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 Multi Agent Systems
 Select course of action

 How: Aggregate the preferences of individual agents by voting

 Social choice theory

 Problems:
 All voting rules can be manipulated (Gibbard - Satterthwaite)

 Strategic Behavior: Game theory to the rescue

 But …

 Distorted equilibria
 The result cannot be changed

 But, there might be individual unhappy voters

 Example: Everybody votes for the same candidate

 Cannot force agents honest preferences

Introduction



 A solution:

 Manipulate the manipulation!

 How: Use it to converge to a stable state, where no agent wants
to further manipulate the game

 Stable state: Nash Equilibrium

 Iterative voting (Meir, 2010)

 All agents vote and view the result

 Individual Preferences are not revealed

 Unhappy agents can change their votes

 Repeat until everybody is happy

Introduction



 Under Restrictions

 Plurality Voting Converges

 Antiplurality Converges

 Other voting rules do not converge, regardless of restrictions

 Borda

 K-approval

 Restrictions:

 Initial Vote (truthful or not)

 Voter weights

 Type of agent action (best/better reply)

 Tie breaking rules

Results Summary



The model

 𝑉: set of 𝑛 voters/players

 𝑉 = 𝑛

 𝑘 strategic voters

 𝑛 − 𝑘 truthful

 𝐶: set of 𝑚 candidates

 𝐶 = 𝑚

 Score at time 𝑡: 𝒔𝒕(c)

 Truthful voters forgotten after 
voting

 Initial score:  𝒔𝒕(c)

 Strategic Voters

 Myopic Greedy Moves

 One Change At A Time

 Winners at time t
 𝑶𝒕

 Potential Next Winners

 A  voter can make them win 
in the next move

 𝑾𝒕



The model – (2)

 Voting rule 𝑓: 𝐴𝑛 → 2𝐶∗

 𝐴: all preference orders for 𝐶
(real/announced)

 Scoring Rules: 
(𝑎1, 𝑎2, ⋯ , 𝑎𝑚−1, 0)

 𝑎𝑖 ≥ 𝑎𝑖+1

 Examples:

 Plurality:  (1,0,⋯ , 0,0)

 Veto: (1,1,⋯ , 1,0) or 

 (0,0,⋯ , 0, −1)

 Borda:(𝑚 − 1,𝑚 − 2,⋯ , 1,0)

 K-Approval: (1,1,⋯ , 0,0)

 Maximin

 ∀ 𝑥, 𝑦 ∈ 𝐶

 N(𝑥, 𝑦) = | { 𝑖: 𝑥 ≻𝑖 𝑦} |

 𝑆 𝑥 = min𝑦{𝑁(𝑥, 𝑦)}

 Winner: 𝑚𝑎𝑥𝑥𝑆



 Tie breaking: 

 𝑡: 2𝐶∗
→ C

 Alphabetical Tie – Breaking

 𝑶𝒕: Singleton

 Randomized Tie Breaking

 Sets of possible winners

 Linear Order Tie Breaking

 If ∀ 𝑥, 𝑦 ∈ 𝐷 ⊆ 𝐶: 𝑡 𝐷 = 𝑥

 and 𝑥, 𝑦 ∈ 𝐷′

 Then 𝑡 𝐷′ ≠ 𝑦

The model – (3)



 𝑉 = 9, k=3

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Initial score (2,2,2,0)

 Plurality with Alphabetical Tie Breaking

 Preference Profile 1: 𝑑 ≻1 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑐 ≻2 𝑏 ≻2 𝑎 ≻2 𝑑

 Preference Profile 3: 𝑑 ≻3 𝑎 ≻3 𝑏 ≻3 𝑐

 Initial Move (truthful): 𝑑, 𝑐, 𝑑 𝑐 (2,2,3,2)

𝒃, 𝑐, 𝑑 𝑏
(2,3,3,1)

𝑏, 𝑐, 𝒂 𝑎
(3,3,3,0)

𝑏, 𝒃, 𝑎 𝑏
(3,4,2,0)

𝒄, 𝑏, 𝑎 𝑎
(3,3,3,0)

𝑐, 𝒄, 𝑎 𝑐
(3,2,4,0)

𝒃, 𝑐, 𝑎 𝑎

Non convergence - example



Plurality Convergence

Plurality with alphabetical tie breaking converges to a Nash 
Equilibrium from any starting state in at most m+(m-1)n steps, 
if all players respond with restricted best replies 

Theorem

At time t a player responds with 𝑎 → 𝑏
• Type 1: 𝒂 ≠ 𝒐𝒕−𝟏 and 𝒃 = 𝒐𝒕

• Type 2: 𝒂 = 𝒐𝒕−𝟏 and 𝒃 ≠ 𝒐𝒕

• Type 3: 𝒂 = 𝒐𝒕−𝟏 and 𝒃 = 𝒐𝒕

Improvement Steps

Restricted Best Reply:  Type 1 and Type 3 improvement steps,

Note: A type 4 move (𝒂 ≠ 𝒐𝒕−𝟏

and 𝒃 ≠ 𝒐𝒕) has no impact on the 
winner set



 𝑉 = 3, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐

 Initial score (1,0,0)

 Alphabetical Tie Breaking

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑐 ≻2 𝑏 ≻2 𝑎

 𝑏, 𝑐 𝑎
𝑐→𝑏

𝑇𝑦𝑝𝑒 1

𝑏, 𝒃 𝑏
𝑏→c

𝑇𝑦𝑝𝑒 2

𝒄, 𝑏 𝑎


𝑏→c

𝑇𝑦𝑝𝑒 1

𝑐, 𝒄 𝑐 𝑐→𝑎
𝑇𝑦𝑝𝑒 3

𝒂, 𝑐 𝑎

Improvement Steps Practice



 Simultaneous responses might not converge

 𝐶 = 𝑎, 𝑏, 𝑐

 𝑉 = 4, k=2

 Initial score (0,0,2)

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑏 ≻2 𝑎 ≻2 𝑐

 𝒂, 𝒃 𝑐 → 𝒃, 𝒂 𝑐 → 𝒂, 𝒃 𝑐

An observation



Plurality Convergence Proof (1)

The set of potential next winners never increases over time 
∀ 𝑡 < 𝑡′ ∶ 𝑊𝑡′ ⊆ 𝑊

𝑡

Lemma 1

Proof

• ∀ 𝑡: 𝑐 ∈ 𝑊𝑡  𝑐 ∈ 𝑊𝑡−1

• Assume 𝑐 ∈ 𝑊𝑡:
• An RBR step 𝑎 → 𝑐 yields 𝑂𝑡+1 = 𝑐

• Step increases 𝑐’𝑠 score:
• 𝑠𝑡+1 𝑐 = 𝑠𝑡 𝑐 + 1

• By winner definition: ∀𝑦 ∈ 𝐶
• 𝑠𝑡+1 𝑐 ⪰ 𝑠𝑡+1 𝑦 ⟹ 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑦

All these take place at time t+1



At time t, an improvement step  𝒂 → 𝒃 occurs

 C maintains score at time t

 𝑠𝑡 𝑐 = 𝑠𝑡−1 𝑐

 𝑏 = 𝑜𝑡 (from RBR def)

 𝒄 can beat 𝒃 at time 𝒕

 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑏

 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑏 𝑠𝑡+1 𝑏 = 𝑠𝑡 𝑏 − 1 = 𝑠𝑡−1 𝑏 - b 

fell back to the same score

Plurality Convergence Proof (2)

t-1

t

t+1

𝒂 → 𝒃 𝒃 → 𝒄



 𝒄 can beat 𝒂 at time 𝒕

 𝒂 → 𝒃 is a type 3 move 

 𝑎 = 𝑜𝑡−1

 Moves are: 𝑎 → 𝑏 followed by 𝑏 → 𝑐

 Replace with 𝑎 → 𝑐

 Scores at time t+1  = scores at time t

 As a result c can win at time t

Plurality Convergence Proof (3)



 𝒂 → 𝒃 is a type 1 move

 𝑎 ≠ 𝑜𝑡−1 and 𝑏 = 𝑜𝑡

 This means: ∃𝑎′, 𝑎′ = 𝑜𝑡−1 , 𝑎′ ≠ 𝑎

 𝑠𝑡−1 𝑎′ ⪰ 𝑠𝑡−1 𝑦 ∀𝑦 ∈ 𝐶

 𝑠𝑡−1 𝑎′ = 𝑠𝑡 𝑎′ = 𝑠𝑡+1 𝑎′

 𝑠𝑡−1 𝑐 + 1 = 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑎′ = 𝑠𝑡−1 𝑎′ ⪰ 𝑠𝑡−1 𝑎

 𝒄 can beat all the rest at time 𝒕

 The rest are unaffected 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑦

 As a result 𝑐 ∈ 𝑊𝑡−1

Plurality Convergence Proof (4)



Plurality Convergence Proof (5)

• There are at most m-1 type 3 moves for each voter
• There are at most m type 1 moves

Lemma 2

Proof
• A step of type 3, 𝑎 → 𝑏, is an improvement step
• So for each voter: b ≻𝑖 𝑎
• There are m-1 such possible improvements

***
• For all type 1 moves 𝑎 → 𝑏, 𝑎 ∉ 𝑊𝑡

• If 𝑎 ∈ 𝑊𝑡 then 𝑏 → 𝑎 would make 𝑎 win at time 𝑡 + 1
• But 𝑎 → 𝑏 → 𝑎 results in 𝑎 not winning (type 1 def)
• Conclusion: Type 1 moves only decrease the number of 

winners
• At most 𝑚 such moves

Total: 𝒏(𝒎 − 𝟏) + 𝒎



Anti-Plurality Convergence

Anti-Plurality with alphabetical tie breaking converges to a 
Nash Equilibrium from any starting state in at most mn steps, if 
all players respond with restricted best replies 

Theorem

At time t a player responds with −𝑎 → −𝑏
• Type 1: 𝒂 ≠ 𝒐𝒕 and 𝒃 = 𝒐𝒕−𝟏

• Type 2: 𝒂 = 𝒐𝒕 and 𝒃 ≠ 𝒐𝒕−𝟏

• Type 3: 𝒂 = 𝒐𝒕 and 𝒃 = 𝒐𝒕−𝟏

Improvement Steps

Restricted Best Reply:  Type 1 and Type 3 improvement steps
(Veto the previous winner)

Note: A type 4 move (𝒂 ≠ 𝒐𝒕−𝟏

and 𝒃 ≠ 𝒐𝒕) has no impact on the 
winner set



Proof

A type 2 step −𝑎 → −𝑐 can be replaced with a type 3 step 
− 𝑎 → −𝑏 without changing the winner but increasing the 
margin of victory of 𝑎

Lemma 1

Proof
• A step of type 2, −𝑎 → −𝑐 results in:

• 𝑎 being a winner
• Increasing 𝑠𝑡 𝑎
• Decreasing 𝑠𝑡 𝑐

• By type 2 definition c is not a previous winner
• If we replace with type 3 we get:

• 𝑎 being a winner (winner set is the same)
• Increasing 𝑠𝑡 𝑎
• Decreasing 𝑠𝑡 𝑏 where 𝑏 the previous winner



Proof (2)

Over time the set of potential next winners never decreases
∀ 𝑡 < 𝑡′ ∶ 𝑊𝑡 ⊆ 𝑊𝑡′

Lemma 2

Proof

• ∀ 𝑡: 𝑐 ∈ 𝑊𝑡−1  𝑐 ∈ 𝑊𝑡

• At time t improvement step − 𝑎 → −𝑏 occurs
• Prove that 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑦 ∀𝑦 ∈ 𝐶
• Three cases to consider: a, b, rest
• Rest

• 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑦 since 𝑐 ∈ 𝑊𝑡−1

• But nobody changed
• 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑦
• 𝑐 ∈ 𝑊𝑡



Proof (3)

• For b = 𝒐𝒕−𝟏

• 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑏

• 𝑏 was vetoed → score decreased 𝑠𝑡−1 𝑏 > 𝑠𝑡 𝑏
• c was unaffected
• 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑏
• 𝑐 ∈ 𝑊𝑡

• For 𝒂
• If −𝑎 → −𝑏 Type 3 step:

• −𝑐 → −𝑏 at time 𝑡 is equivalent in score with
• −𝑎 → −𝑏 at time 𝑡
• −𝑐 → −𝑎 at time 𝑡 + 1

• As a result nothing changes for c, b 
• 𝑐 ∈ 𝑊𝑡



Proof (4)

• If −𝑎 → −𝑏 Type 1 step:
• 𝑂𝑡 = 𝑏′, b′ ≠ 𝑎, 𝑏 (somebody else was the winner)
• This means: 𝑠𝑡 𝑏′ ⪰ 𝑠𝑡 𝑎
• 𝑠𝑡−1 𝑏′ =𝑠𝑡 𝑏′
• 𝑠𝑡 𝑐 + 1 = 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑏′ = 𝑠𝑡 𝑏′ ⪰ 𝑠𝑡 𝑎
• 𝑐 ∈ 𝑊𝑡



Proof (5)

• Each voter has at most 1 type 1 moves
• Each voter has at most 𝑚 − 1 type 3 moves

Lemma 3

Proof
• A step of type 3, −𝑎 → −𝑏, is an improvement step
• So for each voter: α ≻𝑖 𝑏
• There are m-1 such possible improvements

***
• Consider −𝑎 → −𝑏 step of type 1  for a voter 𝑣
• It will be the first improvement step
• If not 𝑎 was vetoed in the past
• This means that a was a winner sometime
• And before that a potential next winner …
• Since 𝑊𝑡 does not ever decrease, 𝑎 is still 
• Then −𝑎 → −𝑏 makes him a winner. Not a type 1 move



 Sets of current winners

 How to define best response?

 Approaches:

 Cardinal Utilities

 Consistent with preference ordering

 Convergence from truthful state

 Not guaranteed from arbitrary state

 Stochastic Dominance

 W ⪰v W’ if the probability of selecting the k preferred candidates with 
winner set W is no less than with W’ 

 Convergence

Randomised Tie Breaking



 May not converge even with alphabetical tie breaking

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑏 ≻2 𝑐 ≻2 𝑎

 Moves:

 𝑎𝑏𝑐, 𝑏𝑐𝑎 𝑏 → 𝒂𝒄𝒃, 𝑏𝑐𝑎 𝑎 → 𝑎𝑐𝑏, 𝒄𝒃𝒂 𝑐 →
𝒂𝒃𝒄, 𝑐𝑏𝑎 𝑎 → 𝑎𝑏𝑐, 𝒃𝒄𝒂 𝑏 → …

 Order of players matters

 May not converge even without tie breaking

Borda and Best Replies



 May not converge even with alphabetical tie breaking

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Preference Profile 1: 𝑎 ≻1 𝑐 ≻1 𝑑 ≻1 𝑏

 Preference Profile 2: 𝑑 ≻1 𝑏 ≻1 𝑐 ≻1 𝑎

 Moves:

 𝑎𝑐, 𝑑𝑏 𝑎 → 𝑎𝑐, 𝒅𝒄 𝑐 → 𝒂𝒃, 𝑑𝑐 𝑎 → 𝑎𝑏, 𝒅𝒃 𝑏 →
𝒂𝒄, 𝑑𝑏 𝑎 → …

2-approval and Best Replies



Maximin – (1) 

 May not converge  

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Preference Profile 1:

 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 Preference Profile 2:

 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 Tie breaking rule:

 if

 b = c = d  b

 b = c  c

 a = b = c  b

 a = b = c =d  a 

 c = d  c

 b = d  b

 Else 

 a



Maximin – (2)

 Truthful start

 V1: 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,1) {b}

 V1: 𝒄 ≻𝟏 𝒃 ≻𝟏 𝒅 ≻𝟏 𝒂

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,0) {c}

 V1: 𝑐 ≻1 𝑏 ≻1 𝑑 ≻1 𝑎

 V2: 𝒂 ≻𝟏 𝒃 ≻𝟏 𝒅 ≻𝟏 𝒄

 S (a,b,c,d)  = (1,1,1,0) {b}

 V1: 𝒄 ≻𝟏 𝒅 ≻𝟏 𝒃 ≻𝟏 𝒂

 V2: 𝑎 ≻1 𝑏 ≻1 𝑑 ≻1 𝑐

 S (a,b,c,d)  = (1,1,1,1) {c}

 V1: 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,1) {b}

 …



 Reply definition for convergence

 General convergence conditions applicable to different social 
choice functions

Open Problems
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