Expander graphs and their applications

Shlomo Hoory, Nathan Linial, and Avi Wigderson

George Zirdelis

Structural Complexity 2013-14, CoReLab

July 27, 2014

Edge expansion and a combinatorial definition of expanders

- Let $G(V, E)$ be an undirected and d-regular graph
- Multiple edges and self loops are allowed
- We denote $n=|V|$
- We can think of each edge as a pair of directed edges. For $S, T \subset V$ we denote $E(S, T)$ the set of directed edges from S to T.
- $E(S, S) \equiv E(S)$.

We give a couple of basic definitions:

Definition

- The Edge Boundary of a set S is $\partial S=E(S, V \backslash S)$
- The (edge) Expansion Ratio of G, denoted by $h(G)$ is defined as:

$$
h(G)=\min _{\left\{S| | S \left\lvert\, \leq \frac{n}{2}\right.\right\}} \frac{|\partial S|}{|S|}
$$

Definition (Family of Expander Graphs)

A sequence of d-regular graphs $\left\{G_{i}\right\}_{i \in \mathbb{N}}$ of size increasing with i is a Family of Expander Graphs if there exists $\epsilon>0$ s.t.

$$
h\left(G_{i}\right) \geq \epsilon, \quad \text { for all } \mathrm{i}
$$

The exact determination of $h(G)$, given G, is difficult (co-NP Hard).

In computer science, we are concerned for the explicit construction of the objects we study.

Definition

Let $\left\{G_{i}\right\}_{i}$ be a family of expander graphs where G_{i} is a d-regular graph on n_{i} vertices and the integers $\left\{n_{i}\right\}$ are increasing, but not too fast (e.g. $n_{i}+1 \leq n_{i}^{2}$ will do).

- The family is called Mildly Explicit if there is an algorithm that generates the j-th graph in the family G_{j} in time polynomial in j.
- The family is called Very Explicit if there is an algorithm that on input of:
- an integer i
- a vertex $v \in V\left(G_{i}\right)$
- $k \in 1, \ldots, d$
computes the k-th neighbor of the vertex v in the graph G_{i}.
This algorithm's run time should be polynomial in its input length (the number of bits needed to express the triple ($\mathrm{i}, \mathrm{v}, \mathrm{k}$)).

Examples of expander graphs

- Very explicit: A family of 8 -regular graphs G_{m} for every integer m. The vertex set is $V_{m}=\mathbb{Z}_{m} \times \mathbb{Z}_{m}$. The 8 neighbors of the vertex (x, y) are ($x+y$, $y),(x-y, y),(x, y+x),(x, y-x),(x+y+1, y),(x-y+1, y),(x, y+x+1),(x$, $y-x+1$), (all operations are $\bmod m$).
- Mildy explicit: A family of 3-regular graphs where $V_{p}=\mathbb{Z}_{p}, p$ is prime and a vertex v is connected to $v+1, v-1$ and v^{-1}, (all operations are $\bmod m$ and we define the inverse of 0 to be 0).
This family is only mildy explicit, since we are at present unable to generate large primes deterministically.

Graph spectrum and an algebraic definition of expansion

- Let $A=A(G)$ be the Adjacency Matrix of a n-vertex graph G.
- Each (u, v) matrix entry is the number of edges between verices u and v
- A is real and symmetric. Real and symmetric matrices have real eigenvalues.
- We denote the n real eigenvalues as:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}
$$

- We ofter refer to the eigenvalues of $A(G)$ as the Spectrum of the graph G.

Eigevalues encode a lot of information of a d-regular graph:

- $\lambda_{1}=d$
- The graph is connected iff $\lambda_{1}>\lambda_{2}$
- The graph is bipartite iff $\lambda_{1}=-\lambda_{n}$

We are more interested in λ_{2} because it's closely related to the expansion parameter.

Theorem

Let G be d-regular graph with spectrum $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$

$$
\frac{d-\lambda_{2}}{2} \leq h(G) \leq \sqrt{2 d\left(d-\lambda_{2}\right)}
$$

We see that $d-\lambda_{2}$, also known as Spectral Gap, provides an estimate on the expansion of a graph.

The Expander Mixing Lemma

The following lemma shows that a small second eigenvalue in a graph implies that its edges are "spread out", a hallmark of random graphs.

Lemma (Expander Mixing Lemma)

Let G be a d-regular graph with n vertices and set $\lambda=\lambda(G)$. Then for all $S, T \subseteq V$:

$$
\left||E(S, T)|-\frac{d}{n}\right| S||T|| \leq \lambda \sqrt{|S||T|}
$$

where λ is the largest absolute value of an eigenvalue other than λ_{1}.
The left-hand side measures the deviation between two quantitiess

- One is $|E(S, T)|$, the number of edges between the two sets
- The other is the expected number of edges between S and T in a random graph of edge density $\frac{d}{n}$.
A small λ implies that this deviation is small, so the graph is nearly random is this sense.

Lemma (Converse of the Expander Mixing Lemma)

Let G be a d-regular graph with n vertices and suppose that the following holds for every two disjoint set $S, T \subseteq V$ and some positive ρ :

$$
\left||E(S, T)|-\frac{d}{n}\right| S||T|| \leq \rho \sqrt{|S||T|}
$$

Then, $\lambda \leq O\left(\rho \cdot\left(1+\log \left(\frac{d}{\rho}\right)\right)\right.$. The bound is tight.

- For when d grows with n, i.e. the K_{n} graph, we have $d=n-1$ and $\lambda=1$.
- For the range we are interested in, i.e. $n \gg d$, is there a lower bound on λ ? Yes.

Theorem

For every (n, d) graph (i.e. n vertices and d-regular),

$$
\lambda \geq 2 \sqrt{d-1}-o_{n}(1)
$$

(n, d) graphs with small ration $\alpha=\frac{\lambda(G)}{d}$ have some significant properties, some of which we mention below:

- Independent Set has cardinality at most αn
- For the k-coloring problem, the chromatic number $\chi(G)$ is at least $\frac{1}{\alpha}$
- The diameter of G is $O(\log n)$
- A key property of the random walk on an expander graph is that it converges rapidly to its limit distribution.
- In many theoretical and practical computational problems in science and engineering it is necessary to draw samples from some distribution \mathcal{F} on a (usually finite but huge) set V.
- Therefore consider a graph G on vertex set V so that the limit distribution of the random walk on G is \mathcal{F}.
- A clever choice of G can guarantee that
- it is feasible to efficiently simulate this random walk
- the distribution induced on V by the walk converges rapidly to \mathcal{F}

Rapid mixing of walks

- A walk on a graph $G(V, E)$ is a sequence of vertices $v_{1}, v_{2}, \ldots, \in V$ s.t. v_{i+1} is a neighbor of v_{i} for every vertex i
- So when v_{i+1} is selected uniformly at random for every i, this is called a random walk on G
- Now let's see more about the speed of convergence of probability distributions defined on V.
- We know that for a finite, connected, nonbipartite graph G, distributions defined on V converge to a limit or stationary distribution
- We denote a d-regular graph G, with n nodes where $\left|\lambda_{2}\right|,\left|\lambda_{n}\right| \leq \alpha d$ holds, as an (n, d, α)-graph.
- A vector $\mathbf{p} \in \mathbb{R}^{n}$ is called a probability distribution vector if its coordinates are nonnegative and $\sum_{i=1}^{n} p_{i}=1$
- For the uniform distribution on $\{1, \ldots, n\}$ it's $\mathbf{u}=(1, \ldots, 1) / n$

Let's properly define what a random walk on a graph is.

Definition

A random walk on a finite graph $G=(V, E)$ is a discrete-time stochastic process $\left(X_{0}, X_{1}, \ldots\right)$ taking values in V. The vertex X_{0} is sampled from some initial distribution on V, and X_{i+1} is chosen uniformly at random from the neighbors of X_{i}.

If G is d-regular with adjacency matrix A the its normalized adjacency matrix is defined as $\hat{A}=\frac{1}{d} A$. We summarize some facts for a random walk on G.
(1) It's a Markov Chain with state set V and transition matrix \hat{A}
(2) \hat{A} is real, symmetric and doubly stohastic; i.e. every column and every row sums up to 1
(3) if $\hat{\lambda_{1}} \geq \ldots \geq \hat{\lambda_{n}}$ are the eigenvalues of \hat{A}, then $\hat{\lambda_{1}}=1$ and $\max \left\{\left|\hat{\lambda_{2}}\right|,\left|\hat{\lambda_{n}}\right|\right\} \leq \alpha$
(3) The corresponding eigenvectors are the same eigenvectors of A
(9) Consider an experiment where we sample a vertex x from some probability distribution \mathbf{p} on V and then move to a random neighbor of x. This is equivalent to sampling a vertex from the distribution $\hat{A} \mathbf{p}$.
(0) The matrix \hat{A}^{t} is the transition matrix of the Markov Chain defined by random walks of length t. In other words $\left(\hat{A}^{t}\right)_{i j}$ is the probability a random walk starting at i is at j after t steps.
(1) The stationary distribution of the random walk on G is the uniform distribution, namely, $\mathbf{u} \hat{A}=\hat{A} \mathbf{u}=\mathbf{u}$. (This uses the symmetry of A.)

Convergence in the ℓ_{1} and ℓ_{2} norms

Theorem

Let G be an (n, d, α)-graph with normalized adjacency matrix \hat{A}. Then for every distribution vector \mathbf{p} and any positive integer t

$$
\left\|\hat{A}^{t} \mathbf{p}-\mathbf{u}\right\|_{1} \leq \sqrt{n} \alpha^{t}
$$

Why we use ℓ_{1} instead of ℓ_{∞} ? For probabilities it holds that

$$
\max _{B}\left|\operatorname{Pr}_{p}[B]-\operatorname{Pr}_{q}[B]\right|=\frac{1}{2}\|p-q\|_{1}
$$

Theorem

Let G be an (n, d, α)-graph with normalized adjacency matrix \hat{A}. Then for every distribution vector \mathbf{p} and any positive integer t

$$
\left\|\hat{A}^{t} \mathbf{p}-\mathbf{u}\right\|_{2} \leq\|\mathbf{p}-\mathbf{u}\|_{2} \alpha^{t} \leq \alpha^{t}
$$

Random walks resemble independent sampling

- Imagine an abstract sampling problem in which an unknown set B in a universe of size n is "bad in some sense
- We try to sample the universe so as to avoid the bad set as much as possible
- Our task will be to do so, minimizing the number of random bits used
- Say the set B includes all the bad random choices for a probabilistic algorithm, namely, those choices for which it gives the wrong answer
- Let $G(V, E)$ an (n, d, α) and $B \subset V$ with $|B|=\beta n$
- Experiment: We pick $X_{0} \in V$ uniformly at random and start from it a random walk X_{0}, \ldots, X_{t} on G.
- Denote by (B, t) the event that this random walk is confined to B , i.e. $\forall i, X_{i} \in B$

Theorem (Ajtai-Komlós-Szemerédi '87, Alon-Feige-Wigderson-Zuckerman '95)

Let G be an (n, d, α)-graph and $B \subset V$ with $|B|=\beta n$. Then the probability of the event (B, t) is bounded by

$$
\operatorname{Pr}[(B, t)] \leq(\beta+\alpha)^{t}
$$

This can be generalized as follows:

Theorem

Let B_{0}, \ldots, B_{n} be vertex sets of densities $\beta_{0}, \ldots, \beta_{n}$ in an (n, d, α)-graph G. Let X_{0}, \ldots, X_{t} be a random walk on G. Then

$$
\operatorname{Pr}\left[X_{i} \in B_{i} \quad \text { for all } i\right] \leq \prod_{i=0}^{t-1}\left(\sqrt{\beta_{i} \beta_{i+1}}+\alpha\right)
$$

Let's say we now want a subset of bad choices.

Theorem

For every subset $K \subset\{0, \ldots, t\}$ and vertex subset B of density β,

$$
\operatorname{Pr}\left[X_{i} \in B \quad \text { for all } i \in K\right] \leq(\beta+\alpha)^{|K|-1}
$$

Efficient error reduction in probabilistic algorithms

- Let A be a probabilistic algorithm to decide membership in language \mathcal{L}
- For input x, algorithm samples a string $r \in\{0,1\}^{k}$ and computes in polynomial time $A(x, r)$
- Remember that in the complexity class RP the algorithm makes errors on inputs outside \mathcal{L}
- if $x \in \mathcal{L}$, then $A(x, r)=1$
- if $x \notin \mathcal{L}$, the probability that $A(x, r)=1$ is at most β
- again our goal is to reduce the probability of error below a threshold without substantial increase in the number of random bits that are required

Let's use expander graphs to see what we can gain!

- Choose explicit an (n, d, α)-graph with $V=\{0,1\}^{k}$
- choose α sufficiently smaller that β
- choice of α will put a lower bound on d but d can be take to be $O\left(\alpha^{-2}\right)$
- for a given input x let $B_{x}=B \subseteq\{0,1\}^{k}$ be the set of all strings r for which the algorithm A errs on x

We introduce a new algorithm A^{\prime} that uses m random bits and works as follows:
(1) pick a vertex $v_{0} \in V$ uniformly at random
(2) start from it a random walk of length t, say $\left(v_{0}, \ldots, v_{t}\right)$
(3) return $\bigwedge_{i=0}^{t} A\left(x, v_{i}\right)$

But as we have seen with random walks on expander graphs it holds that:

$$
\operatorname{Pr}\left[A^{\prime} \quad \text { fails }\right]=\operatorname{Pr}\left[\forall i, v_{i} \in B\right] \leq(\beta+\alpha)^{t}
$$

A^{\prime} achieves an exponential reduction in error probability, while the number of random bits used is only $m+t \log d=m+O(t)$

Well, about BPP? Things work in a similar fashion. We introduce a new algorithm A^{\prime} that uses m random bits and works as follows:
(1) pick a vertex $v_{0} \in V$ uniformly at random
(2) start from it a random walk of length t, say $\left(v_{0}, \ldots, v_{t}\right)$
(3) return majority $\left\{A\left(x, v_{i}\right)\right\}$
A^{\prime} fails if the majority of the v_{i} 's belong to $B_{x}=B \subset V$.

- Fix a set of indices $K \subset\{0, \ldots, t\}$ with $|K| \geq(t+1) / 2$ (majority)
- We have seen that

$$
\operatorname{Pr}\left[v_{i} \in B \text { for all } i \in K\right] \leq(\beta+\alpha)^{|K|-1} \leq(\beta+\alpha)^{(t-1) / 2}
$$

- Assuming $\alpha+\beta \leq 1 / 8$ and applying the union bound on the possible choices of K we deduce that:

$$
\operatorname{Pr}\left[A^{\prime} \text { fails }\right] \leq 2^{t}(\beta+\alpha)^{(t-1) / 2}=O\left(2^{-t / 2}\right)
$$

Again, A^{\prime} achieves an exponential reduction in error probability, while the number of random bits used is only $m+t \log d=m+O(t)$

Main parameters of various techniques

Method	Error probability	No. of random bits
Randomized algorithm A	$1 / 10$	m
t independent reps of A	2^{-t}	$t \cdot m$
sampling a point and its neighbors in an $(n, t, 1 / \sqrt{t})$-graph	$1 / t$	m
A random walk of length t on an $(n, d, 1 / 40)$-graph	$2^{-t / 2}$	$m+O(t)$

Hardness of approximating maximum clique size

- Random walks on expanders can be used to enhance hardness of approximation factors, for example in the clique problem
- Let G be a graph, then the clique number $\omega(G)$ is defined as the largest cardinality of clique in G

Theorem (Feige-Goldwasser-Lovász-Szegedy '91)

There are two constants $0<\delta_{2}<\delta_{1}<1$ s.t. it's NP-Hard to decide for a given n-vertex graph G whether $\omega(G) \leq \delta_{2} n$ or $\omega(G) \geq \delta_{1} n$.

Even obtaining a rough approximation of $\omega(G)$ is hard.

Theorem

If there exists a polynomial-time algorithm A whose output on every n-vertex graph G satisfies $n^{-\epsilon} \leq A(G) / \omega(G) \leq n^{\epsilon}$ for an $\epsilon>0$, then $\boldsymbol{N P}=\boldsymbol{P}$.

Theorem (weaker version)

If there exists a polynomial-time algorithm A whose output on every n-vertex graph $G(V, E)$ satisfies $n^{-\epsilon} \leq A(G) / \omega(G) \leq n^{\epsilon}$ for an $\epsilon>0$, then $\boldsymbol{N P} \subseteq \boldsymbol{R P}$.

- Consider a graph H with vertex set $V^{t}, t=\log n$
- The vertices $\left(v_{1}, \ldots, v_{t}\right)$ and $\left(u_{1}, \ldots, u_{t}\right)$ are adjacent in H, if the subgraph of G induced by the set $\left(v_{1}, \ldots, v_{t}\right) \cup\left(u_{1}, \ldots, u_{t}\right)$ is a clique
- whether $\omega(G)$ is below $\delta_{2} n$ or above $\delta_{1} n$, this is significantly amplified in H

Consider an algorithm B that on input $G(V, E)$ does the following:
(1) Pick $m=\operatorname{poly}(n)$ random vertices from V^{t} and compute the subgraph H^{\prime} of H induced by this set
(2) Apply algorithm A to H^{\prime}
(3) Return 1 if $A\left(H^{\prime}\right)>\frac{1}{2} \delta_{1}^{t} m$, and otherwise return 0

The following two hold, so we can conclude.

- if $\omega(G) \geq \delta_{1} n$, then almost surely $\omega\left(H^{\prime}\right) \geq \frac{1}{2} \delta_{1}^{t} m$
- if $\omega(G) \leq \delta_{2} n$, then almost surely $\omega\left(H^{\prime}\right) \leq \frac{1}{2} \delta_{2}^{t} m$
(Actually this shows that NP $\subseteq \mathbf{B P P}$)
An estimate, in a polynomial sized sample on a expander graph, is enough to create a conclusion for the problem in the expander graph, and so in the initial graph.

A deterministic reduction also exists.

- Choose some expander (n, d, α)-graph \mathcal{G} with $V_{\mathcal{G}}=V$
- Consider all t-tuples that represent a random walk of $t-1$ length on \mathcal{G}
- random walks on \mathcal{G} should behave like random t-tuples in $\mid V^{t}$
- The resulting H^{\prime} graph has $m=n d^{t-1}$ vectices. d is fixed and $t=\log n$, so it's polynomial on the input

The following two hold, so we can conclude.

- if $\omega(G) \geq \delta_{1} n$, then $\omega\left(H^{\prime}\right) \geq\left(\delta_{1}-2 \alpha\right)^{t} m$
- if $\omega(G) \leq \delta_{2} n$, then $\omega\left(H^{\prime}\right) \leq\left(\delta_{2}-2 \alpha\right)^{t} m$

The zig-zag product

- The k-th power of $G(V, E)$, is denoted by $G^{k}\left(V, E_{k}\right)$, has the same vertex set as G and an edge $(u, v) \in E_{k}$ for every path of length k in G from u to v
- For the adjacency matrices we have that: $A_{G^{k}}=A_{G}^{k}$
- If G is an (n, d, α)-graph then G^{k} is a $\left(n, d^{k}, \alpha^{k}\right)$-graph
- The zig-zag product is an asymmetric binary operation
- The product of an (n, m)-graph and an (m, d)-graph is and $\left(n m, d^{2}\right)$-graph

Theorem (The Zig-Zag Theorem, Reingold-Vadhan-Wigderson '02)

Let G be an (n, m, α)-graph and H be an (m, d, β)-graph. Then $G(2) H$ is an ($n m, d^{2}, \phi(\alpha, \beta)$)-graph where the function ϕ satisfies the following:
(1) if $\alpha<1$ and $\beta<1$ then $\phi(\alpha, \beta)<1$
(2) $\phi(\alpha, \beta) \leq \alpha+\beta$
(3) $\phi(\alpha, \beta) \leq 1-\left(1-\beta^{2}\right)(1-\alpha) / 2$

- The first bound says that the zig-zag product takes two expanders into another expander
- The other two are crucial for applications. The former is useful when α, β are small, and the latter when they are large
- Reingold used bound (3) on ϕ for his proof that $S L=L$
- Let G be an (n, m, α)-graph and H be an (m, d, β)-graph
- For every vertex $v \in V_{G}$ we fix some numbering of the edges incident with v, i.e. $e_{v}^{1}, \ldots, e_{v}^{m}$
- Regard the vertex set of H as $[m]=\{1, \ldots, m\}$

Definition

$G(2) H=\left(V_{G} \times[m], E^{\prime}\right)$, where $((v, i),(u, j)) \in E^{\prime}$ iff there are some $k, I \in[m]$ s.t. $(i, k),(I, j) \in E_{H}$ and $e_{v}^{k}=e_{u}^{l}$

Roughly speaking, the zig-zag product $G(2) H$ replaces each vertex of G with a copy (cloud) of H, and connects the vertices by moving a small step (zig) inside a cloud, followed by a big step (zag) between two clouds, and finally performs another small step inside the destination cloud.

- The vertex set of $G(2) H$ is the cartesian product $V_{G} \times V_{H}$
- Define the replacement product (on the same vertex set)
- Edges of $G \odot H$ are the union of
(13) the original edges of G (shaded lines)
(2) n copies of the edges of H, one copy per cloud (wiggly edges between clouds)
- edges of $G(2) H$ arise form walks of length three in $G \odot H$: "dashed-wiggly-dashed"

The zig-zag product of the grid \mathbb{Z}^{2} with the 4 -cycle

Construction of an expander family using zig-zag

- Let H be a ($\left.d^{4}, d, 1 / 4\right)$-graph for some constant d
- There exists such a graph (probabilistic proof \& exhaustive search to find it, but more efficient construction exists)
- Using the building block H, we inductively define the infinite sequence G_{n} by:

$$
G_{1}=H^{2}, \quad G_{n+1}=G_{n}^{2}(2) H, \quad \text { for } n \geq 1
$$

- Graph G_{n} is a $\left(d^{4 n}, d^{2}, 1 / 2\right)$-graph for all n
- This construction is only mildly explicit
- To make it strongly explicit, in every iteration we must take the tensor product of G_{n} with itself

SL=L (Reingold '05)

SL is the complexity class of problems log-space reducible to USTCON (undirected s-t connectivity), i.e. USTCON is SL-complete

- Assume you arrive in an unfamiliar city with no map
- You want to get to your hotel whose street name you know
- You can create your own map to avoid loops, but suppose you don't have that much memory available
- That is, suppose you have only logarithmic memory instead of linear to the size of the city
- This is the same as exploring a graph (or determine if an s-t path exists)

A probabilistic logspace algorithm

- Aleliunas, Karp, Lipton, Lovász and Rackoff '79
- Perform a polynomial length random walk starting from s
- Algorithm uses logarithmic space, needs to remember the goal t and its current position
- Assume that the input graph G is an expander graph
- ...then the diameter of G is of logarithmic size
- Then one can enumerate all the logarithmically long paths and check if there is and s -t path
- But what if the input graph is not an expander? We will make one out of it
- First make it D-regular, e.g. by adding self loops
- Input graph is now an (n, D, α)-graph
- Assume $D=d^{16}$ and that we have an ($\left.d^{16}, d, 1 / 2\right)$-graph H
- We construct graphs G_{i} as follows:

$$
G_{1}=G, \quad G_{i+1}=\left(G_{i}(2) H\right)^{8} \quad \text { for } i \geq 1
$$

- For $k=O(\log n)$ the graph G_{k} is and $\left(n d^{16 k}, d^{16}, 3 / 4\right)$-graph
- Neighborhood queries for G_{k} can be answered in logspace
- Large expander graph constructed by zig-zag product are very explicit
- We need only constant amount of additional space to create G_{k}
- We achieve this by using a data structure (with rotation maps)
[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc., 43(04):439-562, August 2006.

Thank you!

