
Convergence In Iterative Voting

Panagiotis Grontas

Theoretical Computer Science II,

24.07.2014



 Multi Agent Systems
 Select course of action

 How: Aggregate the preferences of individual agents by voting

 Social choice theory

 Problems:
 All voting rules can be manipulated (Gibbard - Satterthwaite)

 Strategic Behavior: Game theory to the rescue

 But …

 Distorted equilibria
 The result cannot be changed

 But, there might be individual unhappy voters

 Example: Everybody votes for the same candidate

 Cannot force agents honest preferences

Introduction



 A solution:

 Manipulate the manipulation!

 How: Use it to converge to a stable state, where no agent wants
to further manipulate the game

 Stable state: Nash Equilibrium

 Iterative voting (Meir, 2010)

 All agents vote and view the result

 Individual Preferences are not revealed

 Unhappy agents can change their votes

 Repeat until everybody is happy

Introduction



 Under Restrictions

 Plurality Voting Converges

 Antiplurality Converges

 Other voting rules do not converge, regardless of restrictions

 Borda

 K-approval

 Restrictions:

 Initial Vote (truthful or not)

 Voter weights

 Type of agent action (best/better reply)

 Tie breaking rules

Results Summary



The model

 𝑉: set of 𝑛 voters/players

 𝑉 = 𝑛

 𝑘 strategic voters

 𝑛 − 𝑘 truthful

 𝐶: set of 𝑚 candidates

 𝐶 = 𝑚

 Score at time 𝑡: 𝒔𝒕(c)

 Truthful voters forgotten after 
voting

 Initial score:  𝒔𝒕(c)

 Strategic Voters

 Myopic Greedy Moves

 One Change At A Time

 Winners at time t
 𝑶𝒕

 Potential Next Winners

 A  voter can make them win 
in the next move

 𝑾𝒕



The model – (2)

 Voting rule 𝑓: 𝐴𝑛 → 2𝐶∗

 𝐴: all preference orders for 𝐶
(real/announced)

 Scoring Rules: 
(𝑎1, 𝑎2, ⋯ , 𝑎𝑚−1, 0)

 𝑎𝑖 ≥ 𝑎𝑖+1

 Examples:

 Plurality:  (1,0,⋯ , 0,0)

 Veto: (1,1,⋯ , 1,0) or 

 (0,0,⋯ , 0, −1)

 Borda:(𝑚 − 1,𝑚 − 2,⋯ , 1,0)

 K-Approval: (1,1,⋯ , 0,0)

 Maximin

 ∀ 𝑥, 𝑦 ∈ 𝐶

 N(𝑥, 𝑦) = | { 𝑖: 𝑥 ≻𝑖 𝑦} |

 𝑆 𝑥 = min𝑦{𝑁(𝑥, 𝑦)}

 Winner: 𝑚𝑎𝑥𝑥𝑆



 Tie breaking: 

 𝑡: 2𝐶∗
→ C

 Alphabetical Tie – Breaking

 𝑶𝒕: Singleton

 Randomized Tie Breaking

 Sets of possible winners

 Linear Order Tie Breaking

 If ∀ 𝑥, 𝑦 ∈ 𝐷 ⊆ 𝐶: 𝑡 𝐷 = 𝑥

 and 𝑥, 𝑦 ∈ 𝐷′

 Then 𝑡 𝐷′ ≠ 𝑦

The model – (3)



 𝑉 = 9, k=3

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Initial score (2,2,2,0)

 Plurality with Alphabetical Tie Breaking

 Preference Profile 1: 𝑑 ≻1 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑐 ≻2 𝑏 ≻2 𝑎 ≻2 𝑑

 Preference Profile 3: 𝑑 ≻3 𝑎 ≻3 𝑏 ≻3 𝑐

 Initial Move (truthful): 𝑑, 𝑐, 𝑑 𝑐 (2,2,3,2)

𝒃, 𝑐, 𝑑 𝑏
(2,3,3,1)

𝑏, 𝑐, 𝒂 𝑎
(3,3,3,0)

𝑏, 𝒃, 𝑎 𝑏
(3,4,2,0)

𝒄, 𝑏, 𝑎 𝑎
(3,3,3,0)

𝑐, 𝒄, 𝑎 𝑐
(3,2,4,0)

𝒃, 𝑐, 𝑎 𝑎

Non convergence - example



Plurality Convergence

Plurality with alphabetical tie breaking converges to a Nash 
Equilibrium from any starting state in at most m+(m-1)n steps, 
if all players respond with restricted best replies 

Theorem

At time t a player responds with 𝑎 → 𝑏
• Type 1: 𝒂 ≠ 𝒐𝒕−𝟏 and 𝒃 = 𝒐𝒕

• Type 2: 𝒂 = 𝒐𝒕−𝟏 and 𝒃 ≠ 𝒐𝒕

• Type 3: 𝒂 = 𝒐𝒕−𝟏 and 𝒃 = 𝒐𝒕

Improvement Steps

Restricted Best Reply:  Type 1 and Type 3 improvement steps,

Note: A type 4 move (𝒂 ≠ 𝒐𝒕−𝟏

and 𝒃 ≠ 𝒐𝒕) has no impact on the 
winner set



 𝑉 = 3, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐

 Initial score (1,0,0)

 Alphabetical Tie Breaking

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑐 ≻2 𝑏 ≻2 𝑎

 𝑏, 𝑐 𝑎
𝑐→𝑏

𝑇𝑦𝑝𝑒 1

𝑏, 𝒃 𝑏
𝑏→c

𝑇𝑦𝑝𝑒 2

𝒄, 𝑏 𝑎


𝑏→c

𝑇𝑦𝑝𝑒 1

𝑐, 𝒄 𝑐 𝑐→𝑎
𝑇𝑦𝑝𝑒 3

𝒂, 𝑐 𝑎

Improvement Steps Practice



 Simultaneous responses might not converge

 𝐶 = 𝑎, 𝑏, 𝑐

 𝑉 = 4, k=2

 Initial score (0,0,2)

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑏 ≻2 𝑎 ≻2 𝑐

 𝒂, 𝒃 𝑐 → 𝒃, 𝒂 𝑐 → 𝒂, 𝒃 𝑐

An observation



Plurality Convergence Proof (1)

The set of potential next winners never increases over time 
∀ 𝑡 < 𝑡′ ∶ 𝑊𝑡′ ⊆ 𝑊

𝑡

Lemma 1

Proof

• ∀ 𝑡: 𝑐 ∈ 𝑊𝑡  𝑐 ∈ 𝑊𝑡−1

• Assume 𝑐 ∈ 𝑊𝑡:
• An RBR step 𝑎 → 𝑐 yields 𝑂𝑡+1 = 𝑐

• Step increases 𝑐’𝑠 score:
• 𝑠𝑡+1 𝑐 = 𝑠𝑡 𝑐 + 1

• By winner definition: ∀𝑦 ∈ 𝐶
• 𝑠𝑡+1 𝑐 ⪰ 𝑠𝑡+1 𝑦 ⟹ 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑦

All these take place at time t+1



At time t, an improvement step  𝒂 → 𝒃 occurs

 C maintains score at time t

 𝑠𝑡 𝑐 = 𝑠𝑡−1 𝑐

 𝑏 = 𝑜𝑡 (from RBR def)

 𝒄 can beat 𝒃 at time 𝒕

 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑏

 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡+1 𝑏 𝑠𝑡+1 𝑏 = 𝑠𝑡 𝑏 − 1 = 𝑠𝑡−1 𝑏 - b 

fell back to the same score

Plurality Convergence Proof (2)

t-1

t

t+1

𝒂 → 𝒃 𝒃 → 𝒄



 𝒄 can beat 𝒂 at time 𝒕

 𝒂 → 𝒃 is a type 3 move 

 𝑎 = 𝑜𝑡−1

 Moves are: 𝑎 → 𝑏 followed by 𝑏 → 𝑐

 Replace with 𝑎 → 𝑐

 Scores at time t+1  = scores at time t

 As a result c can win at time t

Plurality Convergence Proof (3)



 𝒂 → 𝒃 is a type 1 move

 𝑎 ≠ 𝑜𝑡−1 and 𝑏 = 𝑜𝑡

 This means: ∃𝑎′, 𝑎′ = 𝑜𝑡−1 , 𝑎′ ≠ 𝑎

 𝑠𝑡−1 𝑎′ ⪰ 𝑠𝑡−1 𝑦 ∀𝑦 ∈ 𝐶

 𝑠𝑡−1 𝑎′ = 𝑠𝑡 𝑎′ = 𝑠𝑡+1 𝑎′

 𝑠𝑡−1 𝑐 + 1 = 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑎′ = 𝑠𝑡−1 𝑎′ ⪰ 𝑠𝑡−1 𝑎

 𝒄 can beat all the rest at time 𝒕

 The rest are unaffected 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑦

 As a result 𝑐 ∈ 𝑊𝑡−1

Plurality Convergence Proof (4)



Plurality Convergence Proof (5)

• There are at most m-1 type 3 moves for each voter
• There are at most m type 1 moves

Lemma 2

Proof
• A step of type 3, 𝑎 → 𝑏, is an improvement step
• So for each voter: b ≻𝑖 𝑎
• There are m-1 such possible improvements

***
• For all type 1 moves 𝑎 → 𝑏, 𝑎 ∉ 𝑊𝑡

• If 𝑎 ∈ 𝑊𝑡 then 𝑏 → 𝑎 would make 𝑎 win at time 𝑡 + 1
• But 𝑎 → 𝑏 → 𝑎 results in 𝑎 not winning (type 1 def)
• Conclusion: Type 1 moves only decrease the number of 

winners
• At most 𝑚 such moves

Total: 𝒏(𝒎 − 𝟏) + 𝒎



Anti-Plurality Convergence

Anti-Plurality with alphabetical tie breaking converges to a 
Nash Equilibrium from any starting state in at most mn steps, if 
all players respond with restricted best replies 

Theorem

At time t a player responds with −𝑎 → −𝑏
• Type 1: 𝒂 ≠ 𝒐𝒕 and 𝒃 = 𝒐𝒕−𝟏

• Type 2: 𝒂 = 𝒐𝒕 and 𝒃 ≠ 𝒐𝒕−𝟏

• Type 3: 𝒂 = 𝒐𝒕 and 𝒃 = 𝒐𝒕−𝟏

Improvement Steps

Restricted Best Reply:  Type 1 and Type 3 improvement steps
(Veto the previous winner)

Note: A type 4 move (𝒂 ≠ 𝒐𝒕−𝟏

and 𝒃 ≠ 𝒐𝒕) has no impact on the 
winner set



Proof

A type 2 step −𝑎 → −𝑐 can be replaced with a type 3 step 
− 𝑎 → −𝑏 without changing the winner but increasing the 
margin of victory of 𝑎

Lemma 1

Proof
• A step of type 2, −𝑎 → −𝑐 results in:

• 𝑎 being a winner
• Increasing 𝑠𝑡 𝑎
• Decreasing 𝑠𝑡 𝑐

• By type 2 definition c is not a previous winner
• If we replace with type 3 we get:

• 𝑎 being a winner (winner set is the same)
• Increasing 𝑠𝑡 𝑎
• Decreasing 𝑠𝑡 𝑏 where 𝑏 the previous winner



Proof (2)

Over time the set of potential next winners never decreases
∀ 𝑡 < 𝑡′ ∶ 𝑊𝑡 ⊆ 𝑊𝑡′

Lemma 2

Proof

• ∀ 𝑡: 𝑐 ∈ 𝑊𝑡−1  𝑐 ∈ 𝑊𝑡

• At time t improvement step − 𝑎 → −𝑏 occurs
• Prove that 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑦 ∀𝑦 ∈ 𝐶
• Three cases to consider: a, b, rest
• Rest

• 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑦 since 𝑐 ∈ 𝑊𝑡−1

• But nobody changed
• 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑦
• 𝑐 ∈ 𝑊𝑡



Proof (3)

• For b = 𝒐𝒕−𝟏

• 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑏

• 𝑏 was vetoed → score decreased 𝑠𝑡−1 𝑏 > 𝑠𝑡 𝑏
• c was unaffected
• 𝑠𝑡 𝑐 + 1 ⪰ 𝑠𝑡 𝑏
• 𝑐 ∈ 𝑊𝑡

• For 𝒂
• If −𝑎 → −𝑏 Type 3 step:

• −𝑐 → −𝑏 at time 𝑡 is equivalent in score with
• −𝑎 → −𝑏 at time 𝑡
• −𝑐 → −𝑎 at time 𝑡 + 1

• As a result nothing changes for c, b 
• 𝑐 ∈ 𝑊𝑡



Proof (4)

• If −𝑎 → −𝑏 Type 1 step:
• 𝑂𝑡 = 𝑏′, b′ ≠ 𝑎, 𝑏 (somebody else was the winner)
• This means: 𝑠𝑡 𝑏′ ⪰ 𝑠𝑡 𝑎
• 𝑠𝑡−1 𝑏′ =𝑠𝑡 𝑏′
• 𝑠𝑡 𝑐 + 1 = 𝑠𝑡−1 𝑐 + 1 ⪰ 𝑠𝑡−1 𝑏′ = 𝑠𝑡 𝑏′ ⪰ 𝑠𝑡 𝑎
• 𝑐 ∈ 𝑊𝑡



Proof (5)

• Each voter has at most 1 type 1 moves
• Each voter has at most 𝑚 − 1 type 3 moves

Lemma 3

Proof
• A step of type 3, −𝑎 → −𝑏, is an improvement step
• So for each voter: α ≻𝑖 𝑏
• There are m-1 such possible improvements

***
• Consider −𝑎 → −𝑏 step of type 1  for a voter 𝑣
• It will be the first improvement step
• If not 𝑎 was vetoed in the past
• This means that a was a winner sometime
• And before that a potential next winner …
• Since 𝑊𝑡 does not ever decrease, 𝑎 is still 
• Then −𝑎 → −𝑏 makes him a winner. Not a type 1 move



 Sets of current winners

 How to define best response?

 Approaches:

 Cardinal Utilities

 Consistent with preference ordering

 Convergence from truthful state

 Not guaranteed from arbitrary state

 Stochastic Dominance

 W ⪰v W’ if the probability of selecting the k preferred candidates with 
winner set W is no less than with W’ 

 Convergence

Randomised Tie Breaking



 May not converge even with alphabetical tie breaking

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐

 Preference Profile 1: 𝑎 ≻1 𝑏 ≻1 𝑐

 Preference Profile 2: 𝑏 ≻2 𝑐 ≻2 𝑎

 Moves:

 𝑎𝑏𝑐, 𝑏𝑐𝑎 𝑏 → 𝒂𝒄𝒃, 𝑏𝑐𝑎 𝑎 → 𝑎𝑐𝑏, 𝒄𝒃𝒂 𝑐 →
𝒂𝒃𝒄, 𝑐𝑏𝑎 𝑎 → 𝑎𝑏𝑐, 𝒃𝒄𝒂 𝑏 → …

 Order of players matters

 May not converge even without tie breaking

Borda and Best Replies



 May not converge even with alphabetical tie breaking

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Preference Profile 1: 𝑎 ≻1 𝑐 ≻1 𝑑 ≻1 𝑏

 Preference Profile 2: 𝑑 ≻1 𝑏 ≻1 𝑐 ≻1 𝑎

 Moves:

 𝑎𝑐, 𝑑𝑏 𝑎 → 𝑎𝑐, 𝒅𝒄 𝑐 → 𝒂𝒃, 𝑑𝑐 𝑎 → 𝑎𝑏, 𝒅𝒃 𝑏 →
𝒂𝒄, 𝑑𝑏 𝑎 → …

2-approval and Best Replies



Maximin – (1) 

 May not converge  

 Counterexample

 𝑉 = 2, 𝑘 = 2

 𝐶 = 𝑎, 𝑏, 𝑐, 𝑑

 Preference Profile 1:

 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 Preference Profile 2:

 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 Tie breaking rule:

 if

 b = c = d  b

 b = c  c

 a = b = c  b

 a = b = c =d  a 

 c = d  c

 b = d  b

 Else 

 a



Maximin – (2)

 Truthful start

 V1: 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,1) {b}

 V1: 𝒄 ≻𝟏 𝒃 ≻𝟏 𝒅 ≻𝟏 𝒂

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,0) {c}

 V1: 𝑐 ≻1 𝑏 ≻1 𝑑 ≻1 𝑎

 V2: 𝒂 ≻𝟏 𝒃 ≻𝟏 𝒅 ≻𝟏 𝒄

 S (a,b,c,d)  = (1,1,1,0) {b}

 V1: 𝒄 ≻𝟏 𝒅 ≻𝟏 𝒃 ≻𝟏 𝒂

 V2: 𝑎 ≻1 𝑏 ≻1 𝑑 ≻1 𝑐

 S (a,b,c,d)  = (1,1,1,1) {c}

 V1: 𝑐 ≻1 𝑑 ≻1 𝑏 ≻1 𝑎

 V2: 𝑏 ≻1 𝑑 ≻1 𝑐 ≻1 𝑎

 S (a,b,c,d)  = (0,1,1,1) {b}

 …



 Reply definition for convergence

 General convergence conditions applicable to different social 
choice functions

Open Problems
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