
On Hardness of Approximation

Selected Topics in Algorthms

AΛMA, ΣHMMY

Selected Topics in Algorthms On Hardness of Approximation 1 / 31

Outline

1 Reducing from a hard to approximate problem

2 Reducing from an NP-hard problem

Selected Topics in Algorthms On Hardness of Approximation 2 / 31

General Idea

Proving hardness of α-approximating an optimization problem B:

Pick any “hard” problem A

Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an α-approximation algorithm for B gives back

a Yes or No answer for the instance of A (hard decision problem) or
an f (α)-approximate solution for A (hard to f (α)-approximate
problem)

Selected Topics in Algorthms On Hardness of Approximation 3 / 31

General Idea

Proving hardness of α-approximating an optimization problem B:

Pick any “hard” problem A

Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an α-approximation algorithm for B gives back

a Yes or No answer for the instance of A (hard decision problem) or
an f (α)-approximate solution for A (hard to f (α)-approximate
problem)

Selected Topics in Algorthms On Hardness of Approximation 3 / 31

General Idea

Proving hardness of α-approximating an optimization problem B:

Pick any “hard” problem A

Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an α-approximation algorithm for B gives back

a Yes or No answer for the instance of A (hard decision problem) or
an f (α)-approximate solution for A (hard to f (α)-approximate
problem)

Selected Topics in Algorthms On Hardness of Approximation 3 / 31

General Idea

Proving hardness of α-approximating an optimization problem B:

Pick any “hard” problem A

Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an α-approximation algorithm for B gives back

a Yes or No answer for the instance of A (hard decision problem) or
an f (α)-approximate solution for A (hard to f (α)-approximate
problem)

Selected Topics in Algorthms On Hardness of Approximation 3 / 31

General Idea

Proving hardness of α-approximating an optimization problem B:

Pick any “hard” problem A

Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an α-approximation algorithm for B gives back

a Yes or No answer for the instance of A (hard decision problem) or
an f (α)-approximate solution for A (hard to f (α)-approximate
problem)

Selected Topics in Algorthms On Hardness of Approximation 3 / 31

Outline

1 Reducing from a hard to approximate problem

2 Reducing from an NP-hard problem

Selected Topics in Algorthms On Hardness of Approximation 4 / 31

Hard to 7
8-Approximate Problem: MaxE3Sat

MaxE3Sat

input: Set of m clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses

Facts:

simple randomized algorithm returns 7
8m clauses satisfied in

expectation ⇒ optimal solution k∗ ≥ 7
8m

Unless P=NP, there is no 7
8 + ε-approximation algorithm

Selected Topics in Algorthms On Hardness of Approximation 5 / 31

Hard to 7
8-Approximate Problem: MaxE3Sat

MaxE3Sat

input: Set of m clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses

Facts:

simple randomized algorithm returns 7
8m clauses satisfied in

expectation ⇒ optimal solution k∗ ≥ 7
8m

Unless P=NP, there is no 7
8 + ε-approximation algorithm

Selected Topics in Algorthms On Hardness of Approximation 5 / 31

to prove NP-Hard to Approximate Problem: Max2Sat

Max2Sat

input: Set of m clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses

Selected Topics in Algorthms On Hardness of Approximation 6 / 31

to prove NP-Hard to Approximate Problem: Max2Sat

Max2Sat

input: Set of m clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses

Selected Topics in Algorthms On Hardness of Approximation 6 / 31

Reducing MaxE3Sat to Max2Sat

The reduction

Let A be an instance of MaxE3Sat with m clauses

For each clause say ci = xi1 ∨ xi2 ∨ xi3 create the following 10 clauses:

xi1, xi2, xi3
xi1 ∨ xi2, xi2 ∨ xi3 , xi3 ∨ xi1
yi , where yi is a new variable corresponding to clause ci
xi1 ∨ yi , xi2 ∨ yi , xi3 ∨ yi

Combine all clauses to create an instance B of Max2Sat

Facts:

If ci is satisfied then 7 out of 10 clauses can be satisfied

If ci is not satisfied then at most 6 out of 10 clauses can be satisfied

If k∗ is the optimal number of satisfied clauses for A then
7k∗ + 6(m − k∗) is the optimal number of satisfied clauses for B

Selected Topics in Algorthms On Hardness of Approximation 7 / 31

Reducing MaxE3Sat to Max2Sat

The reduction

Let A be an instance of MaxE3Sat with m clauses

For each clause say ci = xi1 ∨ xi2 ∨ xi3 create the following 10 clauses:

xi1, xi2, xi3
xi1 ∨ xi2, xi2 ∨ xi3 , xi3 ∨ xi1
yi , where yi is a new variable corresponding to clause ci
xi1 ∨ yi , xi2 ∨ yi , xi3 ∨ yi

Combine all clauses to create an instance B of Max2Sat

Facts:

If ci is satisfied then 7 out of 10 clauses can be satisfied

If ci is not satisfied then at most 6 out of 10 clauses can be satisfied

If k∗ is the optimal number of satisfied clauses for A then
7k∗ + 6(m − k∗) is the optimal number of satisfied clauses for B

Selected Topics in Algorthms On Hardness of Approximation 7 / 31

Reducing MaxE3Sat to Max2Sat

The reduction

Let A be an instance of MaxE3Sat with m clauses

For each clause say ci = xi1 ∨ xi2 ∨ xi3 create the following 10 clauses:

xi1, xi2, xi3
xi1 ∨ xi2, xi2 ∨ xi3 , xi3 ∨ xi1
yi , where yi is a new variable corresponding to clause ci
xi1 ∨ yi , xi2 ∨ yi , xi3 ∨ yi

Combine all clauses to create an instance B of Max2Sat

Facts:

If ci is satisfied then 7 out of 10 clauses can be satisfied

If ci is not satisfied then at most 6 out of 10 clauses can be satisfied

If k∗ is the optimal number of satisfied clauses for A then
7k∗ + 6(m − k∗) is the optimal number of satisfied clauses for B

Selected Topics in Algorthms On Hardness of Approximation 7 / 31

Reducing MaxE3Sat to Max2Sat

The reduction

Let A be an instance of MaxE3Sat with m clauses

For each clause say ci = xi1 ∨ xi2 ∨ xi3 create the following 10 clauses:

xi1, xi2, xi3
xi1 ∨ xi2, xi2 ∨ xi3 , xi3 ∨ xi1
yi , where yi is a new variable corresponding to clause ci
xi1 ∨ yi , xi2 ∨ yi , xi3 ∨ yi

Combine all clauses to create an instance B of Max2Sat

Facts:

If ci is satisfied then 7 out of 10 clauses can be satisfied

If ci is not satisfied then at most 6 out of 10 clauses can be satisfied

If k∗ is the optimal number of satisfied clauses for A then
7k∗ + 6(m − k∗) is the optimal number of satisfied clauses for B

Selected Topics in Algorthms On Hardness of Approximation 7 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Using an Approximation Algorithm for Max2Sat

To show: α-approximation for B gives f (α)-approximation for A.

Assume we have an α-approximation algotithm for Max2Sat, say Alg

From instance A of MaxE3Sat construct instance B of Max2Sat

Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k ≥ X − 6m (else 7k + 6(m − k) < X)

k ≥ α(7k∗ +6(m−k∗))−6m = αk∗ +6(a−1)m ≥ αk∗ +6(a−1) 8
7k

∗

k ≥ (55
7 α−

48
7)k∗

7
8 hardness of approximation for A implies α hardness of approximation for
B, ∀α : 55

7 α−
48
7 > 7

8 ⇒ ∀α : α > 433
440

Selected Topics in Algorthms On Hardness of Approximation 8 / 31

Outline

1 Reducing from a hard to approximate problem

2 Reducing from an NP-hard problem

Selected Topics in Algorthms On Hardness of Approximation 9 / 31

NP Hard Problem: 2DDP

input: A directed Network D and two pairs s1, t1 and s2, t2.

output: Answer to the question: Are there 2 vertex disjoint paths
joining s1 to t1 and s2 to t2

Selected Topics in Algorthms On Hardness of Approximation 10 / 31

to Prove NP Hard to Approximate: BestSubnet

Abstract description of BestSubnet:

input: A directed Network G , with source s, target t and traffic
rate r

output: Find Subnetwork that minimizes cost at Equilibrium

Approximate version:

output: Find Subnetwork with Equilibrium cost that approximates
the Best Subnetwork’s cost at equilibrium

Selected Topics in Algorthms On Hardness of Approximation 11 / 31

to Prove NP Hard to Approximate: BestSubnet

Abstract description of BestSubnet:

input: A directed Network G , with source s, target t and traffic
rate r

output: Find Subnetwork that minimizes cost at Equilibrium

Approximate version:

output: Find Subnetwork with Equilibrium cost that approximates
the Best Subnetwork’s cost at equilibrium

Selected Topics in Algorthms On Hardness of Approximation 11 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.

Yes instance → ∃ subnetwork with worst Equilibrium cost= r/4

No instance → ∀ subnetwork worst Equilibrium cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 12 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.

Yes instance → ∃ subnetwork with worst Equilibrium cost= r/4

No instance → ∀ subnetwork worst Equilibrium cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 12 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.

Yes instance → ∃ subnetwork with worst Equilibrium cost= r/4

No instance → ∀ subnetwork worst Equilibrium cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 12 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 13 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 13 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 13 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 13 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 13 / 31

Routing Instance

Traffic rate r to be routed through paths from s to t.

Edges are associated with a cost function

Depending on the routing and the resulting load of each edge,

each path has a cost
the network itself has an “overall cost”

Selected Topics in Algorthms On Hardness of Approximation 14 / 31

Our Case: Bottleneck Routing Games

The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.

Network: The Bottleneck cost of the Network is 2

Selected Topics in Algorthms On Hardness of Approximation 15 / 31

Our Case: Bottleneck Routing Games

The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.

Network: The Bottleneck cost of the Network is 2

Selected Topics in Algorthms On Hardness of Approximation 15 / 31

Our Case: Bottleneck Routing Games

The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.

Network: The Bottleneck cost of the Network is 2

Selected Topics in Algorthms On Hardness of Approximation 15 / 31

Our Case: Bottleneck Routing Games

The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.

Network: The Bottleneck cost of the Network is 2

Selected Topics in Algorthms On Hardness of Approximation 15 / 31

Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path

Not unique: There are optimal, bad and worst Nash flows

At a Nash flow, edges with cost ≥ BC form a cut

Worst Nash flow: flow is routed through few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 16 / 31

Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path

Not unique: There are optimal, bad and worst Nash flows

At a Nash flow, edges with cost ≥ BC form a cut

Worst Nash flow: flow is routed through few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 16 / 31

Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path

Not unique: There are optimal, bad and worst Nash flows

At a Nash flow, edges with cost ≥ BC form a cut

Worst Nash flow: flow is routed through few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 16 / 31

Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path

Not unique: There are optimal, bad and worst Nash flows

At a Nash flow, edges with cost ≥ BC form a cut

Worst Nash flow: flow is routed through few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 16 / 31

Braess Paradox

Network (a) has worst Nash flow BC = 2

Braess Paradox: Network’s performance may improve by removing edges

Selected Topics in Algorthms On Hardness of Approximation 17 / 31

Braess Paradox

Network (a) has worst Nash flow BC = 2 while Network (b) has worst Nash
flow BC = 1

Braess Paradox: Network’s performance may improve by removing edges

Selected Topics in Algorthms On Hardness of Approximation 18 / 31

Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

It is NP-hard to approximate Best Subnetwork within a factor of 4/3

It is NP-hard to approximate Best Subnetwork within a factor of
O(n0.121−ε)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Selected Topics in Algorthms On Hardness of Approximation 19 / 31

Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

It is NP-hard to approximate Best Subnetwork within a factor of 4/3

It is NP-hard to approximate Best Subnetwork within a factor of
O(n0.121−ε)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Selected Topics in Algorthms On Hardness of Approximation 19 / 31

Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

It is NP-hard to approximate Best Subnetwork within a factor of 4/3

It is NP-hard to approximate Best Subnetwork within a factor of
O(n0.121−ε)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Selected Topics in Algorthms On Hardness of Approximation 19 / 31

Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

It is NP-hard to approximate Best Subnetwork within a factor of 4/3

It is NP-hard to approximate Best Subnetwork within a factor of
O(n0.121−ε)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Selected Topics in Algorthms On Hardness of Approximation 19 / 31

Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

It is NP-hard to approximate Best Subnetwork within a factor of 4/3

It is NP-hard to approximate Best Subnetwork within a factor of
O(n0.121−ε)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Selected Topics in Algorthms On Hardness of Approximation 19 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the ”base” network.

Yes instance → ∃ subgraph with worst Nash flow cost= r/4

No instance → ∀ subgraph worst Nash flow cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 20 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the ”base” network.

Yes instance → ∃ subgraph with worst Nash flow cost= r/4

No instance → ∀ subgraph worst Nash flow cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 20 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the ”base” network.

Yes instance → ∃ subgraph with worst Nash flow cost= r/4

No instance → ∀ subgraph worst Nash flow cost ≥ r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3− ε)-approximation algorithm
⇓

In a Yes instance, returned solution cost ≤ (4/3− ε)r/4 < r/3

Selected Topics in Algorthms On Hardness of Approximation 20 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external
vertices and edges

There are 2 paths from {s1, s2} to {t1, t2}
Optimal uses the “quick” path and two slow paths and achieve
BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 21 / 31

Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external
vertices and edges

There are 2 paths from {s1, s2} to {t1, t2}
Optimal uses the “quick” path and two slow paths and achieve
BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 21 / 31

D is a YES instance of 2DDP

Let p,q be the disjoint paths

Keep external graph , p and q.

Moving from u to v and vice versa is “free”

Unique Nash flow uses the quick path and two “slow” ones: worst
Nash flow BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 22 / 31

D is a YES instance of 2DDP

Let p,q be the disjoint paths

Keep external graph , p and q.

Moving from u to v and vice versa is “free”

Unique Nash flow uses the quick path and two “slow” ones: worst
Nash flow BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 22 / 31

D is a YES instance of 2DDP

Let p,q be the disjoint paths

Keep external graph , p and q.

Moving from u to v and vice versa is “free”

Unique Nash flow uses the quick path and two “slow” ones: worst
Nash flow BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 22 / 31

D is a YES instance of 2DDP

Let p,q be the disjoint paths

Keep external graph , p and q.

Moving from u to v and vice versa is “free”

Unique Nash flow uses the quick path and two “slow” ones: worst
Nash flow BC = r/4

Selected Topics in Algorthms On Hardness of Approximation 22 / 31

D is a NO instance of 2DDP

When e2 is missing e4, e6 and e8 form a “slow” cut

Paths p,q join s1 − t2 and s2 − t1 ⇒ Nash flow that loads* only two paths

[“slow” cut] or [1 “quick” and 1 ”slow” path] ⇒ worst Nash BC ≥ r/3

Selected Topics in Algorthms On Hardness of Approximation 23 / 31

Inapproximability of Best Subnetwork

With the ”base” network we achieve a 4/3 gap for Best Subnetwork
Problem

We can amplify gaps

If network G provides gap γ

G combined with base network provides gap 4/3 γ

Applying recursively for k = log4/3n times, we get a Network with

O(8kn) = O(n8.23) vertices and edges providing gap n

Selected Topics in Algorthms On Hardness of Approximation 24 / 31

Inapproximability of Best Subnetwork

With the ”base” network we achieve a 4/3 gap for Best Subnetwork
Problem

We can amplify gaps

If network G provides gap γ

G combined with base network provides gap 4/3 γ

Applying recursively for k = log4/3n times, we get a Network with

O(8kn) = O(n8.23) vertices and edges providing gap n

Selected Topics in Algorthms On Hardness of Approximation 24 / 31

Inapproximability of Best Subnetwork

With the ”base” network we achieve a 4/3 gap for Best Subnetwork
Problem

We can amplify gaps

If network G provides gap γ

G combined with base network provides gap 4/3 γ

Applying recursively for k = log4/3n times, we get a Network with

O(8kn) = O(n8.23) vertices and edges providing gap n

Selected Topics in Algorthms On Hardness of Approximation 24 / 31

Amplifying a gap by 4/3 factor

Amplify the gap

If network G (with striclty increasing linear latencies) provides gap γ

G combined with base network provides gap (4/3) γ

Selected Topics in Algorthms On Hardness of Approximation 25 / 31

Amplifying a gap by 4/3 factor

Amplify the gap

If network G (with striclty increasing linear latencies) provides gap γ

G combined with base network provides gap (4/3) γ

Selected Topics in Algorthms On Hardness of Approximation 25 / 31

YES instance of 2DDP

We keep the subgraph with

the paths p,q and

the good subgraphs in the copies of G

Selected Topics in Algorthms On Hardness of Approximation 26 / 31

YES instance of 2DDP

We keep the subgraph with

the paths p,q and

the good subgraphs in the copies of G

Selected Topics in Algorthms On Hardness of Approximation 27 / 31

YES instance of 2DDP

We keep the subgraph with

the paths p,q and

the good subgraphs in the copies of G

Selected Topics in Algorthms On Hardness of Approximation 28 / 31

NO instance of 2DDP

We have to check all subgraphs

Any subgraph of the copies has few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 29 / 31

NO instance of 2DDP

We have to check all subgraphs

Any subgraph of the copies has few blocking paths

Selected Topics in Algorthms On Hardness of Approximation 29 / 31

NO instance of 2DDP

We have to check all subgraphs

Any subgraph of the copies has few blocking paths

Try to block all paths in a way similar with the base case

γ gap on each subnetwork and 4/3 because of the ”base” network

Selected Topics in Algorthms On Hardness of Approximation 30 / 31

Interesting Point

How do we solve 2DDP with “good” approximation Algorithm?

We do not know how to compute worst Nash flow efficiently.

In Yes instances, a solution of 2DDP exists inside the returned
network

There are polynomial many networks

We can check in polynomial time each one

Selected Topics in Algorthms On Hardness of Approximation 31 / 31

Interesting Point

How do we solve 2DDP with “good” approximation Algorithm?

We do not know how to compute worst Nash flow efficiently.

In Yes instances, a solution of 2DDP exists inside the returned
network

There are polynomial many networks

We can check in polynomial time each one

Selected Topics in Algorthms On Hardness of Approximation 31 / 31

Interesting Point

How do we solve 2DDP with “good” approximation Algorithm?

We do not know how to compute worst Nash flow efficiently.

In Yes instances, a solution of 2DDP exists inside the returned
network

There are polynomial many networks

We can check in polynomial time each one

Selected Topics in Algorthms On Hardness of Approximation 31 / 31

Interesting Point

How do we solve 2DDP with “good” approximation Algorithm?

We do not know how to compute worst Nash flow efficiently.

In Yes instances, a solution of 2DDP exists inside the returned
network

There are polynomial many networks

We can check in polynomial time each one

Selected Topics in Algorthms On Hardness of Approximation 31 / 31

Interesting Point

How do we solve 2DDP with “good” approximation Algorithm?

We do not know how to compute worst Nash flow efficiently.

In Yes instances, a solution of 2DDP exists inside the returned
network

There are polynomial many networks

We can check in polynomial time each one

Selected Topics in Algorthms On Hardness of Approximation 31 / 31

	Reducing from a hard to approximate problem
	Reducing from an NP-hard problem

