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Outline

0 Reducing from a hard to approximate problem

© Reducing from an NP-hard problem
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General |dea

Proving hardness of a-approximating an optimization problem B:
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General |dea

Proving hardness of a-approximating an optimization problem B:

@ Pick any “hard” problem A
@ Construct in polytime an instance of B

@ Make sure that solution of B gives back in polytime a solution of A

Selected Topics in Algorthms On Hardness of Approximation



General |dea

Proving hardness of a-approximating an optimization problem B:

Pick any “hard” problem A
Construct in polytime an instance of B

Make sure that solution of B gives back in polytime a solution of A

Make sure that given an a-approximation algorithm for B gives back
o a Yes or No answer for the instance of A (hard decision problem) or
e an f(a)-approximate solution for A (hard to f(«)-approximate
problem)
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Outline

0 Reducing from a hard to approximate problem
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Hard to %—Approximate Problem: MaxE3Sat

input: Set of m clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses
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Hard to %—Approximate Problem: MaxE3Sat

input: Set of m clauses with exactly 3 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses

Facts:
@ simple randomized algorithm returns %m clauses satisfied in

expectation = optimal solution k* > Im

@ Unless P=NP, there is no % + e-approximation algorithm
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to prove NP-Hard to Approximate Problem: Max2Sat

input: Set of m clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses
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to prove NP-Hard to Approximate Problem: Max2Sat

input: Set of m clauses with at most 2 literals

output: Assignment to the variables that maximizes the number of
satisfied clauses
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Reducing MaxE3Sat to Max2Sat

The reduction

@ Let A be an instance of MaxE3Sat with m clauses
@ For each clause say ¢; = xj1 V Xj2 V X3 create the following 10 clauses:

Xi1, Xi2, Xi3

Xi1 V Xi2, Xi2 V Xi3 , Xj3 V Xij1

vi, where y; is a new variable corresponding to clause ¢;
xi1 V Yis Xi2 V' Vi, Xi3 V' Yi

@ Combine all clauses to create an instance B of Max2Sat
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Reducing MaxE3Sat to Max2Sat

The reduction

@ Let A be an instance of MaxE3Sat with m clauses
@ For each clause say ¢; = xj1 V Xj2 V X3 create the following 10 clauses:
@ X1, Xj2,Xi3
° X1V Xi2, Xi2 V Xi3 , Xi3 V Xij1
e y;, where y; is a new variable corresponding to clause ¢;
° xin Vi, X2 VYi, Xis Vi

@ Combine all clauses to create an instance B of Max2Sat

Facts:

@ If ¢; is satisfied then 7 out of 10 clauses can be satisfied
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Reducing MaxE3Sat to Max2Sat

The reduction

@ Let A be an instance of MaxE3Sat with m clauses
@ For each clause say ¢; = xj1 V Xj2 V X3 create the following 10 clauses:
@ X1, Xj2,Xi3
° X1V Xi2, Xi2 V Xi3 , Xi3 V Xij1
e y;, where y; is a new variable corresponding to clause ¢;
° xin Vi, X2 VYi, Xis Vi

@ Combine all clauses to create an instance B of Max2Sat

Facts:

@ If ¢; is satisfied then 7 out of 10 clauses can be satisfied

@ If ¢; is not satisfied then at most 6 out of 10 clauses can be satisfied
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Reducing MaxE3Sat to Max2Sat

The reduction
@ Let A be an instance of MaxE3Sat with m clauses
@ For each clause say ¢; = xj1 V Xj2 V X3 create the following 10 clauses:

@ X1, Xj2,Xi3
° Xj1 V Xj2, Xi2 V Xi3 , Xi3 V Xj1
e y;, where y; is a new variable corresponding to clause ¢;
o Xxi1 Vi, Xi2 Vi, Xi3 Vi
@ Combine all clauses to create an instance B of Max2Sat )
Facts:

@ If ¢; is satisfied then 7 out of 10 clauses can be satisfied
@ If ¢; is not satisfied then at most 6 out of 10 clauses can be satisfied

o If k™ is the optimal number of satisfied clauses for A then
7k* 4+ 6(m — k*) is the optimal number of satisfied clauses for B
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. )
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat

@ Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.
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Assume we have an a-approximation algotithm for Max2Sat, say Alg
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e Call k the number of corresponding satisfied clauses in A
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat

@ Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A
It should be k > X — 6m (else 7Tk + 6(m — k) < X)
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat

@ Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

e Call k the number of corresponding satisfied clauses in A
e It should be k > X — 6m (else 7Tk + 6(m — k) < X)
o k> a(Tk*+6(m—k*))—6m = ak*+6(a—1)m > ak*+6(a—1)8k*
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat

@ Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k > X — 6m (else 7Tk + 6(m — k) < X)

k> a(7Tk*+6(m—k*))—6m = ak*+6(a—1)m > ak*+6(a—1)2k*
k> (5—7504 — g)k*
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Using an Approximation Algorithm for Max2Sat

To show: a-approximation for B gives f(«a)-approximation for A. J

Assume we have an a-approximation algotithm for Max2Sat, say Alg

@ From instance A of MaxE3Sat construct instance B of Max2Sat

@ Solve B using Alg to take an approximate solution of B that satisfes
say X clauses.

Call k the number of corresponding satisfied clauses in A

It should be k > X — 6m (else 7Tk + 6(m — k) < X)

k> a(7Tk*+6(m—k*))—6m = ak*+6(a—1)m > ak*+6(a—1)2k*
k > (55a — 4—78)k

% hardness of apprOX|mat|on for A implies « hardness of approximation for
. 55 48 433
B, Va: Za— > = Va:a> 35
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Outline

© Reducing from an NP-hard problem
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NP Hard Problem: 2DDP

input: A directed Network D and two pairs sy, t1 and s, to.

output: Answer to the question: Are there 2 vertex disjoint paths
joining s; to t; and s to b
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to Prove NP Hard to Approximate: BestSubnet

Abstract description of BestSubnet:

input: A directed Network G, with source s, target t and traffic
rate r

output: Find Subnetwork that minimizes cost at Equilibrium

Selected Topics in Algorthms On Hardness of Approximation



to Prove NP Hard to Approximate: BestSubnet

Abstract description of BestSubnet:
input: A directed Network G, with source s, target t and traffic
rate r
output: Find Subnetwork that minimizes cost at Equilibrium

Approximate version:

output: Find Subnetwork with Equilibrium cost that approximates
the Best Subnetwork’s cost at equilibrium
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Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.
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Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.

@ Yes instance — 3 subnetwork with worst Equilibrium cost= r/4

e No instance — V subnetwork worst Equilibrium cost > r/3
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Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct a “base” network.

@ Yes instance — 3 subnetwork with worst Equilibrium cost= r/4

e No instance — V subnetwork worst Equilibrium cost > r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3 — €)-approximation algorithm

4

In a Yes instance, returned solution cost < (4/3 —€)r/4 < r/3
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Routing Instance

@ Traffic rate r to be routed through paths from s to t.
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Routing Instance

@ Traffic rate r to be routed through paths from s to t.

@ Edges are associated with a cost function
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Routing Instance

@ Traffic rate r to be routed through paths from s to t.
@ Edges are associated with a cost function

@ Depending on the routing and the resulting load of each edge,
e each path has a cost
o the network itself has an “overall cost”
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Routing Instance

@ Traffic rate r to be routed through paths from s to t.
@ Edges are associated with a cost function

@ Depending on the routing and the resulting load of each edge,
e each path has a cost
o the network itself has an “overall cost”
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Our Case: Bottleneck Routing Games

@ The cost of each path is its Bottleneck Cost: the cost of its most
costly edge
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Our Case: Bottleneck Routing Games

@ The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

@ The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network
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Our Case: Bottleneck Routing Games

@ The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

@ The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.
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Our Case: Bottleneck Routing Games

@ The cost of each path is its Bottleneck Cost: the cost of its most
costly edge

@ The Overall cost is the Bottleneck Cost of the Network: the cost of
the most costly edge (under use) on the Network

Paths: Upper path costs 1. Middle path costs 2. Lower path costs 2.
Network: The Bottleneck cost of the Network is 2
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Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path )
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Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path )

@ Not unique: There are optimal, bad and worst Nash flows
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Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path )

@ Not unique: There are optimal, bad and worst Nash flows
@ At a Nash flow, edges with cost > BC form a cut
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Equilibria-Nash Flows

Nash Flow: A flow under which no player wishes to change path J

@ Not unique: There are optimal, bad and worst Nash flows
@ At a Nash flow, edges with cost > BC form a cut
@ Worst Nash flow: flow is routed through few blocking paths
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Braess Paradox

Network (a) has worst Nash flow BC = 2

Braess Paradox: Network's performance may improve by removing edges
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Braess Paradox

Network (a) has worst Nash flow BC = 2 while Network (b) has worst Nash
flow BC =1

Braess Paradox: Network's performance may improve by removing edges
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Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.
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Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

@ It is NP-hard to approximate Best Subnetwork within a factor of 4/3
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Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

@ It is NP-hard to approximate Best Subnetwork within a factor of 4/3

@ It is NP-hard to approximate Best Subnetwork within a factor of
O(n0121-¢)
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Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

@ It is NP-hard to approximate Best Subnetwork within a factor of 4/3

@ It is NP-hard to approximate Best Subnetwork within a factor of
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Network Design Hardness Results

Best Subnetwork: Find subnetwork for which worst Nash flow cost is
minimized.

@ It is NP-hard to approximate Best Subnetwork within a factor of 4/3

@ It is NP-hard to approximate Best Subnetwork within a factor of
O(n0121-¢)

Reductions from 2DDP (2 Directed Disjoint Paths Problem)
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Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the "base” network.

@ Yes instance — 3 subgraph with worst Nash flow cost= r/4
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@ Yes instance — 3 subgraph with worst Nash flow cost= r/4

e No instance — V subgraph worst Nash flow cost > r/3
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Reducing 2DDP to Approximating Best Subnetwork

Given an instance of 2DDP we construct the "base” network.

@ Yes instance — 3 subgraph with worst Nash flow cost= r/4
e No instance — V subgraph worst Nash flow cost > r/3

Reduction provides a 4/3 gap for Best Subnetwork Problem
or else:

There exists a (4/3 — €)-approximation algorithm

4

In a Yes instance, returned solution cost < (4/3 —€)r/4 < r/3
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Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external
vertices and edges

el:x/2

e2: ex

e3: x/2

\@M

@ There are 2 paths from {s;, s} to {t1, &2}
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Reducing 2DDP to Approximating Best Subnetwork

Given Network D we construct Network G by adding these external
vertices and edges

el:x/2

e2: ex

e3: x/2

\@M

@ There are 2 paths from {s;, s} to {t1, &2}

@ Optimal uses the “quick” path and two slow paths and achieve
BC=r/4
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D is a YES instance of 2DDP

o Let p,q be the disjoint paths
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D is a YES instance of 2DDP

o Let p,q be the disjoint paths
o Keep external graph , p and q.
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D is a YES instance of 2DDP

o Let p,q be the disjoint paths
o Keep external graph , p and q.

@ Moving from u to v and vice versa is “free”
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D is a YES instance of 2DDP

o Let p,q be the disjoint paths
o Keep external graph , p and q.

@ Moving from u to v and vice versa is “free”

@ Unique Nash flow uses the quick path and two “slow” ones: worst
Nash flow BC = r/4
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D is a NO instance of 2DDP

When e, is missing e4, es and eg form a “slow” cut

[“slow” cut] or [1 “quick” and 1 "slow” path] = worst Nash BC > r/3
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Inapproximability of Best Subnetwork

With the "base” network we achieve a 4/3 gap for Best Subnetwork
Problem J
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Inapproximability of Best Subnetwork

With the "base” network we achieve a 4/3 gap for Best Subnetwork
Problem

We can amplify gaps
@ If network G provides gap vy

@ G combined with base network provides gap 4/3 v
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Inapproximability of Best Subnetwork

With the "base” network we achieve a 4/3 gap for Best Subnetwork
Problem

We can amplify gaps
o If network G provides gap
@ G combined with base network provides gap 4/3 v

Applying recursively for k = logy/3n times, we get a Network with
O(8%n) = O(n®23) vertices and edges providing gap n
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Amplifying a gap by 4/3 factor

Amplify the gap

o If network G (with striclty increasing linear latencies) provides gap =y
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Amplifying a gap by 4/3 factor

Amplify the gap

o If network G (with striclty increasing linear latencies) provides gap =y
@ G combined with base network provides gap (4/3)

Selected Topics in Algorthms On Hardness of Approximation



YES instance of 2DDP

We keep the subgraph with

@ the paths p,q and
@ the good subgraphs in the copies of G
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YES instance of 2DDP

We keep the subgraph with

@ the paths p,q and
@ the good subgraphs in the copies of G
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YES instance of 2DDP

We keep the subgraph with

@ the paths p,q and
@ the good subgraphs in the copies of G
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NO instance of 2DDP

@ We have to check all subgraphs
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NO instance of 2DDP

@ We have to check all subgraphs
@ Any subgraph of the copies has few blocking paths
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NO instance of 2DDP
@ We have to check all subgraphs

@ Any subgraph of the copies has few blocking paths

@ Try to block all paths in a way similar with the base case

o \\

- |
TNE Q any ba /
| // any uésubc/ [N

an bad subG/2
¢
bad subGl2 BadsubGr2

v gap on each subnetwork and 4/3 because of the "base” network
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Interesting Point

How do we solve 2DDP with “good” approximation Algorithm? )
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Interesting Point

How do we solve 2DDP with “good” approximation Algorithm? )

@ We do not know how to compute worst Nash flow efficiently.
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Interesting Point

How do we solve 2DDP with “good” approximation Algorithm? )

@ We do not know how to compute worst Nash flow efficiently.

@ In Yes instances, a solution of 2DDP exists inside the returned
network
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Interesting Point

How do we solve 2DDP with “good” approximation Algorithm? )

@ We do not know how to compute worst Nash flow efficiently.

@ In Yes instances, a solution of 2DDP exists inside the returned
network

@ There are polynomial many networks
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Interesting Point

How do we solve 2DDP with “good” approximation Algorithm? )

@ We do not know how to compute worst Nash flow efficiently.

@ In Yes instances, a solution of 2DDP exists inside the returned
network

@ There are polynomial many networks

@ We can check in polynomial time each one
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