
1

ALMA
ALGORITHMS

Fall 2016

Ioannis Milis

e-mail: milis@aueb.gr
phone: 210 8203537

οffice: Kodrigktonos 12, 3rd floor
(entrance code: 4267)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Content

THEORY AND TECHNIQUES
• Polynomial, pseudo-polynomial

and exponential algorithms

• Linear Programming

• Approximation Algorithms

• Randomization

2
ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

PROBLEMS
• SATisfiability problems
• Graph problems: Cuts, Paths, TSP
• Packing problems: Partition,

Subset Sum, Knapsack,
Bin Packing

• Covering problems:
Vertex and Set covers

• Scheduling problems

Bibliography
• [DPV] S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani:

Algorithms, http://beust.com/algorithms.pdf

• [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
Introduction to Algorithms”

• [KT] J. Kleinberg, E.Tardos: Algorithm Design

• [VAZ] V. V. Vazirani: Approximation Algorithms

• [SW] D. Shmoys, D. Williamson: Design of Approximation Algorithms

3
ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

4

Polynomial,
Pseudo-Polynomial and

Exponential

algorithms and problems

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

5

Problems
EXP(onentiation) FIBONACCI NUMBERS
I: positive integers a,n I: a positive integer n
Q: calculate an Q: calculate n-th Fibonacci number Fn

SUBSET SUM
I: a set S={a1, a2, ..., an} of n positive integers and integer B

Q: is there a subset A Í S s. t.

SAT(isfiability)
Instance: a boolean formula φ
Question: Is φ satisfiable ?

(is there a value assignment to its variables making φ TRUE ?
= truth assignment)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

?Ba
Aa
i

i

=å
Î

Consider the description of an instance,
i.e., of all the parameters and constraints

Instance I (encoded instance)

|I| = length of encoded instance / input
= # of digits of the encoded input I

Integer n : Decimal Binary Unary
bits : n

6

Size of Instance and complexity

ë û 1log10 +n

encoding

e.g. in decimal / binary / unary

ë û 1log2 +n

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

|I| = length of encoded instance / input
= # of digits of the encoded input I

Polynomial algorithms: O(poly(|I|)

N(I) = the largest number in the input

Pseudo-Polynomial algorithms: O(poly(N(I))
• N(I) is O(exp(|I|)
• They are O(poly(|I|)) if we consider I encoded in unary
• ONLY FOR PROBLEMS WITH NUMBERS

Exponential algorithms: O(exp(|I|)

7

Size of Instance and complexity

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

8

Exponentiation
EXP(onentiation)
I: positive integers a,n
Q: calculate an

Algorithm exp1(a,n);
// a, n positive integers
p:= 1;
for i:=1 to n do p:=p*a;
return p;

Correctness: obvious
Complexity: O(n)

|I|= logn Þ n = 2|I| , O(n) is O(2|I|), O(exp(I)) NOT POLYNOMIAL !

N(I) =n, O(n) is O(poly(N(I)) PSEUDO-POLYNOMIAL !

Can we do better? Is there a polynomial algorithm for EXP ?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

9

Exponentiation

ï
ï
ï
ï

î

ï
ï
ï
ï

í

ì

÷÷
÷

ø

ö

çç
ç

è

æ

=

÷
÷

ø

ö

ç
ç

è

æ

=

úû
ú

êë
ê

odd is if

even is if

naa

a

na

a
n

n

n

2

2

0

2

2

1

Algorithm exp2 (a,n);
// a, n positive integers
if n =0 then return 1;
z:= exp2 (a,);
if n is even then return z2

else return az2

ë û2/n

Correctness: obvious
Complexity: O(log n), polynomial in |I| (why?)
T(n)=T(n/2) + O(1)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

10

Fibonacci numbers
FIBONACCI
I: Recursion F0 = 0; F1 = 1; Fn = Fn-1 + Fn-2, n ≥ 2
Q: Calculate Fn

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

Algorithm fib1(n) // Direct implementation of recursion
{if n<2 then return n

else return fib1(n-1)+ fib1(n-2) }

Complexity of fib1(n): T(0)=T(1)=1,
T(n)= T(n-1) + T(n-2) + 1 (= 2 Fn – 1)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

11

4 3

23 2

2

1

6

1 1 0

5

1 0

4

0112

23

01

01

1 st call

2 nd

3 rd

4 th

5 th

6 th 7 th

8 th 10 th 11 th 14 th 15 th

16 th

20 th
21 st

24 th 25 th call

23 rd

17 th

18 th

9 th
13 th 19 th 22 nd

12 th

fib(1): Call structure of recursion for n=6

Fibonacci numbers

Very inefficient: Τ(n) is Ω (2n/2)
Full Binary Tree at least to depth n/2 à 2n/2 nodes
Why? It calulates the same values several times

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

12

Fibonacci numbers

Algorithm fib2(n) // recall computed values

{f[0]:=0; f[1]:=1;

for i:=2 to n do f[i]:= f[i-1] + f[i-2]}

Complexity of fib(2): O(n) NOT polynomial in |I|=log n

What about space complexity?

Can we do better?
Is there an O(poly(I)) , that is an O(log n) algorithm for Fn ?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

13

Fibonacci numbers
fib3(n): an O(log n) algorithm for Fn

Claim: It holds that (prove it)

Exponentiation
It suffices to compute

In fact, Fn is the closest integer to Fn=φn /Ö5, thus: (why?)

Complexity of fib3(n): O(log n) (why?), but with use of irrational numbers
Machines use finite arithmetic, irrational numbers causes precision issues

Can we do better?
Is there a O(log n) algorithm for Fn using only integer numbers?

2
51ˆ and

2
51 where,ˆ

5
1

5
1 -

=
+

=-= ffff nn
nF

nn ff ˆ and

ú
û

ú
ê
ë

ê
+=
2
1

5

n

nF
f

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

14

Fibonacci numbers
fib4(n): an O(log n) algorithm for Fn using only integer numbers
Claim: It holds that (prove it)

Exponentiation

It suffices to compute

Complexity of fib4(n): O(log n) (why?)

n

÷÷
ø

ö
çç
è

æ
1 1
1 0

÷÷
ø

ö
çç
è

æ
×÷÷

ø

ö
çç
è

æ
=÷÷
ø

ö
çç
è

æ

+ 1

0

1

1 1
1 0

F
F

F
F n

n

n

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

15

Subset Sum
SUBSET SUM
I: a set S={a1, a2, ..., an} of n positive integers and integer B

Q: is there a subset A Í S such that

BRUTE FORCE
– there are 2n possible combinations of n items
– Go through all combinations;

stop in the first one such that ; otherwise report NO
– Complexity: O(n2n)

Can we do better?

? Ba
Ai i =åÎ

 Ba
Ai i =åÎ

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

16

Subset Sum
RECALL COMPUTED VALUES
• Let Si={a1, a2,…,ai)
• IDEA: Compute the sums of all subsets of Si

using the sums of all subsets of Si-1! (exclude sums > B)

• L: a list of integers
• L+x : a new list with all elements of L increased by x

e.g. L=[1,2,3,5], L+2=[3,4,5,7]

• MERGE (L,L’)
– Returns a sorted list that is the merge of the sorted lists L and L’

with no duplicate values
– Complexity O(|L|+|L’|) (why ?)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

RECALL COMPUTED VALUES
Li : list of the sums of all subsets of Si (sums ≤ B)

Algorithm SubsetSum (S,B);
L0=[0];
for i=1 to n do

Li=MERGE(Li-1, Li-1+ai);
Remove from Li every element >B;

Check if the largest element in L equals B;

Example
S={1,4,5}, n=3, B=8
L0=[0] L0+a1 =[1]
L1=[0,1] L1+a2 =[4,5]
L2=[0,1,4,5] L2+a3 =[5,6,9,10]
L3=[0,1,4,5,6] Answer: NO

17

Subset Sum

Complexity ?

17
ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Complexity: O(nB)
At every step, the list we keep has at most B elements

|I|= log a1 + log a2 + …+ log an + log B
≤ (n+1) log B = O(n log B)

Hence, O(nB) is O(exp(I)) NOT POLYNOMIAL

But, N(I) =B, that is O(nB) is O(poly(N(I)) PSEUDO-POLYNOMIAL

Can we do better ?
Is there an O(poly) algorithm for SUBSET SUM ? (we believe) NO !

18

Subset Sum

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

19

Boolean Formulas and SAT
Boolean variable x: T(RUE) / F(ALSE) or 1 / 0

_
Boolean operators: AND (x Ùy), OR (x Ú y), NOT (¬x / x)

_
Literal: Boolean variable (x) or its negation (¬x / x)

Boolean formula: f(x,y) = (¬x Ú y) Ù (x Ú ¬y)

SAT
Instance: a boolean formula f
Question: Is f satisfiable ?

(is there a value assignment to its variables making f TRUE ?
= Truth Assignment- TA)

Example: f(x,y) = (¬x Ú y) Ù (x Ú ¬y) is satisfiable
by the assignments x=y=T
and x=y=F

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

20

CNF- SAT

Clause = A set of OR-ed literals, e.g. (x Ú ¬y Ú z)

Conjunctive Normal Form (CNF) of a formula f:
it is the AND of a set of clauses

E.g.

Any formula f can be written in CNF

(CNF) SAT
Instance: a CNF boolean formula f
Question: Is f satisfiable ?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

=f

21

SAT
Brute-force approach

– there are 2n possible assignments for n variables
– Go through all possible assignments;

stop in the first truth assignment or report NO
– Running time: O(poly(n) 2n)

Backtracing:
• Intelligent exhaustive search
• Consider partial assignmnets
• Prune the search space
• Example:

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

=f

22

SAT

Start for the initial formula
Branch on a variable, e.g. w

Plug into φ the values of w
No clause is immediately violated
Keep active both branches

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

23

SAT
Expand an active node on a new variable, e.g. x

(): FALSE clause;
Do not expand, this partial assignment can not be expanded to a TA

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

24

SAT
Finally:

The answer is NO
There is no TA for φ
Did not have to search all (2n) assignmnets

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

25

SAT

choose: the smallest clause, the lowest in the tree,…
expand: select a variable to branch on
Test(Pi): success: Pi is a TA

failure: Pi does not lead to a TA
uncertainty: Pi is to be expanded

Worst case complexity; explore all O(2n) possible branchings
O(poly(n) 2n)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

26

3-SAT
(CNF) 3-SAT
Instance: a 3-CNF boolean formula f (all φ’s clauses have 3 literals)
Question: Is f satisfiable ?
e.g.

n = # variables of f
m = # clauses of f, m=O(n3) Why?

Recursion: A 3SAT formula is either nothing
or a clause with three literals Ù a 3SAT formula

Φ = (x Ú y Ú z) Ù Φ’
Φ = (x Ù Φ’) Ú (y Ù Φ’) Ú (z Ù Φ’)

Φ|x : the formula obtained from Φ by assuming x=TRUE
Φ = Φ’|x Ú Φ’|y Ú Φ’|z

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
26

)()()(),,(xyzxyzzyxzyx ÚÚÙÚÚÙÚÚ=f

27

3-SAT
A naive recursive algorithm:

Φ = Φ’|x Ú Φ’|y Ú Φ’|z

3SAT (Φ)
if Φ=⌀ return TRUE
(x Ú y Ú z) ÙΦ’ =Φ
if 3SAT(Φ’|x) return TRUE
if 3SAT(Φ’|y) return TRUE
return 3SAT(Φ’|z)

Complexity: T(n)=3T(n-1) + poly(n), that is O(3n poly(n))

worst than O(2n poly(n)) !

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

A better recursive algorithm:
Φ = Φ’|x Ú Φ’ |y Ú Φ’ |z
These three recursive cases are not independent
If Φ’|x is not satisfiable, then x=FALSE in ANY TA of Φ:

recurse on
If is not satisfiable, then y=false in ANY TA of Φ:
recurse on

28

3-SAT

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula and any literal x , let |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0 �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula and any literal x , let |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0 �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

Complexity:
T(n)=T(n-1)+T(n-2)+T(n-3)+poly(n)

T(n)=O(λn poly(n)),
where λ=1,83928675521….
is the largest root of r3 - r2 -r -1=0,
that is O(1,83928675522n)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula and any literal x , let |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0 �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula and any literal x , let |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0 �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

An even better recursive algorithm:
Pure literal x: it appears in Φ, but its negation does not

it should be TRUE in ANY TA of Φ
If Φ has no pure literals then

and we can eliminate y and z, as well as u and v as before

29

3-SAT

Complexity:
T(n)=2T(n-2)+2T(n-3)+poly(n)

T(n)=O(μn poly(n)),
where μ=1,76929235424….
is the largest root of r3 - 2r -2=0,
that is O(1,76929235425n)

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us
the solution

T (n) = O(�n
poly(n)) = O(1.83928675522

n)

where � ⇡ 1.83928675521 . . . is the largest root of the characteristic polynomial r3 � r2 � r � 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula � but its negation ¯x does not. It’s not
hard to prove (hint, hint) that if � has a satisfying assignment, then it has a satisfying assignment
where every pure literal is true. If � = (x _ y _ z) ^ �0 has no pure literals, then some in �
contains the literal ¯x , so we can write

� = (x _ y _ z)^ (¯x _ u_ v)^�0

for some literals u and v (each of which might be y , ¯y , z, or ¯z). It follows that the first recursive
formula �|x has contains the clause (u_ v). We can recursively eliminate the variables u and v
just as we tested the variables y and x in the second and third cases of our previous algorithm:

�|x = (u_ v)^�0|x = (u^�0|xu)_ (v ^�0|x ¯uv).

Here is our new faster algorithm:

����(�):
if � = ?

return T���
if � has a pure literal x

return ����(�|x)
(x _ y _ z)^ (¯x _ u_ v)^�0 �
if ����(�|xu)

return T���
if ����(�|x ¯uv)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time T (n) of this new algorithm satisfies the recurrence

T (n) = 2T (n� 2) + 2T (n� 3) + poly(n),

and the annihilator method implies that

T (n) = O(µn
poly(n)) = O(1.76929235425

n)

where µ⇡ 1.76929235424 . . . is the largest root of the characteristic polynomial r3 � 2r � 2.
Naturally, this approach can be extended much further; since ����, at least fifteen different

�SAT algorithms have been published, each improving the running time by a small amount. As of
����, the fastest deterministic algorithm for �SAT runs in O(1.33334

n) time², and the fastest

²Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. ArXiv:����.����,
����.

�

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us
the solution

T (n) = O(�n
poly(n)) = O(1.83928675522

n)

where � ⇡ 1.83928675521 . . . is the largest root of the characteristic polynomial r3 � r2 � r � 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula � but its negation ¯x does not. It’s not
hard to prove (hint, hint) that if � has a satisfying assignment, then it has a satisfying assignment
where every pure literal is true. If � = (x _ y _ z) ^ �0 has no pure literals, then some in �
contains the literal ¯x , so we can write

� = (x _ y _ z)^ (¯x _ u_ v)^�0

for some literals u and v (each of which might be y , ¯y , z, or ¯z). It follows that the first recursive
formula �|x has contains the clause (u_ v). We can recursively eliminate the variables u and v
just as we tested the variables y and x in the second and third cases of our previous algorithm:

�|x = (u_ v)^�0|x = (u^�0|xu)_ (v ^�0|x ¯uv).

Here is our new faster algorithm:

����(�):
if � = ?

return T���
if � has a pure literal x

return ����(�|x)
(x _ y _ z)^ (¯x _ u_ v)^�0 �
if ����(�|xu)

return T���
if ����(�|x ¯uv)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time T (n) of this new algorithm satisfies the recurrence

T (n) = 2T (n� 2) + 2T (n� 3) + poly(n),

and the annihilator method implies that

T (n) = O(µn
poly(n)) = O(1.76929235425

n)

where µ⇡ 1.76929235424 . . . is the largest root of the characteristic polynomial r3 � 2r � 2.
Naturally, this approach can be extended much further; since ����, at least fifteen different

�SAT algorithms have been published, each improving the running time by a small amount. As of
����, the fastest deterministic algorithm for �SAT runs in O(1.33334

n) time², and the fastest

²Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. ArXiv:����.����,
����.

�

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

30

3-SAT
Can we do better ?

Yes, but still exponentially !

Best deterministic algorithm: O(1,33334n) [2010]

Best randomized algorithm: O(1,32113n) [2010]

Is there a polynomial algorithm for SAT ? (we believe) NO

Is there a pseudo-polynomial algorithm for SAT? NO !
(SAT is not a problem with numbers)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

31

Review

Problem
Algorithms (complexity)

exp(|I|) poly(N(I))
(pseudo-poly)

poly(|I|)

Exponentiation O(n) O(log n)

Fibonacci
numbers

Ω(2n/2) O(n) O(log n)

SUBSET SUM O(2n) O(nB) NO *

SAT O(1,33334n) NO *

* Unless P=NP

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Randomization
for MAX k-SAT

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
32

33

MAX k-SAT- Randomized algorithm [CLRS 35.4]

MAX k-SAT (opt)
I: A k-CNF formula φ
Q: find an assignment satisfying the maximum number of clauses

NP-complete problem (as MAX 2-SAT or k-SAT are NP-complete)

Each clause contains ci, 1 ≤ b ≤ ci ≤k, distinct literals
(no clause contains a variable and its negation)

Randomized algorithm:

Independently set each variable

ï
ï
î

ïï
í

ì

=

2
1probality with ,0

2
1probality with ,1

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
33

å

ååå

å

=

===

=

==

===ú
û

ù
ê
ë

é
=

===×+=×=
î
í
ì

=
=

==+++=

=

m

i
i

m

i
i

m

i
i

m

i
i

iiii

i

i
i

m

i
im

CXE

CXEXEXE

CCC XE
C
C

XXXXXX

X

1

111

1
21

]1Pr[][

]1Pr[][][

]1Pr[]0Pr[0]1Pr[1][
 0 if ,0

1 if ,1
 ,....

) variable(random clauses trueof #

34

MAX k-SAT- Randomized algorithm

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
34

35

MAX k-SAT- Randomized algorithm [CLRS 35.4]

OPTXE

bOPTOPTXE

mOPTOPT

bmmCXE

C

C

b

b

bb

m

i

m

i
i

bci

ci

i

i

 5,0][is,that

),1(for
2
1

2
11][Hence,

 Obviously, clauses, trueof # maximum

n)expectatio(in satisfied are caluses theall of)
2
11(least At

)1(for
2
1)

2
11()

2
11(]1Pr[][

 is,that
2
1

2
11

2
11]1Pr[

2
1

2
1

2
1

2
1]0Pr[

11

³

=³÷
ø
ö

ç
è
æ -³

£=

-

=³-=-³==

³-³-==

=××××==

åå
==

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
35

(randomized) approximate solution

36

MAX 3-SAT- Randomized algorithm
MAX 3-SAT (opt)
I: A 3-CNF formula φ,
Q: find an assignment satisfying the maximum number of clauses

Fact 1: for every instance of 3-SAT, the expected # of clauses
satisfied by a random assignment is at least 7/8 m

mmmXEi, kcb i 875.0
8
7)

2
11(][:3 3 ==-³"===

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
36

37

MAX 3-SAT- Randomized algorithm [KT 13.4]

Fact 1: for every instance of 3-SAT, the expected # of clauses
satisfied by a random assignment is at least 7/8 m

But,
for any random variable, there is some point at which it assumes
a value at least as large as its expectation
Thus,

Fact 2: for every instance of 3-SAT, there is an assignment
satisfying at least 7/8 of all clauses

Fact 3: every instance of 3-SAT with at most m≤7 clauses is satisfliable !
Proof:
• By F2 there is an assignment satisfying at least t=7/8m clauses
• For m<8 it holds that 7/8m > m-1
• That is, all the m<8 clause are satisfied !

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
37

MAX 3-SAT- Randomized algorithm
Fact 2: for every instance of 3-SAT, there is an assignment

satisfying at least 7/8 of all clauses

How can we find such an assignment? What is the complexity ?
How long it take until we find one by random trials ?

Waiting for the first success: Z= # of trials until success (random variable)

p= Pr [a random assignment satisfies at least 7/8m clauses]
Pr[Z=j] : probability for success in the j-th trial

Pr[Z=j] = (1-p)j-1p

pp
p

p
p

pj
p
pppjjZjZE

j j

jj

j
1)1(

1

)1(
1

)1(]Pr[][

2

1 1

1

1

=
-

-
=

-
-

=-=== å åå
¥

=

¥

=

-
¥

=

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
38

MAX 3-SAT- Randomized algorithm
Fact 4: for every instance of 3-SAT, an assignment satisfying at least 7/8

of all clauses can be found by 1/p expected random trials.

Can we bound 1/p ?

X=# of satisfied clauses by a random assignment;

pj
= Pr [a random assignment satisfies exactly j clauses]

Recall: p= Pr [a random assignment satisfies at least 7/8m clauses]

Let m’= the largest integer < 7/8m, m’ < m

pppp
mj mj

jjå å
< ³

=-=
8/7 8/7

,1

mpmpmmmmppm

mppmjpjpjpXEm
mj mj

jj
mj mj

jj

m

j
j

+£-+=+-=

+£+=== å åå åå
< ³< ³=

')'(')1('

'][
8
7

8/7 8/78/7 8/71

å
=

=
m

j
jjpXE

1
][

Recall: E[X]=7/8m

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
39

40

MAX 3-SAT- Randomized algorithm

Fact 5: there is a randomized algorithm of O(m) expected complexity for
finding an assignment satisfying at least 7/8 of all clauses of a
3-SAT instance

m
pm

p

mmmm
m
mmpmpmm

81
8
1

8/1'8/78/7 '

'8/7'
8
7

 Thus,

 integerlargest

£Þ³

³-Þ=

-
³Þ+£

<

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
40

Set each variable to be TRUE, independently, with probability

CASE I: All cj’s with |cj| = 1 consist of a positive literal

CLAIM

Proof:
• if |cj| = 1, then

• if |cj| = 2, then , since:

pc j ==]1Pr[

2
21

2
21

2
21

1)1()1(1]1Pr[:
1)1(1]1Pr[:

11]1Pr[:

pppcxxc
pppcxxc

pppcxxc

j

j

j

-³-×--==Ú=
-³-×-==Ú=

-=×-==Ú=

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
41

2nd Randomized algorithm for MAX k-SAT

mCXE

c

ppp

m

i
i

j

 618.0]1Pr[][

618,0]1Pr[

618,0
2

151

1

2

³==

³=

=
-

=Þ-=

å
=

Proof (cntd)
• If |cj| = k, then

, for positive literals
pi =

, for negative literals

Taking into account all the case we have
q.e.d.

Setting

2nd Randomized algorithm for MAX k-SAT

 where,11...1]1Pr[2
21 pppppc k

kj -³-³-==

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
42

2nd Randomized algorithm for MAX k-SAT
CASE	II:	there	are	cj’s with	|cj|=1	consisting	of	a	negative	literal

Let																		
• if			x			does	not	appear	in	other	cj’s with	|cj|	=	1:

Swap			 and							(in	all	clauses)

• If			x		appears	in	other	cj’s with	|cj|	=	1
neg =	#	of	those	cj’s

satisfied becan most at Then, negm-

)(618,0]1Pr[][
1

negnCXE
m

xC
i

i

i

-³== å
¹

=

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
43

