ALMA ALGORITHMS

Fall 2016

Ioannis Milis

e-mail: <u>milis@aueb.gr</u> phone: 210 8203537 office: Kodrigktonos 12, 3rd floor (entrance code: 4267)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Content

THEORY AND TECHNIQUES

- Polynomial, pseudo-polynomial and exponential algorithms
- Linear Programming
- Approximation Algorithms
- Randomization

PROBLEMS

- SATisfiability problems
- Graph problems: Cuts, Paths, TSP
- Packing problems: Partition, Subset Sum, Knapsack, Bin Packing
- Covering problems:
 Vertex and Set covers
- Scheduling problems

Bibliography

- [DPV] S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani: Algorithms, <u>http://beust.com/algorithms.pdf</u>
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms"
- [KT] J. Kleinberg, E.Tardos: Algorithm Design
- [VAZ] V. V. Vazirani: Approximation Algorithms
- [SW] D. Shmoys, D. Williamson: Design of Approximation Algorithms

Polynomial, Pseudo-Polynomial and Exponential

algorithms and problems

Problems

EXP(onentiation)

I: positive integers a, n Q: calculate aⁿ

FIBONACCI NUMBERS

I: a positive integer n Q: calculate n-th Fibonacci number F_n

SUBSET SUM

I: a set $S = \{a_1, a_2, ..., a_n\}$ of n positive integers and integer B

Q: is there a subset A
$$\subseteq$$
 S s. t. $\sum_{a_i \in A} a_i = B$?

SAT(isfiability)

Instance: a boolean formula ϕ

Question: Is φ satisfiable ?

(is there a value assignment to its variables making ϕ TRUE ? = truth assignment)

Size of Instance and complexity

Consider the description of an instance,

i.e., of all the parameters and constraints

II = length of encoded instance / input

= # of digits of the encoded input I

Integer n :	Decimal	Binary	Unary
# bits :	$\lfloor \log_{10} n \rfloor + 1$	$\lfloor \log_2 n \rfloor + 1$	n

Size of Instance and complexity

- **|I| = length of encoded instance / input**
 - = # of digits of the encoded input I

Polynomial algorithms: O(poly(|I|)

N(I) = the largest number in the input

Pseudo-Polynomial algorithms: O(poly(N(I))

- N(I) is O(exp(|I|)
- They are O(poly(|I|)) if we consider I encoded in unary
- ONLY FOR PROBLEMS WITH NUMBERS

Exponential algorithms: O(exp(|I|)

Exponentiation

EXP(onentiation)

I: positive integers a, n **Q**: calculate aⁿ

Algorithm expl(a,n);

// a, n positive integers
p:= 1;
for i:=1 to n do p:=p*a;
return p;

Correctness: obvious

Complexity: O(n)

 $|I| = logn \Rightarrow n = 2^{|I|}$, O(n) is $O(2^{|I|})$, O(exp(I)) NOT POLYNOMIAL !

N(I) = n, O(n)is O(poly(N(I)) **PSEUDO-POLYNOMIAL** !

Can we do better? Is there a polynomial algorithm for EXP?

Exponentiation

Algorithm exp2 (a,n);
// a, n positive integers
if n =0 then return 1;
z:= exp2 (a,
$$\lfloor n/2 \rfloor$$
);
if n is even then return z^2
else return az^2

Correctness: obvious Complexity: $O(\log n)$, polynomial in |I| (why?) T(n)=T(n/2) + O(1)ALMA / ALGORITHMS / Fall 2016 / L MILIS / 01 - INTRO

FIBONACCI

I: Recursion $F_0 = 0$; $F_1 = 1$; $F_n = F_{n-1} + F_{n-2}$, $n \ge 2$ Q: Calculate F_n

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Algorithm fib1(n) // Direct implementation of recursion

{if n<2 then return n

else return fib1(n-1) + fib1(n-2) }

Complexity of fib1(n): T(0)=T(1)=1, $T(n)=T(n-1) + T(n-2) + 1 \quad (= 2 F_n - 1)$

fib(1): Call structure of recursion for n=6

Very inefficient: T(n) is $\Omega(2^{n/2})$ Full Binary Tree at least to depth $n/2 \rightarrow 2^{n/2}$ nodes Why? It calulates the same values several times

```
Algorithm fib2(n) // recall computed values
{f[0]:=0; f[1]:=1;
  for i:=2 to n do f[i]:= f[i-1] + f[i-2]}
```

Complexity of fib(2): O(n) NOT polynomial in $|I| = \log n$

What about space complexity?

Can we do better? Is there an O(poly(I)), that is an O(log n) algorithm for F_n ?

fib3(n): an O(log n) algorithm for F_n <u>Claim:</u> It holds that (prove it)

$$F_n = \frac{1}{\sqrt{5}} \phi^n - \frac{1}{\sqrt{5}} \hat{\phi}^n$$
, where $\phi = \frac{1 + \sqrt{5}}{2}$ and $\hat{\phi} = \frac{1 - \sqrt{5}}{2}$

Exponentiation

It suffices to compute ϕ^n and $\hat{\phi}^n$

In fact, F_n is the closest integer to $F_n = \phi^n / \sqrt{5}$, thus: $F_n = \left\lfloor \frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$ (why?)

Complexity of fib3(n): O(log n) (why?), but with use of irrational numbers Machines use finite arithmetic, irrational numbers causes precision issues

Can we do better?

Is there a O(log n) algorithm for F_n using only integer numbers?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

fib4(n): an O(log n) algorithm for F_n using only integer numbers <u>Claim</u>: It holds that (prove it)

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$$

Exponentiation

It suffices to compute $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n$$

Complexity of fib4(n): O(log n) (why?)

SUBSET SUM

I: a set $S = \{a_1, a_2, ..., a_n\}$ of n positive integers and integer B

Q: is there a subset A \subseteq S such that $\sum_{i \in A} a_i = B$?

BRUTE FORCE

- there are 2ⁿ possible combinations of n items
- Go through all combinations; stop in the first one such that $\sum_{i \in A} a_i = B$; otherwise report NO
- Complexity: $O(n2^n)$

Can we do better?

RECALL COMPUTED VALUES

- Let $S_i = \{a_1, a_2, ..., a_i\}$
- IDEA: Compute the sums of all subsets of S_i using the sums of all subsets of S_{i-1}! (exclude sums > B)
- L: a list of integers
- L+x : a new list with all elements of L increased by x e.g. L=[1,2,3,5], L+2=[3,4,5,7]
- MERGE (L,L')
 - Returns a sorted list that is the merge of the sorted lists L and L' with no duplicate values
 - Complexity O(|L|+|L'|) (why ?)

RECALL COMPUTED VALUES

 L_i : list of the sums of all subsets of S_i (sums $\leq B$)

```
Algorithm SubsetSum (S,B);
L<sub>0</sub>=[0];
for i=1 to n do
L<sub>i</sub>=MERGE(L<sub>i-1</sub>, L<sub>i-1</sub>+a<sub>i</sub>);
Remove from L<sub>i</sub> every element >B;
Check if the largest element in L equals B;
```

Complexity ?

Example

S={1,4,5}, n=3, B=8 $L_0=[0]$ $L_0+a_1=[1]$ $L_1=[0,1]$ $L_1+a_2=[4,5]$ $L_2=[0,1,4,5]$ $L_2+a_3=[5,6,9,10]$ $L_3=[0,1,4,5,6]$ Answer: NO

Complexity: O(nB)

At every step, the list we keep has at most B elements

$$|I| = \log a_1 + \log a_2 + \ldots + \log a_n + \log B$$

$$\leq (n+1) \log B = O(n \log B)$$

Hence, O(nB) is O(exp(I)) NOT POLYNOMIAL

But, N(I) = B, that is O(nB) is O(poly(N(I))) **PSEUDO-POLYNOMIAL**

Can we do better ? Is there an O(poly) algorithm for SUBSET SUM ? (we believe) NO !

Boolean Formulas and SAT

Boolean variable x: T(RUE) / F(ALSE) or 1 / 0

<u>Boolean operators</u>: AND (x \land y), OR (x \lor y), NOT (\neg x / x)

<u>Literal</u>: Boolean variable (x) or its negation ($\neg x / \overline{x}$)

Boolean formula: $\phi(x,y) = (\neg x \lor y) \land (x \lor \neg y)$

<u>SAT</u>

Instance: a boolean formula ϕ Question: Is ϕ *satisfiable* ? (is there a value assignment to its variables making ϕ TRUE ? = Truth Assignment- TA)

Example:
$$\phi(x,y) = (\neg x \lor y) \land (x \lor \neg y)$$
 is satisfiable
by the assignments x=y=T
and x=y=F

CNF-SAT

<u>Clause</u> = A set of OR-ed literals, e.g. $(x \lor \neg y \lor z)$

$\frac{\text{Conjunctive Normal Form (CNF)}}{\text{it is the AND of a set of clauses}}$

E.g.
$$\phi = (w \lor x \lor y \lor z), (w \lor \overline{x}), (x \lor \overline{y}), (y \lor \overline{z}), (z \lor \overline{w}), (\overline{w} \lor \overline{z}), (\overline{$$

Any formula ϕ can be written in CNF

<u>(CNF) SAT</u> Instance: a CNF boolean formula φ Question: Is φ *satisfiable* ?

Brute-force approach

- there are 2ⁿ possible assignments for n variables
- Go through all possible assignments; stop in the first truth assignment or report NO
- Running time: O(poly(n) 2ⁿ)

Backtracing:

- Intelligent exhaustive search
- Consider partial assignmnets
- Prune the search space
- Example:

 $\phi = (w \lor x \lor y \lor z), \ (w \lor \overline{x}), \ (x \lor \overline{y}), \ (y \lor \overline{z}), \ (z \lor \overline{w}), \ (\overline{w} \lor \overline{z}).$

Start for the initial formula Branch on a variable, e.g. w

Plug into φ the values of w No clause is immediately violated Keep active both branches

(): FALSE clause; Do not expand, this partial assignment can not be expanded to a TA ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Finally:


```
Start with some problem P_0
Let S = \{P_0\}, the set of active subproblems
Repeat while S is nonempty:
<u>choose</u> a subproblem P \in S and remove it from S
<u>expand</u> it into smaller subproblems P_1, P_2, \ldots, P_k
For each P_i:
If <u>test</u>(P_i) succeeds: halt and announce this solution
If <u>test</u>(P_i) fails: discard P_i
Otherwise: add P_i to S
Announce that there is no solution
```

- choose: the smallest clause, the lowest in the tree,...
- expand: select a variable to branch on
- Test(Pi):success: P_i is a TAfailure: P_i does not lead to a TAuncertainty: P_i is to be expanded

Worst case complexity; explore all $O(2^n)$ possible branchings $O(poly(n) 2^n)$

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

3-SAT (CNF) 3-SAT

Instance: a 3-CNF boolean formula ϕ (all ϕ 's clauses have 3 literals) Question: Is ϕ satisfiable ?

e.g. $\phi(x, y, z) = (x \lor \overline{y} \lor \overline{z}) \land (z \lor y \lor \overline{x}) \land (\overline{z} \lor y \lor x)$

n = # variables of ϕ m = # clauses of ϕ , m=O(n³) Why?

Recursion: A 3SAT formula is either nothing

 $\begin{array}{l} \hline \textbf{or a clause with three literals} \land \textbf{ a 3SAT formula} \\ \Phi = (x \lor y \lor z) \land \Phi' \\ \Phi = (x \land \Phi') \lor (y \land \Phi') \lor (z \land \Phi') \end{array}$

 $\frac{\Phi|\mathbf{x}: \text{ the formula obtained from } \Phi \text{ by assuming } \mathbf{x}=\mathsf{TRUE}}{\Phi = \Phi'|\mathbf{x} \vee \Phi'|\mathbf{y} \vee \Phi'|\mathbf{z}}$

3-SAT

A naive recursive algorithm:

 $\Phi = \Phi' | x \lor \Phi' | y \lor \Phi' | z$

3SAT (Φ) if $\Phi = \emptyset$ return TRUE ($x \lor y \lor z$) $\land \Phi' = \Phi$ if 3SAT(Φ' |x) return TRUE if 3SAT(Φ' |y) return TRUE return 3SAT(Φ' |z)

Complexity: T(n)=3T(n-1) + poly(n), that is $O(3^n poly(n))$

worst than O(2ⁿ poly(n)) !

3-SAT

A better recursive algorithm:

 $\Phi = \Phi'|x \vee \Phi'|y \vee \Phi'|z$ These three recursive cases are not independent
If $\Phi'|x$ is not satisfiable, then x=FALSE in ANY TA of Φ :
recurse on $\Phi'|\bar{x}y$ If $\Phi'|\bar{x}y$ is not satisfiable, then y=folco in ANY TA of Φ :

If $\Phi'|\bar{x}y$ is not satisfiable, then y=false in ANY TA of Φ : recurse on $\Phi'|\bar{x}\bar{y}z$

 $\begin{array}{l} \underline{3SAT}(\Phi):\\ \text{if } \Phi = \varnothing\\ \text{return TRUE}\\ (x \lor y \lor z) \land \Phi' \leftarrow \Phi\\ \text{if } 3SAT(\Phi|x)\\ \text{return TRUE}\\ \text{if } 3SAT(\Phi|\bar{x}y)\\ \text{return TRUE}\\ \text{if } 3SAT(\Phi|\bar{x}y)\\ \text{return TRUE}\\ \text{return } 3SAT(\Phi|\bar{x}\bar{y}z) \end{array}$ $\begin{array}{l} \text{Complexity:}\\ T(n)=T(n-1)+T(n-2)+T(n-3)+\text{poly}(n)\\ T(n)=O(\lambda^n \text{ poly}(n)),\\ \text{where } \lambda=1,83928675521....\\ \text{is the largest root of } r^3 - r^2 - r - 1 = 0,\\ \text{that is } O(1,83928675522^n) \end{array}$

3-SAT

An even better recursive algorithm:

Pure literal x: it appears in Φ , but its negation does not it should be TRUE in ANY TA of Φ If Φ has no pure literals then

 $\Phi = (x \lor y \lor z) \land (\bar{x} \lor u \lor v) \land \Phi'$ and we can eliminate y and z, as well as u and v as before

<u>νεντ(Φ).</u>	
$\frac{35AT(\Psi)}{\text{if } \Phi = \emptyset}$ return TRUE if Φ has a pure literal x return $3SAT(\Phi x)$	Complexity: T(n)=2T(n-2)+2T(n-3)+poly(n)
$(x \lor y \lor z) \land (\bar{x} \lor u \lor v) \land \Phi' \leftarrow \Phi$ if 3SAT(Φxu) return TRUE if 3SAT($\Phi x\bar{u}v$) return TRUE if 3SAT($\Phi \bar{x}y$) return TRUE return 3SAT($\Phi \bar{x}\bar{y}z$)	T(n)=O(μ^n poly(n)), where μ =1,76929235424 is the largest root of r ³ - 2r -2=0, that is O(1,76929235425 ⁿ)

Can we do better ?

Yes, but still exponentially !

Best deterministic algorithm: O(1,33334ⁿ) [2010]

Best randomized algorithm: O(1,32113ⁿ) [2010]

Is there a polynomial algorithm for SAT ? (we believe) NO

Is there a pseudo-polynomial algorithm for SAT? **NO**! (SAT is not a problem with numbers)

Review

Problem	Algorithms (complexity)			
	exp(I)	poly(N(I)) (pseudo-poly)	poly(I)	
Exponentiation		O(n)	O(log n)	
Fibonacci numbers	$\Omega(2^{n/2})$	O(n)	O(log n)	
SUBSET SUM	O(2 ⁿ)	O(nB)	NO *	
SAT	O(1,33334 ⁿ)		NO *	

* Unless P=NP

Randomization for MAX k-SAT

MAX k-SAT- Randomized algorithm [CLRS 35.4]

MAX k-SAT (opt)

I: A k-CNF formula φ Q: find an assignment satisfying the maximum number of clauses

NP-complete problem (as MAX 2-SAT or k-SAT are NP-complete)

Each clause contains c_i , $1 \le b \le c_i \le k$, distinct literals (no clause contains a variable and its negation)

Randomized algorithm:

Independently set each variable =
$$\begin{cases} 1, & \text{with probality} \frac{1}{2} \\ 0, & \text{with probality} \frac{1}{2} \end{cases}$$

X = # of true clauses (random variable)

$$X = X_{1} + X_{2} + \dots + X_{m} = \sum_{i=1}^{m} X_{i}, \qquad X_{i} = \begin{cases} 1, & \text{if } C_{i} = 1 \\ 0, & \text{if } C_{i} = 0 \end{cases}$$
$$E[X_{i}] = 1 \cdot \Pr[C_{i} = 1] + 0 \cdot \Pr[C_{i} = 0] = \Pr[C_{i} = 1]$$
$$E[X] = E\left[\sum_{i=1}^{m} X_{i}\right] = \sum_{i=1}^{m} E[X_{i}] = \sum_{i=1}^{m} \Pr[C_{i} = 1]$$

$$E[X] = \sum_{i=1}^{m} \Pr[C_i = 1]$$

MAX k-SAT- Randomized algorithm [CLRS 35.4] $\Pr[C_i = 0] = \frac{1}{2} \cdot \frac{1}{2} \cdot \cdots \frac{1}{2} = \frac{1}{2^{c_i}}$ $\Pr[C_i = 1] = 1 - \frac{1}{2^{c_i}} \ge 1 - \frac{1}{2^b} \ge \frac{1}{2}$

that is,

$$E[X] = \sum_{i=1}^{m} \Pr[C_i = 1] \ge \sum_{i=1}^{m} (1 - \frac{1}{2^b}) = (1 - \frac{1}{2^b}) m \ge \frac{1}{2} m \quad (\text{for } b = 1)$$

At least $(1 - \frac{1}{2^b})$ of all the caluses are satisfied (in expectation)
 $OPT = \text{maximum } \# \text{ of true clauses, Obviously, } OPT \le m$
Hence, $E[X] \ge \left(1 - \frac{1}{2^b}\right) OPT \ge \frac{1}{2} OPT \quad (\text{for } b = 1),$
that is, $E[X] \ge 0,5 OPT \quad (\text{randomized) approximate solution}$

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

MAX 3-SAT (opt)

I: A 3-CNF formula φ,

Q: find an assignment satisfying the maximum number of clauses

$$b = c_i = k = 3, \ \forall i: \ E[X] \ge (1 - \frac{1}{2^3})m = \frac{7}{8}m = 0.875m$$

Fact 1: for every instance of 3-SAT, the expected # of clauses satisfied by a random assignment is at least 7/8 m

MAX 3-SAT- Randomized algorithm [KT 13.4]

Fact 1: for every instance of 3-SAT, the expected # of clauses satisfied by a random assignment is at least 7/8 m

But,

for any random variable, there is some point at which it assumes a value at least as large as its expectation Thus,

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 of all clauses

Fact 3: every instance of 3-SAT with at most m≤7 clauses is satisfliable ! Proof:

- By F2 there is an assignment satisfying at least t=7/8m clauses
- For m<8 it holds that 7/8m > m-1
- That is, all the m<8 clause are satisfied !

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 of all clauses

How can we find such an assignment? What is the complexity ? How long it take until we find one by random trials ?

<u>Waiting for the first success</u>: Z = # of trials until success (random variable)

p= Pr [a random assignment satisfies at least 7/8m clauses]

Pr[Z=j] : probability for success in the j-th trial

 $\Pr[Z=j] = (1-p)^{j-1}p$

$$E[Z] = \sum_{j=1}^{\infty} j \Pr[Z=j] = \sum_{j=1}^{\infty} j(1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^j$$
$$= \frac{p}{1-p} \frac{(1-p)}{p^2} = \frac{1}{p}$$

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Fact 4: for every instance of 3-SAT, an assignment satisfying at least 7/8 of all clauses can be found by 1/p expected random trials.

Can we bound 1/p?

X=# of satisfied clauses by a random assignment; Recall: E[X]=7/8m $p_j = Pr[a random assignment satisfies exactly j clauses]$ Recall: p= Pr[a random assignment satisfies at least 7/8m clauses]

$$\sum_{j < 7m/8} p_j = 1 - p, \quad \sum_{j \ge 7m/8} p_j = p$$

Let m'= the largest integer < 7/8m, m' < m

$$E[X] = \sum_{j=1}^{m} jp_j$$

$$\frac{7}{8}m = E[X] = \sum_{j=1}^{m} jp_j = \sum_{j < 7m/8} jp_j + \sum_{j \ge 7m/8} jp_j \le \sum_{j < 7m/8} m' p_j + \sum_{j \ge 7m/8} mp_j$$

$$= m'(1 - p) + mp = m' + (m - m') p \le m' + mp$$

$$\frac{7}{8}m \le m' + mp \Longrightarrow p \ge \frac{7/8m - m'}{m}$$

$$m' = \text{largest integer} < 7/8m \Longrightarrow 7/8m - m' \ge 1/8$$
Thus, $p \ge \frac{1}{8m} \Longrightarrow \frac{1}{p} \le 8m$

Fact 5: there is a randomized algorithm of O(m) expected complexity for finding an assignment satisfying at least 7/8 of all clauses of a 3-SAT instance

2nd Randomized algorithm for MAX k-SAT

Set each variable to be TRUE, independently, with probability $p \ge 1/2$

CASE I: All c_i 's with $|c_i| = 1$ consist of a positive literal

CLAIM
$$\Pr[c_j = 1] \ge \min(p, 1 - p^2)$$

<u>Proof</u>:

• if
$$|c_j| = 1$$
, then $\Pr[c_j = 1] = p$

• if
$$|\mathbf{c}_j| = 2$$
, then $\Pr[c_j = 1] = 1 - p^2$, since:
 $c_j = \overline{x_1} \lor \overline{x_2}$: $\Pr[c = 1] = 1 - p \lor p = 1 - p^2$
 $c_j = \overline{x_1} \lor x_2$: $\Pr[c = 1] = 1 - p \lor (1 - p) \ge 1 - p^2$
 $c_j = x_1 \lor x_2$: $\Pr[c = 1] = 1 - (1 - p) \lor (1 - p) \ge 1 - p^2$

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

2nd Randomized algorithm for MAX k-SAT

Proof (cntd)

• If
$$|c_j| = k$$
, then $\Pr[c_j = 1] = 1 - p_1 p_2 \dots p_k \ge 1 - p^k \ge 1 - p^2$, where

$$p_i = \begin{cases} p, & \text{for positive literals} \\ 1 - p \le p \end{cases}$$
, for negative literals

Taking into account all the case we have $\Pr[c_j = 1] \ge \min(p, 1 - p^2)$ $\sqrt{5}$ 1 q.e.d.

Setting
$$p = 1 - p^2 \Rightarrow p = \frac{\sqrt{5 - 1}}{2} = 0,618$$

 $\Pr[c_j = 1] \ge 0,618$
 $E[X] = \sum_{i=1}^{m} \Pr[C_i = 1] \ge 0.618 m$

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

2nd Randomized algorithm for MAX k-SAT

<u>CASE II: there are c_i 's with $|c_i| = 1$ consisting of a negative literal</u>

<u>Let</u> $c_j = \{\overline{x}\}$

- if x does not appear in other c_j 's with $|c_j| = 1$: Swap χ and (χ n all clauses)
- If x appears in other c_j's with |c_j| = 1 neg = # of those c_j's

Then, at most m - neg can be satisfied

$$E[X] = \sum_{\substack{i=1\\C_i \neq x}}^{m} \Pr[C_i = 1] \ge 0,618(n - neg)$$