
Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 1

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables

Selected Topics in Algorithms

ΑΛΜΑ, ΣΗΜΜΥ

Ευάγγελος Μαργέτης

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 2

• Dynamic set of keys 𝑆 = {𝑘1, … , 𝑘𝑛}.

• Table has 𝑚 buckets indexed 0…𝑚 − 1.

• Hash function ℎ ∶ 𝑈 → {0,… ,𝑚 − 1}.

• Insertions and deletions change 𝑛 over time.

• Performance depends on expected comparisons.

• Chaining used to store collisions per bucket.

• Growth of 𝑛 increases computational cost.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 3

• Load factor defined as 𝛼 =
𝑛

𝑚
.

• Expected chain length equals 𝛼 exactly.

• Successful search: 𝐸succ = 1 +
𝛼

2
.

• Unsuccessful search: 𝐸 = 𝛼 under chaining.

• As 𝛼 increases operations slow linearly.

• Fixed table size implies increasing 𝛼.

• Controlling 𝛼 is fundamental objective.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 4

• Final cardinality n is unknown beforehand.

• We need a mechanism to keep 𝛼 ≤ 𝛼𝑚𝑎𝑥.

• A classical solution is to allocate a larger table 𝑚′ > 𝑚.

• Then we rehash all keys using ℎnew 𝑘𝑖 .

• This rehash step has worst-case running time Θ 𝑛 .

• Such pauses are unacceptable in practical systems.

• Therefore we need smooth growth without full rehashing.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 5

• It adapts Linear Hashing for in-memory use.

• It introduces Spiral Storage as an alternative method.

• It defines full data structures and split mechanics.

• It analyzes expected costs under uniform hashing.

• It derives search formulas across a full split cycle.

• It provides experiments comparing all approaches.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 6

• Dynamic hashing uses buckets in memory.

• Keys are mapped by a base hash function.

• Chains store elements inside each bucket.

• The table expands as the load grows.

• The overall load factor is 𝛼 =
𝑛

𝐵

• Expansion occurs when α exceeds limits.

• Costs count hash computations and comparisons.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 7

• The table contains m active bucket positions 𝑚 = 𝑁 ⋅ 2𝐿 + 𝑝.

• Buckets are organized in segments of size 𝑁.

• The active range expands as p increases.

• Each bucket holds a chaining list of keys.

• Addressing uses two hash levels ℎ𝐿 𝑘 and ℎ𝐿+1 𝑘 .

• The structure supports incremental bucket splitting.

• This representation enables smooth predictable growth.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 8

• Linear Hashing stores buckets in fixed-size segments.

• A directory points to segments with capacity 𝑁.

• The active bucket count equals 𝑚 = 𝑁 ⋅ 2𝐿 + 𝑝.

• Each bucket has a chain storing its records.

• The split pointer 𝑝 indicates the next bucket to grow.

• Hashing uses functions ℎ𝐿 𝑘 and ℎ𝐿+1 𝑘 for addresses.

• This structure enables incremental controlled expansion.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 9

• Assume the table has N=4 buckets and the split pointer is p=1.

• A new key hashes to address 5 using h1, which corresponds to the bucket being

split.

• We first insert the key using the old address and then split bucket 1.

• Keys that now match h1 move to the new bucket 4.

• The split pointer advances to p=2.

• This illustrates how growth occurs gradually.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 10

• Linear Hashing uses two hash functions during splitting.

• Before splitting: the address is computed as: Insert → Equation → type:

ℎ₀(𝐾) = 𝐾 𝑚𝑜𝑑 5

• After splitting: the new address is Insert → Equation → type: ℎ₁(𝐾) =

𝐾 𝑚𝑜𝑑 10

• Keys with last digit 0 satisfy ℎ₁(𝐾) = 0 and remain in bucket 0.

• Keys with last digit 5 satisfy ℎ₁(𝐾) = 5 and move to the new bucket 5.

• Only bucket 0 is scanned and only half of its keys relocate.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 11

• Linear Hashing supports lookup, insertion and splitting.

• Successful lookup has expected cost 1 +
𝛼

2
.

• Unsuccessful lookup has expected cost α.

• Average cost across a split cycle is ҧ𝑆 𝛼 = 1 +
5

6
𝛼 and ഥ𝑈 𝛼 =

11

12
𝛼.

• Each insertion performs about 1.5 extra relocations.

• Spiral Storage uses exponential mapping 2𝑥 per access.

• Thus LH is asymptotically optimal and faster in practice than Spiral Storage.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 12

• Successful search in a cycle costs 𝑆 𝛼, 𝑥 = 1 +
𝛼

2
2 + 𝑥 − 𝑥2 .

• Unsuccessful search in a cycle costs 𝑈 𝛼, 𝑥 =
𝛼

2
2 + 𝑥 − 𝑥2 .

• Averaging over all split positions gives ҧ𝑆 𝛼 = 1 +
5

6
𝛼.

• Unsuccessful average cost becomes ഥ𝑈 𝛼 =
11

12
𝛼.

• Each insertion causes about 1.5 extra moves.

• Cycle length and split frequency depend on 𝑚 = 𝑁 ⋅ 2𝐿 + 𝑝.

• Overall access cost remains Θ(α) with smooth growth.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 13

• Linear Hashing keeps each key in its correct bucket.

• A key maps to h0 or to h1 depending on the split pointer.

• Before splitting bucket i all keys use h0.

• After splitting, keys satisfying ℎ1 𝐾 = ℎ0 𝐾 + 𝑁.

• move to the new bucket.

• The invariant “p buckets are split” always holds.

• This ensures correct addressing during expansion.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 14

• Let the table size be 𝑚 = 𝑁 · 2ᴸ + 𝑝 and p the next bucket to be split.

• After splitting one bucket the pointer p increases by one. Insert → Equation →

type: 𝑝 ∶= 𝑝 + 1

• If p reaches the end of the current round then a new level begins. Insert →

Equation → type: 𝑖𝑓 𝑝 = 𝑁 · 2ᴸ 𝑡ℎ𝑒𝑛 𝐿 ∶= 𝐿 + 1 𝑎𝑛𝑑 𝑝 ∶= 0

• These rules maintain the invariant that exactly p buckets have been split.

• They also ensure that growth proceeds smoothly one bucket at a time.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 15

• We define the global load factor as α = n/m.

• Let x ∈ [0,1] denote the fraction of buckets already split during the expansion

cycle.

• Before splitting, a bucket holds all keys addressed by h₀; after splitting, half of its

keys move to the new bucket.

• The expected load of an unsplit bucket equals: 𝑧 = 𝛼 1 + 𝑥 .

• The expected load of a split bucket equals z/2.

• These quantities increase smoothly as x grows.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 16

• A successful search examines half of the bucket’s chain.

• If the bucket is split (probability x), the expected cost is: 1 + z/4

• If the bucket is unsplit (probability 1 − x), the expected cost is: 1 + z/2

• Thus the total expected successful search cost is: 𝑆 𝛼, 𝑥 = 𝑥 1 + 𝑧/4 +

1 − 𝑥 1 + 𝑧/2 .

• After substituting z = α(1 + x) we obtain: 𝑆 𝛼, 𝑥 = 1 + 𝛼/2 2 + 𝑥 − 𝑥2 .

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 17

• An unsuccessful search scans the entire chain.

• If the bucket is split, the expected load is z/2; otherwise it is z.

• Hence the total expected unsuccessful search cost is: 𝑈 𝛼, 𝑥 = 𝑥 𝑧/2 +

1 − 𝑥 𝑧.

• Substituting z = α(1 + x) yields: 𝑈 𝛼, 𝑥 = 𝛼/2 2 + 𝑥 − 𝑥2 .

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 18

• During one expansion cycle, x increases uniformly from 0 to 1.

• The average successful search cost is: 𝑆 𝛼 = 0׬
1
𝑆 𝛼, 𝑥 𝑑𝑥 .

• Evaluating the integral gives: 𝑆 𝛼 = 1 + 5/6 𝛼.

• Similarly, the average unsuccessful search cost is: 𝑈 𝛼 = 0׬
1
𝑈 𝛼, 𝑥 𝑑𝑥 =

11/12 𝛼.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 19

• Insertions cost an unsuccessful search plus split work.

• A split happens on fraction 1/α of insertions.

• The split bucket has load 𝛼 1 + 𝑥 .

• Weighting by probability gives total cost 𝑇insert = 1.5.

• Thus insertion runs in constant expected time.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 20

• Insertion computes the bucket using ℎ𝐿 or ℎ𝐿+1.

• If 𝛼 > 𝛼𝑚𝑎𝑥, bucket p splits.

• Splitting moves keys whose new address addr 𝑘 is larger.

• After splitting, the pointer p increases by one.

• When p reaches 𝑁 ⋅ 2𝐿 it resets to zero.

• At that moment the level L increases by one.

• These invariants ensure smooth predictable expansion.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 21

• Averaging over a full expansion cycle gives 𝑆 𝛼 = 1 +
5𝛼

6
for successful

searches.

• The average unsuccessful search cost over the cycle is 𝑈 𝛼 = 11/12 ∗ 𝛼.

• Only a fraction split frequency =
1

𝛼
insertions trigger bucket splits.

• The bucket being split has expected load expected split bucket load z =

𝛼 1 + 𝑥 .

• The expected extra hash computations per insertion are extra insert cost = 1.5.

• Linear Hashing therefore achieves constant amortized insertion cost.

• Performance is stable even when the table grows large.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 22

• Spiral Storage uses an exponential address map 𝑦 = 𝑑𝑥 for x ∈ [S, S+1].

• Active buckets lie in the interval 𝑑𝑆 , 𝑑𝑆+1 and growth shifts this interval by

increasing 𝑆.

• When a bucket leaves the interval its keys move.

• Inverse mapping, let 𝑦 = 2𝑥 and x = 𝑙𝑜𝑔2 𝑦 (logical coordinates).

• Its main drawback is costly evaluation of 𝑑𝑥.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 23

• Differentiating the inverse map gives density: 𝑝 𝑦 =
1

𝑦 ln 2
which increases for

small values ​​of y.

• The expected bucket load equals: 𝜆 𝑦 = 𝛼/ 𝑦𝑙𝑛2 .

• The distribution is skewed toward the left side.

• This load profile drives the search costs.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 24

• A successful search inspects half the expected load λ(y): 𝑆 𝛼 = 1 + 1׬
2
(𝜆 𝑦 /

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 25

• Spiral Storage uses the same two-level structure and state variables shift the

window right as S grows.

• Relocation uses the logarithmic mapping from 𝑥 = log𝑑 𝑦 .

• Address evaluation requires exponentials 𝑑𝑥 and inverse mapping requires

logarithms 𝑥 = log𝑑 𝑦. These computations have higher latency than LH.

• Expected search cost remains proportional to α. However, mapping (constant)

dominates runtime for large datasets.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 26

• The experiments evaluate hashing performance under load 𝛼 =
𝑛

𝑚
.

• Random key sets were inserted to reach size 𝑛 ≈ 106.

• Search tests include successful and unsuccessful probes.

• Linear Hashing uses incremental splits controlled by 𝑝.

• Spiral Storage recomputes bucket locations using 𝑑𝑥.

• All methods are compared against rehash-based schemes Rehash.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 27

• The theoretical cost of a successful search in Linear Hashing with load α = 5 is approximately 3.6

comparisons. The observed measurements for Files A, B, and C align extremely closely with this

prediction, with deviations below one percent.

• This confirms that the load distribution model and the formula 1 +
5

6
𝛼accurately describe the

behavior of Linear Hashing across different table sizes.

• As the number of records increases, the expected cost remains effectively constant, demonstrating

that the incremental split mechanism maintains a stable average chain length.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 28

• The experimental results for Spiral Storage closely match the theoretical prediction of

3.61comparisons at load 𝛼 = 5.

• The observed values vary only slightly across different files and table sizes, remaining within a

narrow band around the expected value.

• This confirms that the skewed load distribution 𝜆 𝑦 =
𝛼

𝑦 ln 2
accurately models search cost in

practice. Although Spiral Storage is computation-heavier than Linear Hashing, its lookup

performance remains stable and predictable.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 29

• Linear Hashing consistently loads and searches faster than Spiral Storage across all datasets and load

factors.

• The difference is most pronounced during loading, where Spiral Storage pays the cost of evaluating

exponential and logarithmic functions. Search times also show a uniform advantage for Linear Hashing,

reflecting its simpler address computation.

• Both methods scale smoothly as α increases, but Linear Hashing achieves strictly lower constant factors in

practice.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 30

• Measured search costs match the predicted values 𝑆 𝛼 = 1 +
𝛼

2
, 𝑈 𝛼 = 𝛼.

• Insertion times show smooth growth without pauses.

• Linear Hashing performs near the theoretical bounds ҧ𝑆 𝛼 = 1 +
5

6
𝛼 και

ഥ𝑈 𝛼 =
11

12
𝛼

• Spiral Storage behaves correctly but is slower.

• Its overhead comes from evaluating powers like 𝑑𝑥.

• Trees show higher search costs under large α.

• Linear Hashing is the fastest across all experiments.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 31

• Binary search trees build quickly for small key sets.

• However search time depends on the height of the tree.

• Unbalanced trees degrade badly under skewed insertion orders.

• Linear Hashing maintains bounded chain lengths and constant expected search

time.

• Tree nodes require two pointers per record, increasing overhead.

• For large tables Linear Hashing clearly dominates search performance.

• Binary trees are competitive only for very small datasets.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 32

• Fixed-size double hashing works best around load factor 𝛼 ≈ 0.8.

• To support growth it periodically rehashes the entire table at cost 𝑇rehash

= Θ 𝑛 .

• This causes long pauses whenever a full reorganization is triggered.

• Linear Hashing grows by splitting one bucket at a time with amortized cost

amortized growth cost = 𝑂 1 .

• At similar load factors both methods achieve comparable lookup times.

• However Linear Hashing avoids global rebuilds and jitter in response times.

• Dynamic double hashing therefore offers no clear advantage over Linear

Hashing.

Dynamic Hash Tables

Selected Topics in Algorithms Dynamic Hash Tables 33

• Linear Hashing remains the most practical scheme.

• It offers smooth growth and predictable performance.

• Split operations add minimal amortized overhead.

• Spiral Storage is elegant but computationally heavy.

• Its exponential mapping makes it slower in memory.

• Experiments confirm LH is consistently more efficient.

• Dynamic hashing still depends critically on load α.

