
As we heat the system from temperature T = 0 to temperature T =∞,
the system transitions from a state of complete organization (all spins
aligned), to a state of complete disorder, where all spin configurations
have the same probability.



The Sampling Challenge

I Number of configurations: 2|Λ|



The Sampling Challenge

I Number of configurations: 2|Λ|

I Computing Z is intractable
I Even small lattices have enormous state spaces
I E.g., 100× 100 lattice has 210000 > 103000 states
I Atoms in the universe are estimated to be around 1080 . . .



The Sampling Challenge

Question
Can we sample π?



The Sampling Challenge

Question
Can we sample π?

Question
Can we sample π without computing Z?
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Markov chain

Definition (Markov Chain)
A (discrete-time) Markov chain on Ω is a sequence of random variables
{X∞i=1} taking values in Ω satisfying the Markov property:

Pr [Xt = xt |X0 = x0, . . . ,Xt−1 = xt−1] = Pr [Xt = xt |Xt−1 = xt−1]

In other words, the distribution of the next state is independent of the
history given the present. E.g., boarding games.



Markov chain

We can describe a Markov chain using two parameters:
I First, we have the transition (probability) matrix P ∈ RΩ×Ω. The

entries P(x , y) specify the transition probabilities

Pr [Xt = x |Xt−1 = y ]

for all x , y ∈ Ω.
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Markov chain

We can describe a Markov chain using two parameters:
I First, we have the transition (probability) matrix P ∈ RΩ×Ω. The

entries P(x , y) specify the transition probabilities

Pr [Xt = x |Xt−1 = y ]

for all x , y ∈ Ω.
I Second, we have an initial distribution π0

The distribution πt of Xt over Ω is given by

πt = π0P
t



Markov Chain

One should conceptually imagine the Markov chain as a random walk on
Ω = {1, 2}.

1 2

1− α
α

1− β

β

π0 =

(
1
0

)
P =

(
1− α α
β 1− β

)



Stationary Distribution

Definition (Stationary Distribution)
A probability measure π on Ω is stationary w.r.t. a Markov chain P if

πP = π π(x) =
∑
y∈Ω

π(y)P(y , x),∀x ∈ Ω.

Lemma
Every Markov chain P has at least one stationary distribution.



Proof

Proof.
Consider a vector v s.t. vP = v . This vector might have negative entries,
but we’ll use this v to construct our distribution π. Since P has rows
summing to 1, P1 = 1, in particular P has eigenvalue 1. Since P and PT

have the same eigenvalues (same characteristic polynomials), it follows
that there exists a v s.t. vP = v .



Proof (cont’d)

Proof.
Now we define π via π(x) ∝ |v(x)|. We claim that πP = π. Observe that

|v(x)| =

∣∣∣∣∣∣
∑
y∈Ω

v(y)P(y , x)

∣∣∣∣∣∣ ≤
∑
y∈Ω

|v(y)|P(y , x), ∀x ∈ Ω.

We claim that the above inequality is actually an equality. Suppose the
contrary, then,∑

x∈Ω

|v(x)| <
∑
x∈Ω

∑
y∈Ω

|v(y)|P(y , x)

=
∑
y∈Ω

|v(y)|
∑
x∈Ω

P(y , x) =
∑
y∈Ω

|v(y)|.

which is a contradiction. Hence |v(x)| =
∑

y∈Ω |v(y)|P(y , x), ∀x ∈ Ω,
and because π(x) ∝ |v(x)|, πP = π



Back to the Ising model

We would like to create a stochastic process that has π(σ) as its
stationary distribution.



Ergodicity

Definition (Ergodicity)
Consider a Markov chain on a finite state space Ω. We say that P is
ergodic if P satisfies the following properties:
I Irreducibility : P is irreducible if for all x , y ∈ Ω there exists a t ≥ 0

s.t. Pt(x , y) > 0. In other words, the underlying weighted graph of
P is strongly connected.

I Aperiodicity : The period of a state x ∈ Ω under P is defined as the
gcd of {t ≥ 1 : Pt(x , x) > 0}. P is aperiod if all states have period
1.



Ergodicity

Remark
Ergodicity is actually a weak and easy-to-satisfy property.



Ergodicity

I Irreducibility : We just need connectivity of Ω under the transitions of
P .
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I Aperiodicity : For every P we can make an ’equivalent’ aperiodic
Markov chain by replacing P with

I + P

2

That is, at every step we toss a coin for staying in the same state or
transitioning.



Ergodicity

I Irreducibility : We just need connectivity of Ω under the transitions of
P .

I Aperiodicity : For every P we can make an ’equivalent’ aperiodic
Markov chain by replacing P with

I + P

2

That is, at every step we toss a coin for staying in the same state or
transitioning.

πT
(
I + P

2

)
=

1
2
πT I +

1
2
πTP =

1
2
πT +

1
2
πT = πT



Fundamental Theorem of Markov Chains

Theorem
Let P be an ergodic Markov chain on a state space Ω. Then P has a
unique stationary distribution π. Furthermore, for every initial
distribution π0, the distribution πt = π0P

t converges to π.



Fundamental Theorem of Markov Chains

Remark
Ergodicity is an analogue of the law of large numbers for stochastic
processes. In some settings, the law of large numbers holds, even when
the sequence of random variables is not i.i.d.



This indicates a connection to Markov chains and sampling.

Question
I How can we determine the stationary distribution, given a Markov

chain?
I How to construct a Markov chain making sure that it has π as a

stationary distribution?



Question
How can we determine the stationary distribution, given a Markov chain?



Reversibility/ Detailed Balance

Definition
Reversibility We say a Markov chain P is reversible w.r.t. a distribution π
if together they satisfy the detailed balance condition:

π(x)P(x , y) = π(y)P(y , x)

Time does not play any role.



Reversibility/ Detailed Balance
Definition
Reversibility We say a Markov chain P is reversible w.r.t. a distribution π
if together they satisfy the detailed balance condition:

π(x)P(x , y) = π(y)P(y , x)

Proof.

πP(x) =
∑
y∈Ω

π(y)P(y , x)

=
∑
y∈Ω

π(x)P(x , y) (reversibility)

= π(x)
∑
y∈Ω

P(x , y) = π(x).



Question
How to construct a Markov chain making sure that it has π as a
stationary distribution?



Question
How to construct a Markov chain making sure that it has π as a
stationary distribution?
Wait, that looks like our goal for the Ising model!
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Metropolis-Hastings Algorithm

Require: Initial state X0, Proposal mechanism Q(x , y),
1: for n = 0, 1, . . . do
2: Given Xn, choose y with probability Q(Xn, y)
3: Calculate acceptance ratio:

A(Xn, y) := min

(
1,
πu(y)Q(y ,Xn)

πu(x)Q(Xn, y)

)
4: Set next state:

Xn+1 =

{
y , w.p. A(Xn, y)

Xn, otherwise

5: end for



Intuition Behind Metropolis-Hastings

I Use proposal distribution Q that’s easy to sample from
I Accept/reject proposals to "correct" for difference between Q and π



Metropolis–Hastings Algorithm

Theorem
The stationary distribution of the Metropolis–Hastings (chain) is π.

Proof.
Let P be a Markov chain with proposal distribution Q and target
distribution π. We prove π is stationary by showing detailed balance:

π(x)P(x , y) = π(y)P(y , x) for all x , y ∈ Ω

For x 6= y , transition probability is:

P(x , y) = Q(x , y)α(x , y)

where

α(x , y) = min

(
1,
π(y)Q(y , x)

π(x)Q(x , y)

)



Proof

Proof.
When π(y)Q(y ,x)

π(x)Q(x ,y) < 1:

π(x)P(x , y) = π(x)Q(x , y) · π(y)Q(y , x)

π(x)Q(x , y)

= π(y)Q(y , x)

= π(y)P(y , x)

Because α(y , x) = 1.
For x = y , detailed balance holds trivially.
Therefore detailed balance holds and π is the stationary distribution.



Metropolis-Hastings for Ising Model: Proposal Mechanism

I States differ by single spin flip
I Symmetric proposal distribution:

Q(x , y) =

{
1
L2 if x , y differ by one spin
0 otherwise

I For single spin flip, energy change depends only on neighbors:

∆H = 2si
∑

j∈N (i)

sj

where N (i) are nearest neighbors of site i



Metropolis-Hastings for Ising Model: Algorithm

1. Select site i uniformly at random ( 1
L2 probability)

2. Calculate local energy change using neighbors:

∆H = 2si
∑

j∈N (i)

sj

3. Accept flip with probability:

min(1, e−β∆H) =

{
1 ∆H ≤ 0
e−β∆H ∆H > 0

Note: Only local energy difference needed, not total energy
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