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Edge expansion and a combinatorial definition of expanders

Let G(V,E) be an undirected and d-regular graph
Multiple edges and self loops are allowed
We denote n = |V|
We can think of each edge as a pair of directed edges. For S,T ⊂ V we
denote E(S,T) the set of directed edges from S to T.
E(S, S) ≡ E(S).
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We give a couple of basic definitions:

Definition
The Edge Boundary of a set S is ∂S = E(S,V \S)
The (edge) Expansion Ratio of G, denoted by h(G) is defined as:

h(G) = min
{S||S|≤ n

2}

|∂S|
|S|

Definition (Family of Expander Graphs)
A sequence of d-regular graphs {Gi}i∈N of size increasing with i is a Family of
Expander Graphs if there exists ϵ > 0 s.t.

h(Gi) ≥ ϵ, for all i

The exact determination of h(G), given G, is difficult (co-NP Hard).

George Zirdelis (Structural Complexity 2013-14, CoReLab) Expander graphs and their applications July 27, 2014 3 / 37



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

In computer science, we are concerned for the explicit construction of the
objects we study.

Definition
Let {Gi}i be a family of expander graphs where Gi is a d-regular graph on ni
vertices and the integers {ni} are increasing, but not too fast (e.g. ni + 1 ≤ n2

i
will do).

The family is called Mildly Explicit if there is an algorithm that generates
the j-th graph in the family Gj in time polynomial in j.
The family is called Very Explicit if there is an algorithm that on input of:

an integer i
a vertex v ∈ V(Gi)
k ∈ 1, . . . , d

computes the k-th neighbor of the vertex v in the graph Gi.
This algorithm’s run time should be polynomial in its input length (the
number of bits needed to express the triple (i, v, k)).
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Examples of expander graphs

Very explicit: A family of 8-regular graphs Gm for every integer m. The
vertex set is Vm = Zm × Zm. The 8 neighbors of the vertex (x, y) are (x+y,
y), (x−y, y), (x, y+x), (x, y−x), (x+y+1, y), (x−y+1, y), (x, y+x+1), (x,
y−x+1), (all operations are mod m).
Mildy explicit: A family of 3-regular graphs where Vp = Zp, p is prime and a
vertex v is connected to v + 1, v − 1 and v−1, (all operations are mod m
and we define the inverse of 0 to be 0).
This family is only mildy explicit, since we are at present unable to generate
large primes deterministically.
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Graph spectrum and an algebraic definition of expansion

Let A = A(G) be the Adjacency Matrix of a n-vertex graph G.
Each (u, v) matrix entry is the number of edges between verices u and v
A is real and symmetric. Real and symmetric matrices have real eigenvalues.
We denote the n real eigenvalues as:

λ1 ≥ λ2 ≥ . . . ≥ λn

We ofter refer to the eigenvalues of A(G) as the Spectrum of the graph G.
Eigevalues encode a lot of information of a d-regular graph:

λ1 = d
The graph is connected iff λ1 > λ2

The graph is bipartite iff λ1 = −λn
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We are more interested in λ2 because it’s closely related to the expansion
parameter.

Theorem
Let G be d-regular graph with spectrum λ1 ≥ λ2 ≥ . . . ≥ λn

d − λ2

2
≤ h(G) ≤

√
2d(d − λ2)

We see that d − λ2, also known as Spectral Gap, provides an estimate on the
expansion of a graph.
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The Expander Mixing Lemma

The following lemma shows that a small second eigenvalue in a graph implies that
its edges are ”spread out”, a hallmark of random graphs.

Lemma (Expander Mixing Lemma)
Let G be a d-regular graph with n vertices and set λ = λ(G). Then for all
S,T ⊆ V: ∣∣∣∣|E(S,T)| − d

n |S| |T|
∣∣∣∣ ≤ λ

√
|S| |T|

where λ is the largest absolute value of an eigenvalue other than λ1.

The left-hand side measures the deviation between two quantitiess
One is |E(S,T)|, the number of edges between the two sets
The other is the expected number of edges between S and T in a random
graph of edge density d

n .
A small λ implies that this deviation is small, so the graph is nearly random is this
sense.
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Lemma (Converse of the Expander Mixing Lemma)
Let G be a d-regular graph with n vertices and suppose that the following holds
for every two disjoint set S,T ⊆ V and some positive ρ:∣∣∣∣|E(S,T)| − d

n |S| |T|
∣∣∣∣ ≤ ρ

√
|S| |T|

Then, λ ≤ O
(
ρ · (1 + log

(
d
ρ

))
. The bound is tight.

For when d grows with n, i.e. the Kn graph, we have d = n − 1 and λ = 1.
For the range we are interested in, i.e. n ≫ d, is there a lower bound on λ?
Yes.

Theorem
For every (n, d) graph (i.e. n vertices and d-regular),

λ ≥ 2
√

d − 1− on(1)
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(n, d) graphs with small ration α = λ(G)
d have some significant properties, some of

which we mention below:
Independent Set has cardinality at most αn
For the k-coloring problem, the chromatic number χ(G) is at least 1

α

The diameter of G is O (log n)
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A key property of the random walk on an expander graph is that it converges
rapidly to its limit distribution.
In many theoretical and practical computational problems in science and
engineering it is necessary to draw samples from some distribution F on a
(usually finite but huge) set V .
Therefore consider a graph G on vertex set V so that the limit distribution of
the random walk on G is F .
A clever choice of G can guarantee that

it is feasible to efficiently simulate this random walk
the distribution induced on V by the walk converges rapidly to F
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Rapid mixing of walks

A walk on a graph G(V,E) is a sequence of vertices v1, v2, . . . ,∈ V s.t. vi+1

is a neighbor of vi for every vertex i
So when vi+1 is selected uniformly at random for every i, this is called a
random walk on G

Now let’s see more about the speed of convergence of probability
distributions defined on V.
We know that for a finite, connected, nonbipartite graph G, distributions
defined on V converge to a limit or stationary distribution
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We denote a d-regular graph G, with n nodes where |λ2| , |λn| ≤ αd holds, as
an (n, d, α)-graph.
A vector p ∈ Rn is called a probability distribution vector if its coordinates
are nonnegative and

∑n
i=1 pi = 1

For the uniform distribution on {1, . . . , n} it’s u = (1, . . . , 1)/n
Let’s properly define what a random walk on a graph is.

Definition
A random walk on a finite graph G = (V,E) is a discrete-time stochastic process
(X0,X1, . . .) taking values in V. The vertex X0 is sampled from some initial
distribution on V , and Xi+1 is chosen uniformly at random from the neighbors of
Xi.
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If G is d-regular with adjacency matrix A the its normalized adjacency matrix is
defined as Â = 1

d A. We summarize some facts for a random walk on G.
1 It’s a Markov Chain with state set V and transition matrix Â
2 Â is real, symmetric and doubly stohastic; i.e. every column and every row

sums up to 1
3 if λ̂1 ≥ . . . ≥ λ̂n are the eigenvalues of Â, then λ̂1 = 1 and

max
{∣∣∣λ̂2

∣∣∣ , ∣∣∣λ̂n

∣∣∣} ≤ α

4 The corresponding eigenvectors are the same eigenvectors of A
5 Consider an experiment where we sample a vertex x from some probability

distribution p on V and then move to a random neighbor of x. This is
equivalent to sampling a vertex from the distribution Âp.

6 The matrix Ât is the transition matrix of the Markov Chain defined by
random walks of length t. In other words (Ât)ij is the probability a random
walk starting at i is at j after t steps.

7 The stationary distribution of the random walk on G is the uniform
distribution, namely, uÂ = Âu = u. (This uses the symmetry of A.)
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Convergence in the ℓ1 and ℓ2 norms

Theorem
Let G be an (n, d, α)-graph with normalized adjacency matrix Â. Then for every
distribution vector p and any positive integer t∥∥∥Âtp− u

∥∥∥
1
≤

√
nαt

Why we use ℓ1 instead of ℓ∞? For probabilities it holds that

maxB |Prp[B]− Prq[B]| =
1

2
∥p − q∥1

Theorem
Let G be an (n, d, α)-graph with normalized adjacency matrix Â. Then for every
distribution vector p and any positive integer t∥∥∥Âtp− u

∥∥∥
2
≤ ∥p− u∥2 α

t ≤ αt
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Random walks resemble independent sampling

Imagine an abstract sampling problem in which an unknown set B in a
universe of size n is ”bad in some sense
We try to sample the universe so as to avoid the bad set as much as possible
Our task will be to do so, minimizing the number of random bits used
Say the set B includes all the bad random choices for a probabilistic
algorithm, namely, those choices for which it gives the wrong answer

Let G(V,E) an (n, d, α) and B ⊂ V with |B| = βn
Experiment: We pick X0 ∈ V uniformly at random and start from it a
random walk X0, . . . ,Xt on G.
Denote by (B, t) the event that this random walk is confined to B, i.e.
∀i, Xi ∈ B
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Theorem (Ajtai-Komlós-Szemerédi ’87,
Alon-Feige-Wigderson-Zuckerman ’95)
Let G be an (n, d, α)-graph and B ⊂ V with |B| = βn. Then the probability of the
event (B, t) is bounded by

Pr[(B, t)] ≤ (β + α)t

This can be generalized as follows:

Theorem
Let B0, . . . ,Bn be vertex sets of densities β0, . . . , βn in an (n, d, α)-graph G. Let
X0, . . . ,Xt be a random walk on G. Then

Pr [Xi ∈ Bi for all i] ≤
t−1∏
i=0

(√
βiβi+1 + α

)
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Let’s say we now want a subset of bad choices.

Theorem
For every subset K ⊂ {0, . . . , t} and vertex subset B of density β,

Pr [Xi ∈ B for all i ∈ K] ≤ (β + α)|K|−1
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Efficient error reduction in probabilistic algorithms

Let A be a probabilistic algorithm to decide membership in language L
For input x, algorithm samples a string r ∈ {0, 1}k and computes in
polynomial time A(x, r)
Remember that in the complexity class RP the algorithm makes errors on
inputs outside L
if x ∈ L, then A(x, r) = 1

if x ̸∈ L, the probability that A(x, r) = 1 is at most β
again our goal is to reduce the probability of error below a threshold without
substantial increase in the number of random bits that are required

Let’s use expander graphs to see what we can gain!
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Choose explicit an (n, d, α)-graph with V = {0, 1}k

choose α sufficiently smaller that β
choice of α will put a lower bound on d but d can be take to be O

(
α−2

)
for a given input x let Bx = B ⊆ {0, 1}k be the set of all strings r for which
the algorithm A errs on x

We introduce a new algorithm A′ that uses m random bits and works as follows:

1 pick a vertex v0 ∈ V uniformly at random
2 start from it a random walk of length t, say (v0, . . . , vt)

3 return
∧t

i=0 A(x, vi)

But as we have seen with random walks on expander graphs it holds that:

Pr [A′ fails] = Pr [∀i, vi ∈ B] ≤ (β + α)t

A′ achieves an exponential reduction in error probability, while the number of
random bits used is only m + t log d = m + O (t)
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Well, about BPP? Things work in a similar fashion. We introduce a new
algorithm A′ that uses m random bits and works as follows:

1 pick a vertex v0 ∈ V uniformly at random
2 start from it a random walk of length t, say (v0, . . . , vt)

3 return majority{A(x, vi)}
A′ fails if the majority of the vi’s belong to Bx = B ⊂ V.

Fix a set of indices K ⊂ {0, . . . , t} with |K| ≥ (t + 1)/2 (majority)
We have seen that

Pr [vi ∈ B for all i ∈ K] ≤ (β + α)|K|−1 ≤ (β + α)(t−1)/2

Assuming α+ β ≤ 1/8 and applying the union bound on the possible choices
of K we deduce that:

Pr [A′ fails] ≤ 2t(β + α)(t−1)/2 = O
(
2−t/2

)
Again, A′ achieves an exponential reduction in error probability, while the number
of random bits used is only m + t log d = m + O (t)
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Main parameters of various techniques

Method Error probability No. of random bits
Randomized algorithm A 1/10 m
t independent reps of A 2−t t · m
sampling a point and its neighbors
in an (n, t, 1/

√
t)-graph

1/t m

A random walk of length t on an
(n, d, 1/40)-graph

2−t/2 m + O (t)
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Hardness of approximating maximum clique size

Random walks on expanders can be used to enhance hardness of
approximation factors, for example in the clique problem
Let G be a graph, then the clique number ω(G) is defined as the largest
cardinality of clique in G

Theorem (Feige-Goldwasser-Lovász-Szegedy ’91)
There are two constants 0 < δ2 < δ1 < 1 s.t. it’s NP-Hard to decide for a given
n-vertex graph G whether ω(G) ≤ δ2n or ω(G) ≥ δ1n.

Even obtaining a rough approximation of ω(G) is hard.

Theorem
If there exists a polynomial-time algorithm A whose output on every n-vertex
graph G satisfies n−ϵ ≤ A(G)/ω(G) ≤ nϵ for an ϵ > 0, then NP = P.
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Theorem (weaker version)
If there exists a polynomial-time algorithm A whose output on every n-vertex
graph G(V,E) satisfies n−ϵ ≤ A(G)/ω(G) ≤ nϵ for an ϵ > 0, then NP ⊆ RP.

Consider a graph H with vertex set Vt, t = log n
The vertices (v1, . . . , vt) and (u1, . . . , ut) are adjacent in H, if the subgraph
of G induced by the set (v1, . . . , vt) ∪ (u1, . . . , ut) is a clique
whether ω(G) is below δ2n or above δ1n, this is significantly amplified in H
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Consider an algorithm B that on input G(V,E) does the following:
1 Pick m = poly(n) random vertices from Vt and compute the subgraph H′ of

H induced by this set
2 Apply algorithm A to H′

3 Return 1 if A(H′) > 1
2δ

t
1m, and otherwise return 0

The following two hold, so we can conclude.
if ω(G) ≥ δ1n, then almost surely ω(H′) ≥ 1

2δ
t
1m

if ω(G) ≤ δ2n, then almost surely ω(H′) ≤ 1
2δ

t
2m

(Actually this shows that NP ⊆ BPP)
An estimate, in a polynomial sized sample on a expander graph, is enough to
create a conclusion for the problem in the expander graph, and so in the initial
graph.
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A deterministic reduction also exists.
Choose some expander (n, d, α)-graph G with VG = V
Consider all t-tuples that represent a random walk of t − 1 length on G
random walks on G should behave like random t-tuples in |V|t

The resulting H′ graph has m = ndt−1 vectices. d is fixed and t = log n, so
it’s polynomial on the input

The following two hold, so we can conclude.
if ω(G) ≥ δ1n, then ω(H′) ≥ (δ1 − 2α)tm
if ω(G) ≤ δ2n, then ω(H′) ≤ (δ2 − 2α)tm
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The zig-zag product

The k-th power of G(V,E), is denoted by Gk(V,Ek), has the same vertex set
as G and an edge (u, v) ∈ Ek for every path of length k in G from u to v
For the adjacency matrices we have that: AGk = Ak

G
If G is an (n, d, α)-graph then Gk is a (n, dk, αk)-graph
The zig-zag product is an asymmetric binary operation
The product of an (n,m)-graph and an (m, d)-graph is and (nm, d2)-graph
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Theorem (The Zig-Zag Theorem, Reingold-Vadhan-Wigderson ’02)
Let G be an (n,m, α)-graph and H be an (m, d, β)-graph. Then G Z H is an
(nm, d2, ϕ(α, β))-graph where the function ϕ satisfies the following:

1 if α < 1 and β < 1 then ϕ(α, β) < 1

2 ϕ(α, β) ≤ α+ β

3 ϕ(α, β) ≤ 1− (1− β2)(1− α)/2

The first bound says that the zig-zag product takes two expanders into
another expander
The other two are crucial for applications. The former is useful when α, β are
small, and the latter when they are large
Reingold used bound (3) on ϕ for his proof that SL = L
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Let G be an (n,m, α)-graph and H be an (m, d, β)-graph
For every vertex v ∈ VG we fix some numbering of the edges incident with v,
i.e. e1v , . . . , em

v
Regard the vertex set of H as [m] = {1, . . . ,m}

Definition
G Z H = (VG × [m],E′), where ((v, i), (u, j)) ∈ E′ iff there are some k, l ∈ [m] s.t.
(i, k), (l, j) ∈ EH and ek

v = el
u

Roughly speaking, the zig-zag product G Z H replaces each vertex of G with a
copy (cloud) of H, and connects the vertices by moving a small step (zig) inside a
cloud, followed by a big step (zag) between two clouds, and finally performs
another small step inside the destination cloud.
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The vertex set of G Z H is the cartesian product VG × VH

Define the replacement product (on the same vertex set)
Edges of G r H are the union of

1 the original edges of G (shaded lines)
2 n copies of the edges of H, one copy per cloud (wiggly edges between clouds)

edges of G Z H arise form walks of length three in G r H:
”dashed-wiggly-dashed”
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The zig-zag product of the grid Z2 with the 4-cycle
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Construction of an expander family using zig-zag

Let H be a (d4, d, 1/4)-graph for some constant d
There exists such a graph (probabilistic proof & exhaustive search to find it,
but more efficient construction exists)
Using the building block H, we inductively define the infinite sequence Gn by:

G1 = H2, Gn+1 = G2
n Z H, for n ≥ 1

Graph Gn is a (d4n, d2, 1/2)-graph for all n
This construction is only mildly explicit
To make it strongly explicit, in every iteration we must take the tensor
product of Gn with itself
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SL=L (Reingold ’05)

SL is the complexity class of problems log-space reducible to USTCON
(undirected s-t connectivity), i.e. USTCON is SL-complete

Assume you arrive in an unfamiliar city with no map
You want to get to your hotel whose street name you know
You can create your own map to avoid loops, but suppose you don’t have
that much memory available
That is, suppose you have only logarithmic memory instead of linear to the
size of the city
This is the same as exploring a graph (or determine if an s-t path exists)
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A probabilistic logspace algorithm

Aleliunas, Karp, Lipton, Lovász and Rackoff ’79
Perform a polynomial length random walk starting from s
Algorithm uses logarithmic space, needs to remember the goal t and its
current position
Assume that the input graph G is an expander graph
...then the diameter of G is of logarithmic size
Then one can enumerate all the logarithmically long paths and check if there
is and s-t path
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But what if the input graph is not an expander? We will make one out of it
First make it D-regular, e.g. by adding self loops
Input graph is now an (n,D, α)-graph
Assume D = d16 and that we have an (d16, d, 1/2)-graph H
We construct graphs Gi as follows:

G1 = G, Gi+1 = (Gi Z H)8 for i ≥ 1

For k = O (log n) the graph Gk is and (nd16k, d16, 3/4)-graph
Neighborhood queries for Gk can be answered in logspace
Large expander graph constructed by zig-zag product are very explicit
We need only constant amount of additional space to create Gk

We achieve this by using a data structure (with rotation maps)
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[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson.
Expander graphs and their applications.
Bull. Amer. Math. Soc., 43(04):439–562, August 2006.
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Thank you!
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