Convergence In Iterative Voting Panagiotis Grontas

Theoretical Computer Science II,

$$
24.07 .2014
$$

Introduction

* Multi Agent Systems
* Select course of action
* How: Aggregate the preferences of individual agents by voting
* Social choice theory
* Problems:
* All voting rules can be manipulated (Gibbard - Satterthwaite)
* Strategic Behavior: Game theory to the rescue
* But...
* Distorted equilibria
* The result cannot be changed
* But, there might be individual unhappy voters
* Example: Everybody votes for the same candidate
* Cannot force agents honest preferences

Introduction

* A solution:
* Manipulate the manipulation!
* How: Use it to converge to a stable state, where no agent wants to further manipulate the game
* Stable state: Nash Equilibrium
* Iterative voting (Meir, 2010)
* All agents vote and view the result
* Individual Preferences are not revealed
* Unhappy agents can change their votes
* Repeat until everybody is happy

Results Summary

* Under Restrictions
* Plurality Voting Converges
* Antiplurality Converges
* Other voting rules do not converge, regardless of restrictions
* Borda
* K-approval
* Restrictions:
* Initial Vote (truthful or not)
* Voter weights
* Type of agent action (best/better reply)
* Tie breaking rules

The model

* V : set of n voters/players
* $|V|=n$
* k strategic voters
* $n-k$ truthful
* C : set of m candidates
* $|C|=m$
* Score at time $t: \boldsymbol{s}_{\boldsymbol{t}}(\mathrm{c})$
* Truthful voters forgotten after voting
* Initial score: $\hat{\boldsymbol{s}}_{\boldsymbol{t}}(\mathrm{c})$
* Strategic Voters
* Myopic Greedy Moves
* One Change At A Time
* Winners at time t
* $\boldsymbol{O}_{\boldsymbol{t}}$
* Potential Next Winners
* A voter can make them win in the next move
* $\boldsymbol{W}_{\boldsymbol{t}}$

The model - (2)

* Voting rule $f: A^{n} \rightarrow 2^{C^{*}}$
* A : all preference orders for C (real/announced)
* Scoring Rules:

$$
\left(a_{1}, a_{2}, \cdots, a_{m-1}, 0\right)
$$

* $a_{i} \geq a_{i+1}$
* Examples:
* Plurality: $(1,0, \cdots, 0,0)$
* Veto: $(1,1, \cdots, 1,0)$ or

$$
*(0,0, \cdots, 0,-1)
$$

* Borda: $(m-1, m-2, \cdots, 1,0)$
* K-Approval: $(1,1, \cdots, 0,0)$
* Maximin
* $\forall x, y \in C$
* $\mathrm{N}(x, y)=\left|\left\{i: x>_{i} y\right\}\right|$
* $S(x)=\min _{y}\{N(x, y)\}$
* Winner: $\max _{x} S$

The model - (3)

* Tie breaking:
* $t: 2^{C^{*}} \rightarrow C$
* Alphabetical Tie - Breaking
* $\boldsymbol{O}_{\boldsymbol{t}}$: Singleton
* Randomized Tie Breaking
* Sets of possible winners
* Linear Order Tie Breaking
* If $\forall x, y \in D \subseteq C: t(D)=x$
$*$ and $x, y \in D^{\prime}$
* Then $t\left(D^{\prime}\right) \neq y$

Non convergence - example

* $|V|=9, k=3$
* $C=\{a, b, c, d\}$
* Initial score (2,2,2,0)
* Plurality with Alphabetical Tie Breaking
* Preference Profile 1: $d \succ_{1} a>_{1} b>_{1} c$
* Preference Profile 2: $c \succ_{2} b \succ_{2} a \succ_{2} d$
* Preference Profile 3: $d \succ_{3} a \succ_{3} b \succ_{3} c$
* Initial Move (truthful): $(d, c, d)\{c\}(2,2,3,2)$
$(\boldsymbol{b}, c, d)\{b\}_{(2,3,3,1)}(b, c, \boldsymbol{a})\{a\}_{(3,3,3,0)}(b, \boldsymbol{b}, a)\{b\}_{(3,4,2,0)}$
$(\boldsymbol{c}, b, a)\{a\}_{(3,3,3,0)}^{\longrightarrow}(c, \boldsymbol{c}, a)\{c\} \underset{(3,2,4,0)}{\longrightarrow}(\boldsymbol{b}, c, a)\{a\}$

Plurality Convergence

Theorem

Plurality with alphabetical tie breaking converges to a Nash Equilibrium from any starting state in at most $\boldsymbol{m + (m - 1) n}$ steps, if all players respond with restricted best replies

Improvement Steps

At time t a player responds with $a \rightarrow b$

- Type 1: $\boldsymbol{a} \neq \boldsymbol{o}_{\boldsymbol{t}-1}$ and $\boldsymbol{b}=\boldsymbol{o}_{\boldsymbol{t}}$
- Type 2: $a=o_{t-1}$ and $b \neq \boldsymbol{o}_{t}$
- Type 3: $\boldsymbol{a}=\boldsymbol{o}_{\boldsymbol{t}-1}$ and $\boldsymbol{b}=\boldsymbol{o}_{\boldsymbol{t}}$ winner set

Restricted Best Reply: Type 1 and Type 3 improvement steps,

Improvement Steps Practice

* $|V|=3, k=2$
* $C=\{a, b, c\}$
* Initial score (1,0,0)
* Alphabetical Tie Breaking
* Preference Profile 1: $a \succ_{1} b \succ_{1} c$
* Preference Profile 2: $c \succ_{2} b \succ_{2} a$
$*(b, c)\{a\} \underset{\substack{c \rightarrow b \\ \text { Type } 1}}{ }(b, \boldsymbol{b})\{b\} \underset{\substack{b \rightarrow \mathrm{C} \\ \text { Type } 2}}{ }(c, b)\{a\}$
* $\underset{b \rightarrow \mathrm{C}}{ }(c, \boldsymbol{c})\{c\} \underset{c \rightarrow a}{ }(\boldsymbol{a}, c)\{a\}$

Type 1
Type 3

An observation

* Simultaneous responses might not converge
* $C=\{a, b, c\}$
* $|V|=4, k=2$
* Initial score (0,0,2)
* Preference Profile 1: $a>_{1} b>_{1} c$
* Preference Profile 2: $b \succ_{2} \quad a>_{2} c$
$*(\boldsymbol{a}, \boldsymbol{b})\{c\} \rightarrow(\boldsymbol{b}, \boldsymbol{a})\{c\} \rightarrow(\boldsymbol{a}, \boldsymbol{b})\{c\}$

Plurality Convergence Proof (1)

Lemma 1

The set of potential next winners never increases over time

$$
\forall t<t^{\prime}: W_{t^{\prime}} \subseteq W_{t}
$$

Proof

- $\forall t: c \in W_{t} \Rightarrow c \in W_{t-1}$
- Assume $c \in W_{t}$:
- An RBR step $a \rightarrow c$ yields $O_{t+1}=c$
- Step increases $c^{\prime} s$ score:
- $s_{t+1}(c)=s_{t}(c)+1$
- By winner definition: $\forall y \in C$

$$
\text { - } s_{t+1}(c) \geq s_{t+1}(y) \Rightarrow s_{t}(c)+1 \geq s_{t+1}(y)
$$

Plurality Convergence Proof (2)

At time t, an improvement step $\boldsymbol{a} \rightarrow \boldsymbol{b}$ occurs

* C maintains score at time t
* $s_{t}(c)=s_{t-1}(c)$
* $b=o_{t}$ (from RBR def)
* \boldsymbol{c} can beat \boldsymbol{b} at time \boldsymbol{t}
* $s_{t}(c)+1 \geq s_{t+1}(b)$
* $s_{t-1}(c)+1 \geq s_{t+1}(b) s_{t+1}(b)=s_{t}(b)-1=s_{t-1}(b)-\mathrm{b}$ fell back to the same score

Plurality Convergence Proof (3)

* \boldsymbol{c} can beat \boldsymbol{a} at time \boldsymbol{t}
* $\boldsymbol{a} \rightarrow \boldsymbol{b}$ is a type 3 move
* $a=o_{t-1}$
* Moves are: $a \rightarrow b$ followed by $b \rightarrow c$
* Replace with $a \rightarrow c$
* Scores at time $t+1=$ scores at time t
* As a result c can win at time t

Plurality Convergence Proof (4)

* $\boldsymbol{a} \rightarrow \boldsymbol{b}$ is a type 1 move
* $a \neq o_{t-1}$ and $b=o_{t}$
* This means: $\exists a^{\prime}, a^{\prime}=o_{t-1}, a^{\prime} \neq a$
* $s_{t-1}\left(a^{\prime}\right) \geq s_{t-1}(y) \forall y \in C$
* $s_{t-1}\left(a^{\prime}\right)=s_{t}\left(a^{\prime}\right)=s_{t+1}\left(a^{\prime}\right)$
* $s_{t-1}(c)+1=s_{t}(c)+1 \geq s_{t}\left(a^{\prime}\right)=s_{t-1}\left(a^{\prime}\right) \geq s_{t-1}(a)$
* \boldsymbol{c} can beat all the rest at time \boldsymbol{t}
* The rest are unaffected $s_{t-1}(c)+1 \geq s_{t-1}(y)$
* As a result $c \in W_{t-1}$

Plurality Convergence Proof (5)

Lemma 2

- There are at most m - 1 type 3 moves for each voter
- There are at most m type 1 moves

Proof

- A step of type 3, $a \rightarrow b$, is an improvement step
- So for each voter: $\mathrm{b}>_{i} a$
- There are m-1 such possible improvements

- For all type 1 moves $a \rightarrow b, a \notin W_{t}$
- If $a \in W_{t}$ then $b \rightarrow a$ would make a win at time $t+1$
- But $a \rightarrow b \rightarrow a$ results in a not winning (type 1 def)
- Conclusion: Type 1 moves only decrease the number of winners
- At most m such moves

Anti-Plurality Convergence

Theorem

Anti-Plurality with alphabetical tie breaking converges to a Nash Equilibrium from any starting state in at most $\boldsymbol{m n}$ steps, if all players respond with restricted best replies

Improvement Steps

At time t a player responds with $-a \rightarrow-b$

- Type 1: $\boldsymbol{a} \neq \boldsymbol{o}_{\boldsymbol{t}}$ and $\boldsymbol{b}=\boldsymbol{o}_{\boldsymbol{t}-1}$
- Type 2: $a=o_{t}$ and $b \neq o_{t-1}$
- Type 3: $a=o_{t}$ and $b=o_{t-1}$

Note: A type 4 move ($\boldsymbol{a} \neq \boldsymbol{o}_{\boldsymbol{t}-\mathbf{1}}$ and $\boldsymbol{b} \neq \boldsymbol{o}_{\boldsymbol{t}}$) has no impact on the winner set

Restricted Best Reply: Type 1 and Type 3 improvement steps (Veto the previous winner)

Proof

Lemma 1

A type 2 step $-a \rightarrow-c$ can be replaced with a type 3 step $-a \rightarrow-b$ without changing the winner but increasing the margin of victory of a

Proof

- A step of type $2,-a \rightarrow-c$ results in:
- a being a winner
- Increasing $s_{t}(a)$
- Decreasing $s_{t}(c)$
- By type 2 definition c is not a previous winner
- If we replace with type 3 we get:
- $\quad a$ being a winner (winner set is the same)
- Increasing $s_{t}(a)$
- Decreasing $s_{t}(b)$ where b the previous winner

Proof (2)

Lemma 2

Over time the set of potential next winners never decreases

$$
\forall t<t^{\prime}: W_{t} \subseteq W_{t^{\prime}}
$$

Proof

- $\forall t: c \in W_{t-1} \Rightarrow c \in W_{t}$
- At time t improvement step $-a \rightarrow-b$ occurs
- Prove that $s_{t}(c)+1 \geq s_{t}(y) \forall y \in C$
- Three cases to consider: \mathbf{a}, \mathbf{b}, rest
- Rest
- $s_{t-1}(c)+1 \geq s_{t-1}(y)$ since $c \in W_{t-1}$
- But nobody changed
- $s_{t}(c)+1 \succeq s_{t}(y)$
- $c \in W_{t}$

Proof (3)

- For $\mathrm{b}=\boldsymbol{o}_{\boldsymbol{t}-\mathbf{1}}$
- $s_{t-1}(c)+1 \geq s_{t-1}(b)$
- $b \quad$ was vetoed \rightarrow score decreased $s_{t-1}(b)>s_{t}(b)$
- c was unaffected
- $s_{t}(c)+1 \geq s_{t}(b)$
- $c \in W_{t}$
- For \boldsymbol{a}
- If $-a \rightarrow-b$ Type 3 step:
- $-c \rightarrow-b$ at time t is equivalent in score with
- $-a \rightarrow-b$ at time t
- $-c \rightarrow-a$ at time $t+1$
- As a result nothing changes for \mathbf{c}, \mathbf{b}
- $c \in W_{t}$

Proof (4)

- If $-a \rightarrow-b$ Type 1 step:
- $O_{t}=b^{\prime}, \mathrm{b}^{\prime} \neq a, b$ (somebody else was the winner)
- This means: $s_{t}\left(b^{\prime}\right) \succeq s_{t}(a)$
- $s_{t-1}\left(b^{\prime}\right)=s_{t}\left(b^{\prime}\right)$
- $s_{t}(c)+1=s_{t-1}(c)+1 \geq s_{t-1}\left(b^{\prime}\right)=s_{t}\left(b^{\prime}\right) \succeq s_{t}(a)$
- $c \in W_{t}$

Proof (5)

Lemma 3

- Each voter has at most 1 type 1 moves
- Each voter has at most $m-1$ type 3 moves

Proof

- A step of type 3, $-a \rightarrow-b$, is an improvement step
- So for each voter: $\alpha>_{i} b$
- There are m-1 such possible improvements

$$
* * *
$$

- Consider $-a \rightarrow-b$ step of type 1 for a voter v
- It will be the first improvement step
- If not a was vetoed in the past
- This means that a was a winner sometime
- And before that a potential next winner ...
- Since W_{t} does not ever decrease, a is still
- Then $-a \rightarrow-b$ makes him a winner. Not a type 1 move

Randomised Tie Breaking

* Sets of current winners
* How to define best response?
* Approaches:
* Cardinal Utilities
* Consistent with preference ordering
* Convergence from truthful state
* Not guaranteed from arbitrary state
* Stochastic Dominance
* $\mathrm{W} \succeq_{\mathrm{v}}$ W' if the probability of selecting the k preferred candidates with winner set W is no less than with W^{\prime}
* Convergence

Borda and Best Replies

* May not converge even with alphabetical tie breaking
* Counterexample
* $|V|=2, k=2$
* $C=\{a, b, c\}$
* Preference Profile 1: $a \succ_{1} b \succ_{1} c$
* Preference Profile 2: $b \succ_{2} c \succ_{2} a$
* Moves:
* $(a b c, b c a)\{b\} \rightarrow(\boldsymbol{a c b}, b c a)\{a\} \rightarrow(a c b, \boldsymbol{c b a})\{c\} \rightarrow$ $(\boldsymbol{a b c}, c b a)\{a\} \rightarrow(a b c, \boldsymbol{b c a})\{b\} \rightarrow \ldots$
* Order of players matters
* May not converge even without tie breaking

2-approval and Best Replies

* May not converge even with alphabetical tie breaking
* Counterexample
* $|V|=2, k=2$
* $C=\{a, b, c, d\}$
* Preference Profile 1: $a \succ_{1} c \succ_{1} d \succ_{1} b$
* Preference Profile 2: $d \succ_{1} b \succ_{1} c>_{1} a$
* Moves:
* $(a c, d b)\{a\} \rightarrow(a c, \boldsymbol{d} c)\{c\} \rightarrow(\boldsymbol{a b}, d c)\{a\} \rightarrow(a b, \boldsymbol{d} \boldsymbol{b})\{b\} \rightarrow$ $(\boldsymbol{a c}, d b)\{a\} \rightarrow \ldots$

Maximin - (1)

* May not converge
* Counterexample
* $|V|=2, k=2$
* $C=\{a, b, c, d\}$
* Preference Profile 1:
* $c>_{1} d \succ_{1} b>_{1} a$
* Preference Profile 2:
* $b \succ_{1} d \succ_{1} c \succ_{1} a$
* Tie breaking rule:
* if

$$
\begin{aligned}
& * \mathrm{~b}=\mathrm{c}=\mathrm{d} \rightarrow \mathrm{~b} \\
& * \mathrm{~b}=\mathrm{c} \rightarrow \mathrm{c} \\
& * \mathrm{a}=\mathrm{b}=\mathrm{c} \rightarrow \mathrm{~b} \\
& * \mathrm{a}=\mathrm{b}=\mathrm{c}=\mathrm{d} \rightarrow \mathrm{a} \\
& * \mathrm{c}=\mathrm{d} \rightarrow \mathrm{c} \\
& * \mathrm{~b}=\mathrm{d} \rightarrow \mathrm{~b}
\end{aligned}
$$

* Else
* a

Maximin - (2)

* Truthful start
* V1: $c>_{1} d \succ_{1} b \succ_{1} a$
* V2: $b>_{1} d \succ_{1} c>_{1} a$
* $S(a, b, c, d)=(0,1,1,1)\{b\}$
* V1: $\boldsymbol{c}>_{1} \boldsymbol{b}>_{1} \boldsymbol{d}>_{1} \boldsymbol{a}$
* V2: $b>_{1} d>_{1} c>_{1} a$
* $S(a, b, c, d)=(0,1,1,0)\{c\}$
* V1: $c>_{1} b \succ_{1} d \succ_{1} a$
* V2: $\boldsymbol{a}>_{1} \boldsymbol{b}>_{1} \boldsymbol{d}>_{1} \boldsymbol{c}$
* $S(a, b, c, d)=(1,1,1,0)\{b\}$
* V1: $\boldsymbol{c}>_{1} \boldsymbol{d}>_{1} \boldsymbol{b}>_{1} \boldsymbol{a}$
* V2: $a>_{1} b \succ_{1} d \succ_{1} c$
* $\mathrm{S}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=(1,1,1,1)\{\mathrm{c}\}$
* V1: $c>_{1} d \succ_{1} b \succ_{1} a$
* V2: $b>_{1} d>_{1} c>_{1} a$
* $S(a, b, c, d)=(0,1,1,1)\{b\}$
* ...

Open Problems

* Reply definition for convergence
* General convergence conditions applicable to different social choice functions

References

1. R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings. Convergence to equilibria of plurality voting. In AAAI, pages 823-828, 2010
2. R. Reyhani and M. Wilson. Best reply dynamics for scoring rules. In ECAI, volume 2, pages 672-677, 2012.
3. O. Lev and J. S. Rosenschein. Convergence of iterative voting. In AAMAS, volume 2, pages 611-618, 2012
4. Obraztsova, S., Markakis, E., Polukarov, M., Rabinovich, Z., Jennings, N. R. (2014) On the Convergence of Iterative Voting: How Restrictive should Restricted dynamics be? In: 5th International Workshop on Computational Social Choice (ComSoc)
