### **Convergence In Iterative Voting**

Panagiotis Grontas

Theoretical Computer Science II,

24.07.2014

### Introduction

- \* Multi Agent Systems
  - \* Select course of action
  - \* How: Aggregate the preferences of individual agents by voting
  - \* Social choice theory
- \* Problems:
  - \* All voting rules **can** be manipulated (Gibbard Satterthwaite)
  - \* Strategic Behavior: Game theory to the rescue
  - \* But ...
  - \* Distorted equilibria
    - \* The result cannot be changed
    - \* But, there might be individual unhappy voters
    - \* **Example:** Everybody votes for the same candidate
  - \* Cannot force agents honest preferences

### Introduction

- \* A solution:
  - \* Manipulate the manipulation!
  - How: Use it to converge to a stable state, where no agent wants to further manipulate the game
  - \* Stable state: Nash Equilibrium
- \* Iterative voting (Meir, 2010)
  - \* All agents vote and view the result
  - \* Individual Preferences are not revealed
  - \* Unhappy agents can change their votes
  - \* Repeat until everybody is happy

### Results Summary

- Under Restrictions
  - \* Plurality Voting Converges
  - \* Antiplurality Converges
- \* Other voting rules do not converge, regardless of restrictions
  - \* Borda
  - \* K-approval
- \* Restrictions:
  - \* Initial Vote (truthful or not)
  - \* Voter weights
  - \* Type of agent action (best/better reply)
  - \* Tie breaking rules

### The model

- \* *V*: set of *n* voters/players
  - \* |V| = n
  - \* k strategic voters
  - \* n k truthful
- \* C: set of m candidates
  - \* |C| = m
  - \* Score at time  $t: s_t(c)$
- Truthful voters forgotten after voting
  - \* Initial score:  $\hat{s}_t(c)$

- \* Strategic Voters
  - \* Myopic Greedy Moves
  - \* One Change At A Time
- \* Winners at time t
  - \* **0**<sub>t</sub>
- \* Potential Next Winners
  - \* A voter can make them win in the next move

\* *W*<sub>t</sub>

# The model -(2)

- \* Voting rule  $f: A^n \to 2^{C^*}$ 
  - \* A: all preference orders for C (real/announced)
  - \* Scoring Rules:  $(a_1, a_2, \cdots, a_{m-1}, 0)$
  - \*  $a_i \ge a_{i+1}$
  - \* Examples:
    - \* **Plurality:**  $(1,0,\cdots,0,0)$
    - \* **Veto:** (1,1,...,1,0) or
      - \* (0,0,…,0,-1)
    - \* **Borda**: $(m 1, m 2, \dots, 1, 0)$
    - \* **K-Approval:** (1,1,...,0,0)

#### \* Maximin

- \*  $\forall x, y \in C$
- \*  $N(x, y) = |\{i: x \succ_i y\}|$
- $* S(x) = \min_{y} \{N(x, y)\}$
- \* Winner:  $max_x S$

# The model – (3)

- \* Tie breaking:
  - \*  $t: 2^{C^*} \rightarrow C$
  - \* Alphabetical Tie Breaking
    - \* **O**<sub>t</sub>: Singleton
  - \* Randomized Tie Breaking
    - \* Sets of possible winners
  - \* Linear Order Tie Breaking
    - \* If  $\forall x, y \in D \subseteq C: t(D) = x$
    - \* and  $x, y \in D'$
    - \* Then  $t(D') \neq y$

### Non convergence - example

- \* |V| = 9, k=3
- \*  $C = \{a, b, c, d\}$
- \* Initial score (2,2,2,0)
- \* Plurality with Alphabetical Tie Breaking
- \* Preference Profile 1:  $d \succ_1 a \succ_1 b \succ_1 c$
- \* Preference Profile 2:  $c \succ_2 b \succ_2 a \succ_2 d$
- \* Preference Profile 3:  $d >_3 a >_3 b >_3 c$
- \* Initial Move (truthful): (d, c, d){c} (2,2,3,2)

$$(\boldsymbol{b}, c, d) \{b\} \xrightarrow[(2,3,3,1)]{} (\boldsymbol{b}, c, \boldsymbol{a}) \{a\} \xrightarrow[(3,3,3,0)]{} (b, \boldsymbol{b}, a) \{b\} \xrightarrow[(3,4,2,0)]{} (c, b, a) \{a\} \xrightarrow[(3,3,3,0)]{} (c, c, a) \{c\} \xrightarrow[(3,2,4,0)]{} (\boldsymbol{b}, c, a) \{a\}$$

## Plurality Convergence

#### Theorem

Plurality with alphabetical tie breaking converges to a Nash Equilibrium from any starting state in at most m+(m-1)n steps, if all players respond with restricted best replies

#### **Improvement Steps**

At time *t* a player responds with  $a \rightarrow b$ 

- Type 1:  $a \neq o_{t-1}$  and  $b = o_t$
- Type 2:  $a = o_{t-1}$  and  $b \neq o_t$
- Type 3:  $a = o_{t-1}$  and  $b = o_t$

Note: A type 4 move  $(a \neq o_{t-1})$ and  $b \neq o_t$  has no impact on the winner set

Restricted Best Reply: Type 1 and Type 3 improvement steps,

### **Improvement Steps Practice**

- \* |V| = 3, k = 2
- \*  $C = \{a, b, c\}$
- \* Initial score (1,0,0)
- \* Alphabetical Tie Breaking
- \* Preference Profile 1:  $a >_1 b >_1 c$
- \* Preference Profile 2:  $c \succ_2 b \succ_2 a$

\* 
$$(b,c){a} \xrightarrow[c \to b]{} (b,b){b} \xrightarrow[b \to C]{} (c,b){a}$$
  
 $Type 1$ 
 $Type 2$ 

\* 
$$\xrightarrow{b \to C} (c, c) \{c\} \xrightarrow{c \to a} (a, c) \{a\}$$
  
*Type* 1 *Type* 3

### An observation

- \* Simultaneous responses might not converge
  - \*  $C = \{a, b, c\}$
  - \* |V| = 4, k=2
  - \* Initial score (0,0,2)
  - \* Preference Profile 1:  $a >_1 b >_1 c$
  - \* Preference Profile 2:  $b >_2 a >_2 c$
  - \*  $(\boldsymbol{a}, \boldsymbol{b})\{c\} \rightarrow (\boldsymbol{b}, \boldsymbol{a})\{c\} \rightarrow (\boldsymbol{a}, \boldsymbol{b})\{c\}$

# Plurality Convergence Proof (1)

#### Lemma 1

The set of **potential** next winners **never increases** over time  $\forall t < t' : W_{t'} \subseteq W_t$ 

#### Proof

- $\forall t: c \in W_t \Rightarrow c \in W_{t-1}$
- Assume  $c \in W_t$ :
  - An RBR step  $a \rightarrow c$  yields  $O_{t+1} = c$
- Step increases *c*'s score:
  - $s_{t+1}(c) = s_t(c) + 1$
- By winner definition:  $\forall y \in C$ 
  - $s_{t+1}(c) \ge s_{t+1}(y) \implies s_t(c) + 1 \ge s_{t+1}(y)$

All these take place at time t+1

## Plurality Convergence Proof (2)

At time *t*, an improvement step  $a \rightarrow b$  occurs

- \* C maintains score at time t
- $* s_t(c) = s_{t-1}(c)$
- \*  $b = o_t$  (from RBR def)
- \* *c* can beat *b* at time *t* 
  - \*  $s_t(c) + 1 \ge s_{t+1}(b)$
  - \*  $s_{t-1}(c) + 1 \ge s_{t+1}(b) s_{t+1}(b) = s_t(b) 1 = s_{t-1}(b) b$ fell back to the same score



# Plurality Convergence Proof (3)

- \* *c* can beat *a* at time *t* 
  - $* a \rightarrow b$  is a type 3 move
    - $* a = o_{t-1}$
    - \* Moves are:  $a \rightarrow b$  followed by  $b \rightarrow c$
    - \* Replace with  $a \rightarrow c$
    - \* Scores at time t+1 = scores at time t
    - \* As a result c can win at time t

## Plurality Convergence Proof (4)

#### $* a \rightarrow b$ is a type 1 move

\* 
$$a \neq o_{t-1}$$
 and  $b = o_t$ 

\* This means:  $\exists a', a' = o_{t-1}$ ,  $a' \neq a$ 

$$s_{t-1}(a') \ge s_{t-1}(y) \ \forall y \in C$$

$$* s_{t-1}(a') = s_t(a') = s_{t+1}(a')$$

 $* s_{t-1}(c) + 1 = s_t(c) + 1 \ge s_t(a') = s_{t-1}(a') \ge s_{t-1}(a)$ 

\* *c* can beat all the rest at time *t* 

\* The rest are unaffected  $s_{t-1}(c) + 1 \ge s_{t-1}(y)$ 

\* As a result  $c \in W_{t-1}$ 

# Plurality Convergence Proof (5)

#### Lemma 2

- There are at most *m*-1 type 3 moves for each voter
- There are at most *m* type 1 moves

### Proof

- A step of type 3,  $a \rightarrow b$ , is an improvement step
- So for each voter:  $b >_i a$
- There are *m*-1 such possible improvements
- For all type 1 moves  $a \rightarrow b$ ,  $a \notin W_t$
- If  $a \in W_t$  then  $b \to a$  would make a win at time t + 1
- But  $a \rightarrow b \rightarrow a$  results in a not winning (type 1 def)
- Conclusion: Type 1 moves only decrease the number of winners
- At most *m* such moves

Total: n(m-1) + m

### Anti-Plurality Convergence

#### Theorem

**Anti-Plurality** with **alphabetical tie breaking** converges to a Nash Equilibrium from any starting state in at most *mn* steps, if all players respond with **restricted best replies** 

#### **Improvement Steps**

At time *t* a player responds with  $-a \rightarrow -b$ 

- <u>Type 1</u>:  $a \neq o_t$  and  $b = o_{t-1}$
- Type 2:  $a = o_t$  and  $b \neq o_{t-1}$
- <u>Type 3:</u>  $a = o_t$  and  $b = o_{t-1}$

Note: A type 4 move  $(a \neq o_{t-1})$ and  $b \neq o_t$  has no impact on the winner set

**Restricted Best Reply:** Type 1 and Type 3 improvement steps (Veto the previous winner)

### Proof

#### Lemma 1

A type 2 step  $-a \rightarrow -c$  can be replaced with a type 3 step  $-a \rightarrow -b$  without changing the winner but increasing the margin of victory of a

### Proof

- A step of type 2,  $-a \rightarrow -c$  results in:
  - *a* being a winner
  - Increasing  $s_t(a)$
  - Decreasing  $s_t(c)$
- By type 2 definition c is not a previous winner
- If we replace with type 3 we get:
  - *a* being a winner (winner set is the same)
  - Increasing  $s_t(a)$
  - Decreasing  $s_t(b)$  where b the previous winner

# Proof(2)

#### Lemma 2

Over time the **set of potential next winners** never **decreases**  $\forall t < t' : W_t \subseteq W_{t'}$ 

#### Proof

- $\forall t: c \in W_{t-1} \Rightarrow c \in W_t$
- At time t improvement step  $-a \rightarrow -b$  occurs
- Prove that  $s_t(c) + 1 \ge s_t(y) \forall y \in C$
- Three cases to consider: **a**, **b**, **rest**
- Rest
  - $s_{t-1}(c) + 1 \ge s_{t-1}(y)$  since  $c \in W_{t-1}$
  - But nobody changed
  - $s_t(c) + 1 \ge s_t(y)$
  - $c \in W_t$

# Proof(3)

- For  $b = o_{t-1}$ 
  - $s_{t-1}(c) + 1 \ge s_{t-1}(b)$
  - *b* was vetoed  $\rightarrow$  score decreased  $s_{t-1}(b) > s_t(b)$
  - c was unaffected
  - $s_t(c) + 1 \ge s_t(b)$
  - $c \in W_t$
- For *a* 
  - If  $-a \rightarrow -b$  Type 3 step:
    - $-c \rightarrow -b$  at time *t* is equivalent in score with
    - $-a \rightarrow -b$  at time t
    - $-c \rightarrow -a$  at time t + 1
  - As a result nothing changes for c, b
  - $c \in W_t$

# Proof(4)

- If  $-a \rightarrow -b$  Type 1 step:
  - $O_t = b'$ ,  $b' \neq a, b$  (somebody else was the winner)
  - This means:  $s_t(b') \ge s_t(a)$
  - $s_{t-1}(b') = s_t(b')$
  - $s_t(c) + 1 = s_{t-1}(c) + 1 \ge s_{t-1}(b') = s_t(b') \ge s_t(a)$
  - $c \in W_t$

# Proof(5)

#### Lemma 3

- Each voter has at most 1 type 1 moves
- Each voter has at most m 1 type 3 moves

### Proof

- A step of type 3,  $-a \rightarrow -b$ , is an improvement step
- So for each voter:  $\alpha \succ_i b$
- There are *m-1* such possible improvements
- Consider  $-a \rightarrow -b$  step of type 1 for a voter v
- It will be the first improvement step
- If not *a* was vetoed in the past
- This means that a was a winner sometime
- And before that a potential next winner ...
- Since  $W_t$  does not ever decrease, a is still
- Then  $-a \rightarrow -b$  makes him a winner. Not a type 1 move

## Randomised Tie Breaking

- \* Sets of current winners
- \* How to define best response?
- \* Approaches:
  - \* Cardinal Utilities
    - \* Consistent with preference ordering
    - \* Convergence from truthful state
    - \* Not guaranteed from arbitrary state
  - \* Stochastic Dominance
    - \* W  $\ge_v$  W' if the probability of selecting the k preferred candidates with winner set W is no less than with W'
    - \* Convergence

### Borda and Best Replies

- \* May not converge even with alphabetical tie breaking
- \* Counterexample
- \* |V| = 2, k = 2
- \*  $C = \{a, b, c\}$
- \* Preference Profile 1:  $a >_1 b >_1 c$
- \* Preference Profile 2:  $b >_2 c >_2 a$
- \* <u>Moves:</u>
- \*  $(abc, bca){b} \rightarrow (acb, bca){a} \rightarrow (acb, cba){c} \rightarrow (abc, cba){a} \rightarrow (abc, bca){b} \rightarrow ...$
- \* Order of players matters
- \* May not converge even without tie breaking

### 2-approval and Best Replies

- \* May not converge even with alphabetical tie breaking
- \* Counterexample
- \* |V| = 2, k = 2
- \*  $C = \{a, b, c, d\}$
- \* Preference Profile 1:  $a \succ_1 c \succ_1 d \succ_1 b$
- \* Preference Profile 2:  $d \succ_1 b \succ_1 c \succ_1 a$
- \* <u>Moves:</u>
- \*  $(ac, db){a} \rightarrow (ac, dc){c} \rightarrow (ab, dc){a} \rightarrow (ab, db){b} \rightarrow (ac, db){a} \rightarrow ...$

# Maximin - (1)

- \* May not converge
- \* Counterexample
- \* |V| = 2, k = 2
- \*  $C = \{a, b, c, d\}$
- \* Preference Profile 1: \*  $c \succ_1 d \succ_1 b \succ_1 a$
- \* Preference Profile 2:
  - $* b \succ_1 d \succ_1 c \succ_1 a$

- \* Tie breaking rule:\* if
  - \*  $b = c = d \rightarrow b$
  - \*  $b = c \rightarrow c$
  - \*  $a = b = c \rightarrow b$
  - \*  $a = b = c = d \rightarrow a$
  - \* c = d  $\rightarrow$  c
  - \* b = d  $\rightarrow$  b
  - \* Else
    - \* a

## Maximin - (2)

- \* Truthful start
  - \* V1:  $c \succ_1 d \succ_1 b \succ_1 a$
  - \* V2:  $b \succ_1 d \succ_1 c \succ_1 a$
  - \* S (a,b,c,d) = (0,1,1,1) {b}
  - \* V1:  $c \succ_1 b \succ_1 d \succ_1 a$
  - \* V2:  $b \succ_1 d \succ_1 c \succ_1 a$
  - \* S (a,b,c,d) = (0,1,1,0) {c}
  - \* V1:  $c \succ_1 b \succ_1 d \succ_1 a$
  - \*  $\forall 2: a \succ_1 b \succ_1 d \succ_1 c$
  - \* S (a,b,c,d) = (1,1,1,0) {b}

- \* V1:  $c \succ_1 d \succ_1 b \succ_1 a$
- \* V2:  $a \succ_1 b \succ_1 d \succ_1 c$
- \* S (a,b,c,d) = (1,1,1,1) {c}
- \* V1:  $c \succ_1 d \succ_1 b \succ_1 a$
- \* V2:  $b \succ_1 d \succ_1 c \succ_1 a$
- \* S (a,b,c,d) = (0,1,1,1) {b}

\*

### **Open Problems**

- \* Reply definition for convergence
- \* General convergence conditions applicable to different social choice functions

### References

- R. Meir, M. Polukarov, J. S. Rosenschein, and N. R. Jennings.
   Convergence to equilibria of plurality voting. In AAAI, pages 823–828, 2010
- 2. R. Reyhani and M. Wilson. **Best reply dynamics for scoring rules.** In ECAI, volume 2, pages 672–677, 2012.
- 3. O. Lev and J. S. Rosenschein. **Convergence of iterative voting**. In AAMAS, volume 2, pages 611–618, 2012
- Obraztsova, S., Markakis, E., Polukarov, M., Rabinovich, Z., Jennings, N. R. (2014) On the Convergence of Iterative Voting: How Restrictive should Restricted dynamics be? In: 5th International Workshop on Computational Social Choice (ComSoc)