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Introduction

In computer science, many of the most fascinating and practically important problems are,
unfortunately, NP-hard. This means that finding an optimal solution for large inputs is often
computationally infeasible, requiring an impractically long amount of time. Like an old quote goes,

“Fast. Cheap. Reliable. Choose two.”

In much the same way, if P # NP, we cannot simultaneously design algorithms that:
© always find optimal solutions,
@ run in polynomial time, and

© work for all possible instances.

To handle NP-hard optimization problems, we must relax at least one of these requirements—typically
trading off optimality for efficiency, which leads to the study of approximation algorithms.



a-approximation defintion

Definition:

Let P be a minimization problem, and / be an instance of P. Let A be an algorithm that finds
a feasible solution to instances of P. Let A(/) be the cost of the solution returned by A for the
instance /, and OPT(/) be the cost of the optimal solution (mimimum) for I. Then, A is said

to be an a-approximation algorithm, where o > 1, if

A(l)
OPT(I)

v, < a.




Input
An undirected graph G = (V, E).

Problem
Find a subset of vertices S C V such that:
@ Covers all edges: every edge e € E has at least one endpoint in S.

@ Has minimum cardinality:

|S| = minimum possible number of vertices covering all edges.




Maximal Matching

Definition
A matching in a graph G = (V, E) is a subset of edges M C E such that no two edges in M
share a common endpoint.

Maximal Matching

A matching M is called maximal if no additional edge can be added to M without violating
the matching property.




Approx-Vertex-Cover Algorithm

Algorithm 1 Approx-Vertex-Cover(G)
1 C«+0
2: while E # () do
3. pick any {u,v} € E
4 C+ CU{u,v}
5
6
7

delete all edges incident to either u or v
: end while
: return C

Observation

The set of edges picked by this algorithm is a maximal matching M, since no two selected
edges share a vertex. An equivalent description:

@ Find a maximal matching M.
@ Return all endpoints of edges in M.




Analysis of Approximation Algorithm

Claim 1

This algorithm returns a vertex cover.

Proof: Every edge in M is covered. If an edge e ¢ M were uncovered, then M U {e} would be
a matching, contradicting maximality of M. W

v

Claim 2

The cover has size at most 2x optimal.
Proof: The optimal vertex cover must cover all edges in M, so it must contain at least one
endpoint of each, implying

|C*| = OPT(I) > |M|.

Our algorithm returns A(/) = 2|M|, since we double count each edge, hence

A(l) = 2|M| < 2|C*| = 2 x OPT(1).

Therefore, the algorithm is a 2-approximation. H




Is o = 2 a Tight Bound?

Question: Is it possible that this algorithm can do better than a 2-approximation?
Answer: We can show that 2-approximation is a tight bound by a tight example.

Tight Example: Consider a complete bipartite graph of n black nodes on one side and n red
nodes on the other side, denoted K, .



Complete Bipartite Graph Example

Figure 3: K, ,- complete bipartite graph



Counterexample

Notice that the size of any maximal matching of this graph equals:
M| = n.

So the APPROX-VERTEX-COVER(G) algorithm returns a cover of size 2n:

A(Kn,n) = 2n.
But the optimal solution is clearly:

OPT(Kn,n) = n.



Discussion: Tightness of 2-Approximation

Note that a tight example needs to have arbitrarily large size in order to prove tightness of analysis;
otherwise, we could just use brute force for small graphs and the approximation algorithm for large ones,
to avoid that bound. Then the algorithm wouldn't truly be “forced” to suffer the worst-case factor of 2.

Here, this example shows that the algorithm gives a 2-approximation no matter what the size n is.

Conclusion
The 2-approximation bound for the Vertex Cover algorithm is tight.




Weighted Vertex Cover

Input
An undirected graph G = (V, E) with:

@ Vertex weights w; > 0 for each vertex i € V.

Problem
Find a subset of vertices S C V that:
@ Covers all edges: every edge e € E has at least one endpoint in S.

@ Has minimum total weight:

weight(S) = Z w;.

ieS




Weighted Vertex Cover: IP Formulation

Given a graph G = (V, E) and vertex weights w,, > 0, find a minimum-weight vertex cover.

Integer Program

min E Wy Xy
veV

st x,+x >1, Y(uv)eE
x, €{0,1}, YveV

LP Relaxation

Relax integrality: 0 < x, < 1. Let x* be an optimal LP solution (which we can compute in polynomial
time).




Rounding Algorithm and 2-Approximation Proof

Algorithm
@ Solve the LP relaxation and obtain x*.
@ Return
C={veV|x;>1/2}.
Feasibility

For every edge (u, v), we have x} 4+ xJ > 1. Hence at least one endpoint has x; > 1/2. Thus
C is a valid vertex cover.




2-approximation proof

Key inequality

If v e C, then x} >%
wy, < 2wy x;)

Summing over all selected vertices:

w(C) = Z wy, < Z:ZWVX‘;k < ZZW\,X;".

veC veC veVv

Conclusion

C)<2) wx;=2LP*<20PT.
vev

Thus the rounding algorithm is a 2-approximation.




Optimality of the Factor 2

@ The analysis is tight: there exist instances where w(C) = 2 x OPT.

@ Under the Unique Games Conjecture, no polynomial-time algorithm can achieve an
approximation factor better than 2 — ¢ for any € > 0.

@ Therefore, the LP-rounding algorithm is essentially best possible.



Metric Traveling Salesman Problem (Metric TSP)

Input
A complete graph G = (V, E) with:
@ Edge costs ¢;j > 0 for all edges.
@ Costs satisfy the triangle inequality:

cj < cik+cxj, foralli,j, ke V.

Problem

Find a Hamiltonian cycle that visits each vertex exactly once and returns to the start, with
minimum total cost.




Minimum Spanning Tree (MST)

Input
A connected, undirected graph G = (V/, E) with:
@ Edge costs c. > 0 for each edge e € E.

Problem
Find a spanning tree T C E that:
@ Connects all vertices in V.

@ Has minimum total cost:

cost(T) = Z Ce-

ecT




Minimum Cost Perfect Matching

Input
A complete graph G = (V, E) with:
@ |V/| vertices (where | V| is even).

o Edge costs c. > 0 for each edge e € E.

Output
A perfect matching M C E that minimizes the total cost:

>
eeM
subject to:

@ Every vertex in V is incident to exactly one edge in M.

Note that (1) is equivalent to: No two edges in M share a common vertex.



Useful Lemmas

Lemmas (Basic Graph Theory)
Let G be a graph. Then:

@ the number of vertices in G having odd degree is even.

o if G is complete and has an even number of vertices, then it has a perfect matching.

o if G is connected and every vertex has an even degree, then it has an Eulerian tour.




Christofides’ Algorithm: Steps and Complexity

Algorithm Steps:

o
2]
o

Compute MST: Find a Minimum Spanning Tree T of the graph G = (V, E).
Find odd-degree vertices: Let O = {v € V : degy(v) is odd}.

Minimum-cost perfect matching: Compute a perfect matching M on G[O] that
minimizes cost(M) = > .y Ce-

Form Eulerian multigraph: Combine edges: H = T U M. All vertices in H have even
degree.

Construct Hamiltonian cycle: Find an Eulerian tour in H, then shortcut repeated
vertices using the triangle inequality to obtain a hamiltonian cycle C.



Shortcutting in Christofides’ Algorithm

Idea: After forming an Eulerian tour in H = T U M, some vertices may be visited multiple
times. Shortcutting skips repeated vertices to create a Hamiltonian tour without increasing
the cost (triangle inequality is used). Example:

e Eulerian tour (vertices may repeat):
A—-B—-C—-B—>D-—=A
@ Shortcutting removes repeated visits to B:

A—-B—-C—=D-—=A.

Why it works:
@ Graph is complete = edge C — D exists.
e Triangle inequality: ¢(C, D) < ¢(C, B) + ¢(B, D) = shortcutting does not increase
total cost.



Christofides’ Algorithm: Steps and Complexity

Time Complexity:
o MST: O(|E|log|V]) (Prim or Kruskal).
e Matching: O(|V|®) (Edmonds’ Blossom algorithm).
e Euler tour + shortcutting: O(|E|).
Overall: O(|V?)



Analysis of Christofides' Algorithm

Theorem: Christofides’' algorithm is a 1.5-approximation for the metric TSP. Proof:

© Let OPT be the cost of an optimal TSP tour.

@ Compute a Minimum Spanning Tree T. Removing one edge from the optimal tour gives

a spanning tree, so
cost(T) < OPT.

© Let O be the set of vertices of odd degree in T. Since the number of odd-degree
vertices is even, we can form a minimum-cost perfect matching M on G[O]. Now we
shortcut the OPT tour to visit only the vertices from O forming a cycle Cp|, where |O] is
even. The cycle can be split in two different perfect matchings, My, M,, by picking edges
alternately. Because M is minimum we now that

1

OPT > cost(My) + cost(M,) > 2cost(M) <= cost(M) < ~OPT.

N |



Analysis of Christofides' Algorithm

@ Add M to T to obtain a connected multigraph H = T U M. Every vertex in H has even
degree, so H is Eulerian.

© Find an Eulerian tour of H,shortcut repeated vertices and let C be the new tour. The
triangle inequality ensures that shortcutting does not increase cost, so

cost(C) < cost(T) + cost(M).

@ Combining bounds:
1
cost(C) < OPT + EOPT = gOPT.

Conclusion: Christofides’ algorithm always produces a tour within 1.5 times the optimal cost.



Breaking the 3/2 Barrier for Metric TSP

Main Result: There exists a randomized polynomial-time algorithm achieving an

approximation ratio of

.
2

for some extremely small € > 0. This was the first improvement over the classical Christofides’
bound of 3/2.

Key Algorithmic Innovations:

@ Linear Programming Relaxation: Solve the Held—Karp (subtour elimination) LP to
obtain a fractional solution x, which serves as a lower bound on the optimal TSP cost.

@ Random Spanning Tree Sampling: Instead of constructing a single MST, sample a
spanning tree T from a carefully chosen probability distribution whose edge marginals
match x. This ensures that, in expectation, T has a lower expected cost and better
structural properties.



Breaking the 3/2 Barrier for Metric TSP

@ Parity Correction (Matching): Find a minimum-cost perfect matching on the
odd-degree vertices of the sampled tree T. Combine the edges of T and the matching to

obtain an Eulerian multigraph.

@ Analysis via Structural Properties: The algorithm's analysis shows that, in expectation,
the matching cost is strictly less than %OPT. This refined bound yields a total expected
tour cost below 1.5 x OPT.

Significance:
e Demonstrates that the 3/2 approximation ratio is not tight.
@ Opens the door to future progress toward the conjectured 4/3 bound.

@ Although the improvement ¢ is extremely small, it represents a major theoretical
breakthrough.
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