On Hardness of Approximation

Selected Topics in Algorthms

 $A\Lambda MA$, $\Sigma HMMY$

э

2 Reducing from an NP-hard problem

э

通 ト イ ヨ ト イ ヨ ト

- Pick any "hard" problem A
- Construct in polytime an instance of B
- Make sure that solution of B gives back in polytime a solution of A
- Make sure that given an α -approximation algorithm for B gives back
 - a Yes or No answer for the instance of A (hard decision problem) or
 - an f(α)-approximate solution for A (hard to f(α)-approximate problem)

• • = • • = •

- Pick any "hard" problem A
- Construct in polytime an instance of B
- Make sure that solution of B gives back in polytime a solution of A
- Make sure that given an α -approximation algorithm for B gives back
 - a Yes or No answer for the instance of A (hard decision problem) or
 - an f(α)-approximate solution for A (hard to f(α)-approximate problem)

- Pick any "hard" problem A
- Construct in polytime an instance of B
- Make sure that solution of *B* gives back in polytime a solution of *A*
- Make sure that given an α -approximation algorithm for B gives back
 - a Yes or No answer for the instance of A (hard decision problem) or
 - an f(α)-approximate solution for A (hard to f(α)-approximate problem)

- Pick any "hard" problem A
- Construct in polytime an instance of B
- Make sure that solution of B gives back in polytime a solution of A
- Make sure that given an α -approximation algorithm for B gives back
 - a Yes or No answer for the instance of A (hard decision problem) or
 - an f(α)-approximate solution for A (hard to f(α)-approximate problem)

- Pick any "hard" problem A
- Construct in polytime an instance of B
- Make sure that solution of B gives back in polytime a solution of A
- Make sure that given an α -approximation algorithm for B gives back
 - a Yes or No answer for the instance of A (hard decision problem) or
 - an f(α)-approximate solution for A (hard to f(α)-approximate problem)

2 Reducing from an NP-hard problem

э

<日

<</p>

Hard to $\frac{7}{8}$ -Approximate Problem: MaxE3Sat

MaxE3Sat

input: Set of *m* clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of satisfied clauses

Facts:

• simple randomized algorithm returns $\frac{7}{8}m$ clauses satisfied in expectation \Rightarrow optimal solution $k^* \ge \frac{7}{8}m$

• Unless P=NP, there is no $\frac{7}{8} + \epsilon$ -approximation algorithm

通 ト イ ヨ ト イ ヨ ト

Hard to $\frac{7}{8}$ -Approximate Problem: MaxE3Sat

MaxE3Sat

input: Set of *m* clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of satisfied clauses

Facts:

- simple randomized algorithm returns $\frac{7}{8}m$ clauses satisfied in expectation \Rightarrow optimal solution $k^* \ge \frac{7}{8}m$
- Unless P=NP, there is no $\frac{7}{8} + \epsilon$ -approximation algorithm

to prove NP-Hard to Approximate Problem: Max2Sat

Max2Sat

input: Set of *m* clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of satisfied clauses

to prove NP-Hard to Approximate Problem: Max2Sat

Max2Sat

input: Set of *m* clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of satisfied clauses

The reduction

- Let A be an instance of MaxE3Sat with m clauses
- For each clause say $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ create the following 10 clauses:
 - *x*_{*i*1}, *x*_{*i*2}, *x*_{*i*3}
 - $\overline{x_{i1}} \vee \overline{x_{i2}}, \overline{x_{i2}} \vee \overline{x_{i3}}, \overline{x_{i3}} \vee \overline{x_{i1}}$
 - y_i , where y_i is a new variable corresponding to clause c_i
 - $x_{i1} \vee \overline{y_i}, x_{i2} \vee \overline{y_i}, x_{i3} \vee \overline{y_i}$
- Combine all clauses to create an instance B of Max2Sat

Facts:

- If c_i is satisfied then 7 out of 10 clauses can be satisfied
- If c_i is not satisfied then at most 6 out of 10 clauses can be satisfied
- If k^* is the optimal number of satisfied clauses for A then $7k^* + 6(m - k^*)$ is the optimal number of satisfied clauses for B

< 3 > < 3 >

The reduction

- Let A be an instance of MaxE3Sat with m clauses
- For each clause say $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ create the following 10 clauses:
 - *x*_{*i*1}, *x*_{*i*2}, *x*_{*i*3}
 - $\overline{x_{i1}} \vee \overline{x_{i2}}, \overline{x_{i2}} \vee \overline{x_{i3}}, \overline{x_{i3}} \vee \overline{x_{i1}}$
 - y_i , where y_i is a new variable corresponding to clause c_i
 - $x_{i1} \vee \overline{y_i}, x_{i2} \vee \overline{y_i}, x_{i3} \vee \overline{y_i}$
- Combine all clauses to create an instance B of Max2Sat

Facts:

- If c_i is satisfied then 7 out of 10 clauses can be satisfied
- If c_i is not satisfied then at most 6 out of 10 clauses can be satisfied
- If k^* is the optimal number of satisfied clauses for A then $7k^* + 6(m - k^*)$ is the optimal number of satisfied clauses for

イロト 不良 トイヨト イヨト

э

The reduction

- Let A be an instance of MaxE3Sat with m clauses
- For each clause say $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ create the following 10 clauses:
 - *x*_{*i*1}, *x*_{*i*2}, *x*_{*i*3}
 - $\overline{x_{i1}} \lor \overline{x_{i2}}, \overline{x_{i2}} \lor \overline{x_{i3}}, \overline{x_{i3}} \lor \overline{x_{i1}}$
 - y_i , where y_i is a new variable corresponding to clause c_i
 - $x_{i1} \vee \overline{y_i}, x_{i2} \vee \overline{y_i}, x_{i3} \vee \overline{y_i}$
- Combine all clauses to create an instance B of Max2Sat

Facts:

- If c_i is satisfied then 7 out of 10 clauses can be satisfied
- If c_i is not satisfied then at most 6 out of 10 clauses can be satisfied

• If k^* is the optimal number of satisfied clauses for A then $7k^* + 6(m - k^*)$ is the optimal number of satisfied clauses for B

э

- 4 回 ト 4 三 ト 4 三 ト

The reduction

- Let A be an instance of MaxE3Sat with m clauses
- For each clause say $c_i = x_{i1} \lor x_{i2} \lor x_{i3}$ create the following 10 clauses:
 - *x*_{*i*1}, *x*_{*i*2}, *x*_{*i*3}
 - $\overline{x_{i1}} \vee \overline{x_{i2}}, \overline{x_{i2}} \vee \overline{x_{i3}}, \overline{x_{i3}} \vee \overline{x_{i1}}$
 - y_i , where y_i is a new variable corresponding to clause c_i
 - $x_{i1} \vee \overline{y_i}, x_{i2} \vee \overline{y_i}, x_{i3} \vee \overline{y_i}$
- Combine all clauses to create an instance B of Max2Sat

Facts:

- If c_i is satisfied then 7 out of 10 clauses can be satisfied
- If c_i is not satisfied then at most 6 out of 10 clauses can be satisfied
- If k^* is the optimal number of satisfied clauses for A then $7k^* + 6(m - k^*)$ is the optimal number of satisfied clauses for B

<日

<</p>

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 何 ト ・ ヨ ト ・ ヨ ト

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

< 回 > < 三 > < 三 > 、

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 何 ト ・ ヨ ト ・ ヨ ト ・

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha (7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

To show: α -approximation for B gives $f(\alpha)$ -approximation for A.

Assume we have an α -approximation algorithm for Max2Sat, say Alg

- From instance A of MaxE3Sat construct instance B of Max2Sat
- Solve *B* using *Alg* to take an approximate solution of *B* that satisfes say *X* clauses.
- Call \overline{k} the number of corresponding satisfied clauses in A
- It should be $\overline{k} \ge X 6m$ (else $7\overline{k} + 6(m \overline{k}) < X$)
- $\overline{k} \ge \alpha(7k^* + 6(m k^*)) 6m = \alpha k^* + 6(a 1)m \ge \alpha k^* + 6(a 1)\frac{8}{7}k^*$ • $\overline{k} \ge (\frac{55}{7}\alpha - \frac{48}{7})k^*$

 $\frac{7}{8}$ hardness of approximation for A implies α hardness of approximation for B, $\forall \alpha : \frac{55}{7}\alpha - \frac{48}{7} > \frac{7}{8} \Rightarrow \forall \alpha : \alpha > \frac{433}{440}$

イロト 不得 トイヨト イヨト

э

2 Reducing from an NP-hard problem

э

input: A directed Network D and two pairs s_1 , t_1 and s_2 , t_2 . output: Answer to the question: Are there 2 vertex disjoint paths joining s_1 to t_1 and s_2 to t_2

Abstract description of BestSubnet:

input: A directed Network G, with source s, target t and traffic rate routput: Find Subnetwork that minimizes cost at Equilibrium

Approximate version:

output: Find Subnetwork with Equilibrium cost that approximates the Best Subnetwork's cost at equilibrium

- E > - E >

Abstract description of BestSubnet:

input: A directed Network G, with source s, target t and traffic rate routput: Find Subnetwork that minimizes cost at Equilibrium

Approximate version:

output: Find Subnetwork with Equilibrium cost that approximates the Best Subnetwork's cost at equilibrium

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a "base" network.

- Yes instance $\rightarrow \exists$ subnetwork with worst Equilibrium cost= r/4
- No instance $\rightarrow \forall$ subnetwork worst Equilibrium cost $\geq r/3$

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm $\downarrow \downarrow$ In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a "base" network.

- Yes instance $\rightarrow \exists$ subnetwork with worst Equilibrium cost= r/4
- No instance \rightarrow \forall subnetwork worst Equilibrium cost \geq r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm \downarrow In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$ Given an instance of 2DDP we construct a "base" network.

- Yes instance $\rightarrow \exists$ subnetwork with worst Equilibrium cost= r/4
- No instance \rightarrow \forall subnetwork worst Equilibrium cost \geq r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm \Downarrow In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$

• Traffic rate r to be routed through paths from s to t.

- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost.
 - the network itself has an "overall cost"

.

- Traffic rate r to be routed through paths from s to t.
- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost
 - the network itself has an "overall cost"

.

- Traffic rate r to be routed through paths from s to t.
- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost
 - the network itself has an "overall cost"

- Traffic rate r to be routed through paths from s to t.
- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost
 - the network itself has an "overall cost"

- Traffic rate r to be routed through paths from s to t.
- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost
 - the network itself has an "overall cost"
Routing Instance

- Traffic rate r to be routed through paths from s to t.
- Edges are associated with a cost function
- Depending on the routing and the resulting load of each edge,
 - each path has a cost
 - the network itself has an "overall cost"

- The cost of each path is its *Bottleneck Cost*: the cost of its most costly edge
- The Overall cost is the *Bottleneck Cost of the Network*: the cost of the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2. Network: The Bottleneck cost of the Network is 2

- The cost of each path is its *Bottleneck Cost*: the cost of its most costly edge
- The Overall cost is the *Bottleneck Cost of the Network*: the cost of the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2. Network: The Bottleneck cost of the Network is 2

- The cost of each path is its *Bottleneck Cost*: the cost of its most costly edge
- The Overall cost is the *Bottleneck Cost of the Network*: the cost of the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2. Network: The Bottleneck cost of the Network is 2

Selected Topics in Algorthms

- The cost of each path is its *Bottleneck Cost*: the cost of its most costly edge
- The Overall cost is the *Bottleneck Cost of the Network*: the cost of the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2. Network: The Bottleneck cost of the Network is 2

- Not unique: There are optimal, bad and worst Nash flows
- At a Nash flow, edges with cost $\geq BC$ form a cut
- Worst Nash flow: flow is routed through few blocking paths

• Not unique: There are optimal, bad and worst Nash flows

- At a Nash flow, edges with cost

 <u>BC</u> form a cut
- Worst Nash flow: flow is routed through few blocking paths

- Not unique: There are optimal, bad and worst Nash flows
- At a Nash flow, edges with cost $\geq BC$ form a cut
- Worst Nash flow: flow is routed through few blocking paths

- Not unique: There are optimal, bad and worst Nash flows
- At a Nash flow, edges with cost $\geq BC$ form a cut
- Worst Nash flow: flow is routed through few blocking paths

Network (a) has worst Nash flow BC = 2

Braess Paradox: Network's performance may improve by removing edges

Network (a) has worst Nash flow BC = 2 while Network (b) has worst Nash flow BC = 1

Braess Paradox: Network's performance may improve by removing edges

• It is NP-hard to approximate Best Subnetwork within a factor of 4/3

• It is NP-hard to approximate Best Subnetwork within a factor of $O(n^{0.121-\epsilon})$

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

- E > - E >

• It is NP-hard to approximate Best Subnetwork within a factor of 4/3

• It is NP-hard to approximate Best Subnetwork within a factor of $O(n^{0.121-\epsilon})$

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

- E > - E >

- It is NP-hard to approximate Best Subnetwork within a factor of 4/3
- It is NP-hard to approximate Best Subnetwork within a factor of $O(n^{0.121-\epsilon})$

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

- It is NP-hard to approximate Best Subnetwork within a factor of 4/3
- It is NP-hard to approximate Best Subnetwork within a factor of $O(n^{0.121-\epsilon})$

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

- It is NP-hard to approximate Best Subnetwork within a factor of 4/3
- It is NP-hard to approximate Best Subnetwork within a factor of $O(n^{0.121-\epsilon})$

Reductions from 2DDP (2 Directed Disjoint Paths Problem)

Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the "base" network.

• Yes instance $\rightarrow \exists$ subgraph with worst Nash flow cost= r/4

• No instance \rightarrow \forall subgraph worst Nash flow cost \geq r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm \Downarrow In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$ Given an instance of 2DDP we construct the "base" network.

- Yes instance $\rightarrow \exists$ subgraph with worst Nash flow cost= r/4
- No instance \rightarrow \forall subgraph worst Nash flow cost \geq r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm \downarrow In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$ Given an instance of 2DDP we construct the "base" network.

- Yes instance $\rightarrow \exists$ subgraph with worst Nash flow cost= r/4
- No instance \rightarrow \forall subgraph worst Nash flow cost \geq r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem or else:

There exists a $(4/3 - \epsilon)$ -approximation algorithm $\downarrow \downarrow$ In a Yes instance, returned solution cost $\leq (4/3 - \epsilon)r/4 < r/3$

Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external vertices and edges

• There are 2 paths from $\{s_1, s_2\}$ to $\{t_1, t_2\}$

• Optimal uses the "quick" path and two slow paths and achieve BC = r/4

Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external vertices and edges

- There are 2 paths from $\{s_1, s_2\}$ to $\{t_1, t_2\}$
- Optimal uses the "quick" path and two slow paths and achieve BC = r/4

• Let p,q be the disjoint paths

• Keep external graph , p and q.

- Moving from u to v and vice versa is "free"
- Unique Nash flow uses the quick path and two "slow" ones: worst Nash flow BC = r/4

- Let p,q be the disjoint paths
- Keep external graph , p and q.

- Moving from u to v and vice versa is "free"
- Unique Nash flow uses the quick path and two "slow" ones: worst Nash flow BC = r/4

- Let p,q be the disjoint paths
- Keep external graph , p and q.

• Moving from u to v and vice versa is "free"

• Unique Nash flow uses the quick path and two "slow" ones: worst Nash flow BC = r/4

- Let p,q be the disjoint paths
- Keep external graph , p and q.

- Moving from u to v and vice versa is "free"
- Unique Nash flow uses the quick path and two "slow" ones: worst Nash flow BC = r/4

When e_2 is missing e_4 , e_6 and e_8 form a "slow" cut

Paths p,q join $s_1 - t_2$ and $s_2 - t_1 \Rightarrow$ Nash flow that loads* only two paths

["slow" cut] or [1 "quick" and 1 "slow" path] \Rightarrow worst Nash BC \geq r/3

With the "base" network we achieve a $4/3\ \text{gap}$ for Best Subnetwork Problem

We can amplify gaps

- If network G provides gap γ
- $\bullet~G$ combined with base network provides gap 4/3 γ

Applying recursively for $k = log_{4/3}n$ times, we get a Network with $O(8^k n) = O(n^{8.23})$ vertices and edges providing gap n

With the "base" network we achieve a $4/3\ \text{gap}$ for Best Subnetwork Problem

We can amplify gaps

- If network G provides gap γ
- G combined with base network provides gap 4/3 γ

Applying recursively for $k = log_{4/3}n$ times, we get a Network with $O(8^k n) = O(n^{8.23})$ vertices and edges providing gap n

With the "base" network we achieve a $4/3\ \text{gap}$ for Best Subnetwork Problem

We can amplify gaps

- If network G provides gap γ
- G combined with base network provides gap 4/3 γ

Applying recursively for $k = log_{4/3}n$ times, we get a Network with $O(8^k n) = O(n^{8.23})$ vertices and edges providing gap n

Amplify the gap

- If network G (with striclty increasing linear latencies) provides gap γ
- G combined with base network provides gap (4/3) γ

.

Amplify the gap

- If network G (with striclty increasing linear latencies) provides gap γ
- G combined with base network provides gap (4/3) γ

We keep the subgraph with

- the paths p,q and
- the good subgraphs in the copies of G

We keep the subgraph with

- the paths p,q and
- the good subgraphs in the copies of G

YES instance of 2DDP

We keep the subgraph with

- the paths p,q and
- the good subgraphs in the copies of G

NO instance of 2DDP

• We have to check all subgraphs

• Any subgraph of the copies has few blocking paths

NO instance of 2DDP

- We have to check all subgraphs
- Any subgraph of the copies has few blocking paths

- E > - E >
NO instance of 2DDP

- We have to check all subgraphs
- Any subgraph of the copies has few blocking paths
- Try to block all paths in a way similar with the base case

 γ gap on each subnetwork and 4/3 because of the "base" network

- We do not know how to compute worst Nash flow efficiently.
- In Yes instances, a solution of 2DDP exists inside the returned network
- There are polynomial many networks
- We can check in polynomial time each one

- We do not know how to compute worst Nash flow efficiently.
- In Yes instances, a solution of 2DDP exists inside the returned network
- There are polynomial many networks
- We can check in polynomial time each one

- We do not know how to compute worst Nash flow efficiently.
- In Yes instances, a solution of 2DDP exists inside the returned network
- There are polynomial many networks
- We can check in polynomial time each one

- We do not know how to compute worst Nash flow efficiently.
- In Yes instances, a solution of 2DDP exists inside the returned network
- There are polynomial many networks
- We can check in polynomial time each one

- We do not know how to compute worst Nash flow efficiently.
- In Yes instances, a solution of 2DDP exists inside the returned network
- There are polynomial many networks
- We can check in polynomial time each one