Dynamic Hash Tables

Selected Topics in Algorithms

AAMA, 2HMMY

Evayyehoc Mopyénc

Selected Topics in Algorithms Dynamic Hash Tables

Dynamic Hash Tables

* Dynamic set of keys S = {ky, ..., k,, }.

» Table has m buckets indexed 0 ...m — 1.

« Hash functionh : U - {0,..,m — 1}.

» Insertions and deletions change n over time.

» Performance depends on expected comparisons.
« Chaining used to store collisions per bucket.

« Growth of n increases computational cost.

Selected Topics in Algorithms Dynamic Hash Tables 2

Dynamic Hash Tables

« Load factor defined as a = %

» Expected chain length equals a exactly.

» Successful search: Egycc = 1+ 7.

« Unsuccessful search: E = a under chaining.
» As a increases operations slow linearly.
» Fixed table size implies increasing «a.

« Controlling « is fundamental objective.

Selected Topics in Algorithms Dynamic Hash Tables 3

Dynamic Hash Tables

* Final cardinality n is unknown beforehand.

* We need a mechanism to keep a < a4

» Aclassical solution is to allocate a larger table m' > m.
« Then we rehash all keys using hpew (k;).

» This rehash step has worst-case running time ©(n).

e Such pauses are unacceptable in practical systems.

» Therefore we need smooth growth without full rehashing.

Selected Topics in Algorithms Dynamic Hash Tables 4

Dynamic Hash Tables

« It adapts Linear Hashing for in-memory use.
 Itintroduces Spiral Storage as an alternative method.
» It defines full data structures and split mechanics.

« It analyzes expected costs under uniform hashing.

» It derives search formulas across a full split cycle.

« It provides experiments comparing all approaches.

Selected Topics in Algorithms Dynamic Hash Tables 5

Dynamic Hash Tables

* Dynamic hashing uses buckets in memory.
« Keys are mapped by a base hash function.
« Chains store elements inside each bucket.

* The table expands as the load grows.

« The overall load factor is a = %

* Expansion occurs when a exceeds limits.

« Costs count hash computations and comparisons.

Selected Topics in Algorithms Dynamic Hash Tables 6

Dynamic Hash Tables

 The table contains m active bucket positions m = N - 2L + p.
* Buckets are organized in segments of size N.

» The active range expands as p increases.

« Each bucket holds a chaining list of keys.

« Addressing uses two hash levels h; (k) and h; . (k).

« The structure supports incremental bucket splitting.

« This representation enables smooth predictable growth.

Selected Topics in Algorithms Dynamic Hash Tables 7

Dynamic Hash Tables

« Linear Hashing stores buckets in fixed-size segments.

« Adirectory points to segments with capacity N.

« The active bucket count equals m = N - 2L + p.

« Each bucket has a chain storing its records.

« The split pointer p indicates the next bucket to grow.

« Hashing uses functions h; (k) and h; ., (k) for addresses.

« This structure enables incremental controlled expansion.

Selected Topics in Algorithms Dynamic Hash Tables 8

Dynamic Hash Tables

« Assume the table has N=4 buckets and the split pointer is p=1.

* Anew key hashes to address 5 using h1, which corresponds to the bucket being
split.

« We first insert the key using the old address and then split bucket 1.

» Keys that now match hl move to the new bucket 4.

» The split pointer advances to p=2.

« This illustrates how growth occurs gradually.

Selected Topics in Algorithms Dynamic Hash Tables 9

Dynamic Hash Tables

 Linear Hashing uses two hash functions during splitting.

* Before splitting: the address 1s computed as: Insert — Equation — type:
ho(K) = Kmod 5

 After splitting: the new address is Insert — Equation — type: h,(K) =
K mod 10

« Keys with last digit 0 satisfy h,(K) = 0 and remain in bucket 0.
» Keys with last digit 5 satisfy h,(K) = 5 and move to the new bucket 5.

* Only bucket 0 is scanned and only half of its keys relocate.

Selected Topics in Algorithms Dynamic Hash Tables 10

Dynamic Hash Tables

» Linear Hashing supports lookup, insertion and splitting.

» Successful lookup has expected cost 1 + %

» Unsuccessful lookup has expected cost a.

 Average cost across a split cycle is S(a) = 1 + Za and U(a) = % a.

« Each insertion performs about 1.5 extra relocations.
« Spiral Storage uses exponential mapping 2* per access.

« Thus LH is asymptotically optimal and faster in practice than Spiral Storage.

Selected Topics in Algorithms Dynamic Hash Tables 11

Dynamic Hash Tables

» Successful search in a cycle costs S(a,x) =1 + % (2 + x — x?).

» Unsuccessful search in a cycle costs U(a, x) = %(2 + x — x2).

« Averaging over all split positions gives S(a) = 1 + ga.

11

 Unsuccessful average cost becomes U(a) = —a.

 Each insertion causes about 1.5 extra moves.
 Cycle length and split frequency depend on m = N - 2L + p.

* Overall access cost remains ®(a) with smooth growth.

Selected Topics in Algorithms Dynamic Hash Tables 12

Dynamic Hash Tables

« Linear Hashing keeps each key in its correct bucket.

« Akey maps to hO or to hl depending on the split pointer.
» Before splitting bucket i all keys use hO.

« After splitting, keys satisfying h;(K) = hy(K) + N.

* move to the new bucket.

* The invariant “p buckets are split” always holds.

« This ensures correct addressing during expansion.

Selected Topics in Algorithms Dynamic Hash Tables 13

Dynamic Hash Tables

« Letthetablesizebem = N -2% + pand p the next bucket to be split.

» After splitting one bucket the pointer p increases by one. Insert — Equation —
type: p:=p + 1

* Ifpreaches the end of the current round then a new level begins. Insert —
Equation — type: if p = N-2" then L:=L+ 1 and p:=0

» These rules maintain the invariant that exactly p buckets have been split.

» They also ensure that growth proceeds smoothly one bucket at a time.

Selected Topics in Algorithms Dynamic Hash Tables 14

Dynamic Hash Tables

* We define the global load factor as a. = n/m.

* Letx € [0,1] denote the fraction of buckets already split during the expansion

cycle.

» Before splitting, a bucket holds all keys addressed by ho; after splitting, half of its

keys move to the new bucket.
» The expected load of an unsplit bucket equals: z = a(1 + x).
» The expected load of a split bucket equals z/2.

« These quantities increase smoothly as x grows.

Selected Topics in Algorithms Dynamic Hash Tables 15

Dynamic Hash Tables

* A successful search examines half of the bucket’s chain.

« If the bucket is split (probability x), the expected cost is: 1 + z/4

« Ifthe bucket is unsplit (probability 1 — x), the expected cost is: 1 + z/2

« Thus the total expected successful search costis: S(a,x) = x(1 + z/4) +
(1—-—x)(1+2z/2).

 After substituting z = a(1 + x) we obtain: S(a,x) = 1 + (a/2)(2 + x — x2).

Selected Topics in Algorithms Dynamic Hash Tables 16

Dynamic Hash Tables

* An unsuccessful search scans the entire chain.
« If the bucket is split, the expected load is z/2; otherwise it is z.

» Hence the total expected unsuccessful search cost is: U(a, x) = x(z/2) +
(1—x)z.

 Substituting z = a(1 + x) yields: U(a,x) = (a/2)(2 + x — x?).

Selected Topics in Algorithms Dynamic Hash Tables 17

Dynamic Hash Tables

« During one expansion cycle, x increases uniformly from 0 to 1.

» The average successful search cost is: S(a) = fol S(a,x)dx.

« Evaluating the integral gives: S(a) =1 + (5/6)a.

« Similarly, the average unsuccessful search cost is: U(a) = fol U(a,x)dx =

(11/12)a.

Selected Topics in Algorithms Dynamic Hash Tables 18

Dynamic Hash Tables

 Insertions cost an unsuccessful search plus split work.

* A split happens on fraction 1/a of insertions.

» The split bucket has load a(1 + x).

« Weighting by probability gives total cost T';,cort = 1.5.

* Thus insertion runs in constant expected time.

Selected Topics in Algorithms Dynamic Hash Tables 19

Dynamic Hash Tables

 Insertion computes the bucket using h; or h; . 4.

e Ifa> a,,, bucket p splits.

» Splitting moves keys whose new address addr(k) is larger.
« After splitting, the pointer p increases by one.

e When p reaches N - 2L it resets to zero.

« At that moment the level L increases by one.

» These invariants ensure smooth predictable expansion.

Selected Topics in Algorithms Dynamic Hash Tables 20

Dynamic Hash Tables

. . . 5a
« Averaging over a full expansion cycle gives S(a) = 1 + - for successful
searches.

» The average unsuccessful search cost over the cycle isU(a) = 11/12 * a.

 Only a fraction split frequency = i Insertions trigger bucket splits.
» The bucket being split has expected load expected split bucket load z =
a(l + x).
» The expected extra hash computations per insertion are extra insert cost = 1.5.
« Linear Hashing therefore achieves constant amortized insertion cost.

« Performance is stable even when the table grows large.

Selected Topics in Algorithms Dynamic Hash Tables 21

Dynamic Hash Tables

« Spiral Storage uses an exponential address map y = |d*| for x € [S, S+1].

 Active buckets lie in the interval [d°, d°*1) and growth shifts this interval by

Increasing S.
 When a bucket leaves the interval its keys move.
* Inverse mapping, let y = 2* and X = log, y (logical coordinates).

 Its main drawback is costly evaluation of d”*.

Selected Topics in Algorithms Dynamic Hash Tables 22

Dynamic Hash Tables

1

which increases for
yln2

 Differentiating the inverse map gives density: p(y) =

small values of'y.
« The expected bucket load equals: A(y) = a/(yIn2).
« The distribution is skewed toward the left side.

« This load profile drives the search costs.

Selected Topics in Algorithms Dynamic Hash Tables 23

Dynamic Hash Tables

* A successful search inspects half the expected load M(y): S(a) =1 + [12 A(y)/

Selected Topics in Algorithms Dynamic Hash Tables 24

Dynamic Hash Tables

« Spiral Storage uses the same two-level structure and state variables shift the

window right as S grows.
« Relocation uses the logarithmic mapping from x = log,;(y).

« Address evaluation requires exponentials d* and inverse mapping requires

logarithms x = log, y. These computations have higher latency than LH.

» EXxpected search cost remains proportional to a. However, mapping (constant)

dominates runtime for large datasets.

Selected Topics in Algorithms Dynamic Hash Tables 25

Dynamic Hash Tables

* The experiments evaluate hashing performance under load a =

« Random key sets were inserted to reach size n ~ 10°.

« Search tests include successful and unsuccessful probes.
« Linear Hashing uses incremental splits controlled by p.
« Spiral Storage recomputes bucket locations using d*.

« All methods are compared against rehash-based schemes Rehash.

Selected Topics in Algorithms Dynamic Hash Tables 26

Dynamic Hash Tables

TABLE Il. Theoretically expected and observed average
number of comparisons for a successful search

in a linear hash table (« = 5)
‘:.:.:'F T T T S A

bor of e iy

. i vl mg} m&:

' 381 0B84 384 - 384
BB 378 8.6 380

' 8000° - - 3BB .. 367 366872
S8000 - - C 0 3BYy. - N 3840386 - 382
10000 356 380 356 352

« The theoretical cost of a successful search in Linear Hashing with load o =5 is approximately 3.6
comparisons. The observed measurements for Files A, B, and C align extremely closely with this

prediction, with deviations below one percent.

» This confirms that the load distribution model and the formula 1 + Zaaccurately describe the

behavior of Linear Hashing across different table sizes.

« As the number of records increases, the expected cost remains effectively constant, demonstrating
that the incremental split mechanism maintains a stable average chain length.

Selected Topics in Algorithms Dynamic Hash Tables 27

Dynamic Hash Tables

TABLE lll. Theoretically expected and observed average
number of comparisons for a successful search

using spiral storage (o = 5)

peiof R Observed aversge

. recopds . . value © . FileA FileB - FlleC
- 2000 361 355 - 3680 380
4000 a6t 357 356 3.59
6000 ae 361 356 3.60
8000 361 358 ° 350 3.59
10000 3.61 357 360 359

» The experimental results for Spiral Storage closely match the theoretical prediction of

3.61comparisons at load a = 5.

« The observed values vary only slightly across different files and table sizes, remaining within a
narrow band around the expected value.
« This confirms that the skewed load distribution A(y) = ﬁaccurately models search cost in

practice. Although Spiral Storage is computation-heavier than Linear Hashing, its lookup

performance remains stable and predictable.

Selected Topics in Algorithms Dynamic Hash Tables 28

Dynamic Hash Tables

TABLE IV. Average CPU-time in milliseconds/key for loading
and searching in a linear hash table

Test data a=1 a=5 a=MW o=1 a«=5§ m=10
Fite A 0.88 0.97 1.15 0. 0.41 0.50
File B . 094 1.02 1.20 0.36 0.44 0.53
File C 1.08 1.23 1.53 0.41 053 0.69

TABLE V. Awverage CPU-time in milliseconds fkey for loading
and searching in a hash table organized by spiral storage

Testdets @ oa=1 a=5 a=M a=1 a=5_ a=W
Fite A .25 0 T.AT 1.34 .41 o458 .57
Fie B 1.26 1.20 1.37 0.42 0.49 Q.59
File C 1.40 1.43 1.7 0.47 0.59 0.75

« Linear Hashing consistently loads and searches faster than Spiral Storage across all datasets and load
factors.

« The difference is most pronounced during loading, where Spiral Storage pays the cost of evaluating
exponential and logarithmic functions. Search times also show a uniform advantage for Linear Hashing,
reflecting its simpler address computation.

* Both methods scale smoothly as a increases, but Linear Hashing achieves strictly lower constant factors in

practice.

Selected Topics in Algorithms Dynamic Hash Tables 29

Dynamic Hash Tables

» Measured search costs match the predicted values S(a) = 1 + % U(a) = a.

 Insertion times show smooth growth without pauses.

- Linear Hashing performs near the theoretical bounds S(a) = 1 + 2 @ Ko

« Spiral Storage behaves correctly but is slower.
 Its overhead comes from evaluating powers like d*.
* Trees show higher search costs under large a.

» Linear Hashing is the fastest across all experiments.

Selected Topics in Algorithms Dynamic Hash Tables 30

Dynamic Hash Tables

« Binary search trees build quickly for small key sets.
« However search time depends on the height of the tree.
« Unbalanced trees degrade badly under skewed insertion orders.

« Linear Hashing maintains bounded chain lengths and constant expected search

time.
» Tree nodes require two pointers per record, increasing overhead.
» For large tables Linear Hashing clearly dominates search performance.

« Binary trees are competitive only for very small datasets.

Selected Topics in Algorithms Dynamic Hash Tables 31

Dynamic Hash Tables

» Fixed-size double hashing works best around load factor a = 0.8.

* To support growth it periodically rehashes the entire table at cost Tyop45h
= 0(n).
» This causes long pauses whenever a full reorganization is triggered.

« Linear Hashing grows by splitting one bucket at a time with amortized cost

amortized growth cost = 0(1).
» At similar load factors both methods achieve comparable lookup times.
« However Linear Hashing avoids global rebuilds and jitter in response times.

« Dynamic double hashing therefore offers no clear advantage over Linear

Hashing.

Selected Topics in Algorithms Dynamic Hash Tables 32

Dynamic Hash Tables

« Linear Hashing remains the most practical scheme.

It offers smooth growth and predictable performance.

» Split operations add minimal amortized overhead.

» Spiral Storage is elegant but computationally heavy.
 Its exponential mapping makes it slower in memory.

« Experiments confirm LH is consistently more efficient.

* Dynamic hashing still depends critically on load a.

Selected Topics in Algorithms Dynamic Hash Tables 33

