ALMA ALGORITHMS

Fall 2016

Ioannis Milis

e-mail: milis@aueb.gr phone: 2108203537
office: Kodrigktonos 12, $3^{\text {rd }}$ floor
(entrance code: 4267)

Content

THEORY AND TECHNIQUES

- Polynomial, pseudo-polynomial and exponential algorithms
- Linear Programming
- Approximation Algorithms
- Randomization

PROBLEMS

- SATisfiability problems
- Graph problems: Cuts, Paths, TSP
- Packing problems: Partition, Subset Sum, Knapsack, Bin Packing
- Covering problems: Vertex and Set covers
- Scheduling problems

Bibliography

- [DPV] S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani: Algorithms, http://beust.com/algorithms.pdf
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms"
- [KT] J. Kleinberg, E.Tardos: Algorithm Design
- [VAZ] V. V. Vazirani: Approximation Algorithms
- [SW] D. Shmoys, D. Williamson: Design of Approximation Algorithms

Polynomial,

Pseudo-Polynomial and Exponential

 algorithms and problems
Problems

EXP(onentiation)

I: positive integers a, n
Q: calculate a^{n}

FIBONACCI NUMBERS

I : a positive integer n
Q: calculate n-th Fibonacci number F_{n}

SUBSET SUM

I: a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n positive integers and integer B
Q : is there a subset $\mathrm{A} \subseteq \mathrm{S}$ s. t. $\sum_{a_{i} \in A} a_{i}=B$?

SAT(isfiability)

Instance: a boolean formula φ
Question: Is φ satisfiable?
(is there a value assignment to its variables making φ TRUE ?
= truth assignment)

Size of Instance and complexity

Consider the description of an instance, i.e., of all the parameters and constraints

|I| = length of encoded instance / input = \# of digits of the encoded input I

Integer $n:$	Decimal	Binary	Unary
\# bits	$:\left\lfloor\log _{10} n\right\rfloor+1$	$\left\lfloor\log _{2} n\right\rfloor+1$	n

Size of Instance and complexity

$|I|=$ length of encoded instance $/$ input
= \# of digits of the encoded input I

Polynomial algorithms: O(poly(|II)

$N(I)=$ the largest number in the input
Pseudo-Polynomial algorithms: O(poly(N(I))

- $\mathbf{N}(\mathrm{I})$ is $\mathbf{O}(\exp (|\mathrm{I}|)$
- They are $\mathbf{O}(\operatorname{poly}(|\mathrm{I}|))$ if we consider I encoded in unary
- ONLY FOR PROBLEMS WITH NUMBERS

Exponential algorithms: $\mathbf{O}(\exp (|\mathbf{I}|)$

Exponentiation

EXP(onentiation)

I: positive integers a,n
Q: calculate a^{n}

```
Algorithm exp1(a,n);
// a, n positive integers
p:= 1;
for i:=1 to n do p:=p*a;
return p;
```

Correctness: obvious
Complexity: $\mathrm{O}(\mathrm{n})$
$|\mathrm{I}|=\operatorname{logn} \Rightarrow \mathrm{n}=2^{[\mathrm{II} \mid}, \mathrm{O}(\mathrm{n})$ is $\mathrm{O}\left(2^{[\mathrm{II} \mid}\right), \mathrm{O}(\exp (\mathrm{I}))$ NOT POLYNOMIAL!
$\mathrm{N}(\mathrm{I})=\mathrm{n}, \mathrm{O}(\mathrm{n})$ is $\mathrm{O}(\operatorname{poly}(\mathrm{N}(\mathrm{I}))$ PSEUDO-POLYNOMIAL!

Can we do better? Is there a polynomial algorithm for EXP ?

Exponentiation

$$
a^{n}= \begin{cases}\left(a^{\frac{n}{2}}\right)^{2} & \text { if } n \text { is even } \\ a\left(a^{\left\lfloor\frac{n}{2}\right\rfloor}\right)^{2} & a^{0}=1\end{cases}
$$

```
Algorithm exp2 (a,n);
// a, n positive integers
if n =0 then return 1;
z:= exp2 (a,\lfloorn/2\rfloor);
if n is even then return }\mp@subsup{z}{}{2
    else return az*
```

Correctness: obvious
Complexity: $\mathrm{O}(\log \mathrm{n})$, polynomial in |I| (why?) $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(1)$

Fibonacci numbers

FIBONACCI

I: Recursion $F_{0}=0 ; \quad F_{1}=1 ; \quad F_{n}=F_{n-1}+F_{n-2}, n \geq 2$
Q: Calculate F_{n}
$0,1,1,2,3,5,8,13,21,34,55, \ldots$

Algorithm fib1 (n) // Direct implementation of recursion \{if $n<2$ then return n

```
else return fib1(n-1)+ fib1(n-2) }
```

Complexity of fib1(n): $\quad T(0)=T(1)=1$,

$$
T(n)=T(n-1)+T(n-2)+1 \quad\left(=2 F_{n}-1\right)
$$

Fibonacci numbers

fib (1) : Call structure of recursion for $n=6$

Very inefficient: $\mathrm{T}(\mathrm{n})$ is $\Omega\left(2^{\mathrm{n} / 2}\right)$
Full Binary Tree at least to depth $n / 2 \rightarrow 2^{n / 2}$ nodes Why? It calulates the same values several times

Fibonacci numbers

```
Algorithm fib2(n) // recall computed values
    {f[0]:=0; f[1]:=1;
    for i:=2 to n do f[i]:= f[i-1] + f[i-2]}
```

Complexity of fib(2): O(n) NOT polynomial in $|\mathrm{I}|=\log \mathrm{n}$

What about space complexity?

Can we do better?
Is there an $\mathrm{O}($ poly $(\mathrm{I}))$, that is an $\mathrm{O}(\log \mathrm{n})$ algorithm for F_{n} ?

Fibonacci numbers

fib3(n): an $O(\log n)$ algorithm for F_{n}
Claim: It holds that (prove it)

$$
F_{n}=\frac{1}{\sqrt{5}} \phi^{n}-\frac{1}{\sqrt{5}} \hat{\phi}^{n}, \text { where } \phi=\frac{1+\sqrt{5}}{2} \text { and } \hat{\phi}=\frac{1-\sqrt{5}}{2}
$$

Exponentiation

It suffices to compute ϕ^{n} and $\hat{\phi}^{n}$
In fact, F_{n} is the closest integer to $\mathrm{F}_{\mathrm{n}}=\varphi^{\mathrm{n}} / \sqrt{ } 5$, thus: $F_{n}=\left\lfloor\frac{\phi^{n}}{\sqrt{5}}+\frac{1}{2}\right\rfloor$ (why?)
Complexity of fib3(n): $\mathrm{O}(\log \mathrm{n})$ (why?), but with use of irrational numbers
Machines use finite arithmetic, irrational numbers causes precision issues
Can we do better?
Is there a $O(\log n)$ algorithm for F_{n} using only integer numbers?

Fibonacci numbers

fib4 (n): an $O(\log n)$ algorithm for F_{n} using only integer numbers
Claim: It holds that (prove it)

$$
\binom{F_{n}}{F_{n+1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)^{n} \cdot\binom{F_{0}}{F_{1}}
$$

Exponentiation

It suffices to compute $\quad\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{n}$

Complexity of fib4(n): O(logn) (why?)

Subset Sum

SUBSET SUM

I: a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n positive integers and integer B
Q : is there a subset $\mathrm{A} \subseteq \mathrm{S}$ such that $\sum_{i \in A} a_{i}=B$?

BRUTE FORCE

- there are 2^{n} possible combinations of n items
- Go through all combinations; stop in the first one such that $\sum_{i \in A} a_{i}=B$; otherwise report NO
- Complexity: O(n2n)

Can we do better?

Subset Sum

RECALL COMPUTED VALUES

- Let $S_{i}=\left\{a_{1}, a_{2}, \ldots, a_{i}\right\}$
- IDEA: Compute the sums of all subsets of S_{i} using the sums of all subsets of S_{i-1} ! (exclude sums $>B$)
- L: a list of integers
- L+x : a new list with all elements of L increased by x e.g. $L=[1,2,3,5], L+2=[3,4,5,7]$
- MERGE (L,L')
- Returns a sorted list that is the merge of the sorted lists L and L^{\prime} with no duplicate values
- Complexity $\mathrm{O}\left(|\mathrm{L}|+\left|\mathrm{L}^{\prime}\right|\right) \quad$ (why ?)

Subset Sum

RECALL COMPUTED VALUES

L_{i} : list of the sums of all subsets of S_{i} (sums $\leq B$)

```
Algorithm SubsetSum (S,B);
L
for i=1 to n do
    Li
    Remove from L }\mp@subsup{L}{i}{}\mathrm{ every element >B;
Check if the largest element in L equals B;
```


Example

```
\[
\begin{array}{lll}
S=\{1,4,5\}, \mathrm{n}=3, \mathrm{~B}=8 & \text { Complexity ? } \\
\mathrm{L}_{0}=[0] & \mathrm{L}_{0}+\mathrm{a}_{1}=[1] & \\
\mathrm{L}_{1}=[0,1] & \mathrm{L}_{1}+\mathrm{a}_{2}=[4,5] & \\
\mathrm{L}_{2}=[0,1,4,5] & \mathrm{L}_{2}+\mathrm{a}_{3}=[5,6,9,10] & \\
\mathrm{L}_{3}=[0,1,4,5,6] & \text { Answer: } \mathrm{NO} &
\end{array}
\]
```


Subset Sum

Complexity: $\mathrm{O}(\mathrm{nB})$
At every step, the list we keep has at most B elements
$|I|=\log a_{1}+\log a_{2}+\ldots+\log a_{n}+\log B$

$$
\leq(\mathrm{n}+1) \log \mathrm{B}=\mathrm{O}(\mathrm{n} \log \mathrm{~B})
$$

Hence, $O(n B)$ is $O(\exp (\mathrm{I}))$ NOT POLYNOMIAL

But, $\mathrm{N}(\mathrm{I})=\mathrm{B}$, that is $\mathrm{O}(\mathrm{nB})$ is $\mathrm{O}($ poly $(\mathrm{N}(\mathrm{I}))$ PSEUDO-POLYNOMIAL

Can we do better?
Is there an O(poly) algorithm for SUBSET SUM ? (we believe) NO!

Boolean Formulas and SAT

Boolean variable $\mathrm{x}: \mathrm{T}(\mathrm{RUE}) / \mathrm{F}(\mathrm{ALSE})$ or $1 / 0$
Boolean operators: AND $(x \wedge y), \quad$ OR $(x \vee y), \operatorname{NOT}(\neg x / \bar{x})$
Literal: Boolean variable (x) or its negation ($\neg \mathrm{x} / \overline{\mathrm{x}}$)
Boolean formula: $\phi(x, y)=(\neg x \vee y) \wedge(x \vee \neg y)$
SAT
Instance: a boolean formula ϕ
Question: Is ϕ satisfiable?
(is there a value assignment to its variables making ϕ TRUE ?
= Truth Assignment- TA)
Example: $\phi(x, y)=(\neg x \vee y) \wedge(x \vee \neg y)$ is satisfiable
by the assignments $x=y=T$ and $x=y=F$

CNF- SAT

$\underline{\text { Clause }}=A$ set of OR-ed literals, e.g. $(x \vee \neg \mathbf{y} \vee z)$
Conjunctive Normal Form (CNF) of a formula ϕ :
it is the AND of a set of clauses
E.g. $\phi=(w \vee x \vee y \vee z),(w \vee \bar{x}),(x \vee \bar{y}),(y \vee \bar{z}),(z \vee \bar{w}),(\bar{w} \vee \bar{z})$

Any formula ϕ can be written in CNF

(CNF) SAT

Instance: a CNF boolean formula ϕ
Question: Is ϕ satisfiable?

SAT

Brute-force approach

- there are 2^{n} possible assignments for n variables
- Go through all possible assignments; stop in the first truth assignment or report NO
- Running time: O(poly(n) 2^{n})

Backtracing:

- Intelligent exhaustive search
- Consider partial assignmnets
- Prune the search space
- Example:

$$
\phi=(w \vee x \vee y \vee z),(w \vee \bar{x}),(x \vee \bar{y}),(y \vee \bar{z}),(z \vee \bar{w}),(\bar{w} \vee \bar{z})
$$

SAT

Start for the initial formula Branch on a variable, e.g. w

Plug into φ the values of w

No clause is immediately violated
Keep active both branches

SAT

Expand an active node on a new variable, e.g. x

(): FALSE clause;
Do not expand, this partial assignment can not be expanded to a TA

SAT

Finally:

Did not have to search all (2^{n}) assignmnets

SAT

```
Start with some problem P0
Let }\mathcal{S}={\mp@subsup{P}{0}{}}\mathrm{ , the set of active subproblems
Repeat while S is nonempty:
    choose a subproblem P}\in\mathcal{S}\mathrm{ and remove it from S
    expand it into smaller subproblems }\mp@subsup{P}{1}{},\mp@subsup{P}{2}{},\ldots,\mp@subsup{P}{k}{
    For each Pi:
    If test( (Pi) succeeds: halt and announce this solution
    If test( (Pi) fails: discard P
    Otherwise: add Pi to }\mathcal{S
Announce that there is no solution
```

choose: the smallest clause, the lowest in the tree,...
expand: select a variable to branch on
Test(Pi): success: P_{i} is a TA failure: P_{i} does not lead to a TA uncertainty: P_{i} is to be expanded

Worst case complexity; explore all $\mathrm{O}\left(2^{n}\right)$ possible branchings O(poly(n) 2^{n})

3-SAT

(CNF) 3-SAT
Instance: a 3-CNF boolean formula ϕ (all φ 's clauses have 3 literals)
Question: Is ϕ satisfiable ?
e.g. $\phi(x, y, z)=(x \vee \bar{y} \vee \bar{z}) \wedge(z \vee y \vee \bar{x}) \wedge(\bar{z} \vee y \vee x)$
$\mathrm{n}=\#$ variables of ϕ
$\mathrm{m}=$ \# clauses of $\phi, \mathrm{m}=\mathrm{O}\left(\mathrm{n}^{3}\right)$ Why?

Recursion: A 3SAT formula is either nothing
or a clause with three literals \wedge a 3SAT formula
$\Phi=(x \vee y \vee z) \wedge \Phi^{\prime}$
$\Phi=\left(x \wedge \Phi^{\prime}\right) \vee\left(y \wedge \Phi^{\prime}\right) \vee\left(z \wedge \Phi^{\prime}\right)$
$\Phi \mid x$: the formula obtained from Φ by assuming $\mathrm{x}=$ TRUE $\Phi=\Phi^{\prime}\left|x \vee \Phi^{\prime}\right| y \vee \Phi^{\prime} \mid z$

3-SAT

A naive recursive algorithm:

$$
\Phi=\Phi^{\prime}\left|x \vee \Phi^{\prime}\right| y \vee \Phi^{\prime} \mid z
$$

```
3SAT (\Phi)
    if }\Phi=\varnothing\mathrm{ return TRUE
    (x \vee y \vee z)^ '' =\Phi
    if 3SAT( (''|x) return TRUE
    if 3SAT( ('ly) return TRUE
    return 3SAT( }\mp@subsup{\Phi}{}{\prime}\\textrm{l}
```

Complexity: $T(n)=3 T(n-1)+\operatorname{poly}(n)$, that is $O\left(3^{n} \operatorname{poly}(n)\right)$ worst than $\mathrm{O}\left(2^{\mathrm{n}}\right.$ poly(n))!

3-SAT

A better recursive algorithm:
$\Phi=\Phi^{\prime}\left|x \vee \Phi^{\prime}\right| y \vee \Phi^{\prime} \mid z$
These three recursive cases are not independent
If $\Phi^{\prime} \mid \mathrm{x}$ is not satisfiable, then $\mathrm{x}=\mathrm{FALSE}$ in ANY TA of Φ : recurse on $\Phi^{\prime} \mid \bar{x} y$
If $\Phi^{\prime} \mid \bar{x} y$ is not satisfiable, then $\mathrm{y}=$ false in ANY TA of Φ : recurse on $\Phi^{\prime} \mid \bar{x} \bar{y} z$

```
3SAT(\Phi):
    if }\Phi=
        return TRUE
    (x\veey\veez)\wedge\mp@subsup{\Phi}{}{\prime}\leftarrow\Phi
    if 3SAT( }\Phi|x
            return TruE
    if 3SAT( }\Phi|\overline{x}y
            return TRUE
    return 3SAT( }\Phi|\overline{x}\overline{y}z
```

Complexity:
$T(n)=T(n-1)+T(n-2)+T(n-3)+\operatorname{poly}(n)$
$T(n)=O\left(\lambda^{n} \operatorname{poly}(n)\right)$,
where $\lambda=1,83928675521 \ldots$ is the largest root of $r^{3}-r^{2}-r-1=0$, that is $\mathrm{O}\left(1,83928675522^{n}\right)$

3-SAT

An even better recursive algorithm:

Pure literal x : it appears in Φ, but its negation does not it should be TRUE in ANY TA of Φ
If Φ has no pure literals then

$$
\Phi=(x \vee y \vee z) \wedge(\bar{x} \vee u \vee v) \wedge \Phi^{\prime}
$$

and we can eliminate y and z, as well as u and v as before

```
3SAT(\Phi):
    if \Phi=\varnothing
        return TRUE
    if }\Phi\mathrm{ has a pure literal }
        return 3SAT}(\Phi|x
    (x\veey\veez)\wedge(\overline{x}\veeu\veev)\wedge\mp@subsup{\Phi}{}{\prime}\leftarrow\Phi
    if 3SAT( }\Phi|xu
        return TRUE
    if 3SAT( }\Phi|x\overline{u}v
        return TRUE
    if 3SAT( }\Phi|\overline{x}y
        return True
    return 3SAT( }\Phi|\overline{x}\overline{y}z
```

Complexity:
$T(n)=2 T(n-2)+2 T(n-3)+\operatorname{poly}(n)$
$\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mu^{\mathrm{n}}\right.$ poly(n)),
where $\mu=1,76929235424 \ldots$...
is the largest root of $r^{3}-2 r-2=0$,
that is $\mathrm{O}\left(1,76929235425^{\mathrm{n}}\right)$

3-SAT

Can we do better?

Yes, but still exponentially!

Best deterministic algorithm: $\mathrm{O}\left(1,33334^{\mathrm{n}}\right)$ [2010]

Best randomized algorithm: $\mathrm{O}\left(1,32113^{n}\right)$ [2010]

Is there a polynomial algorithm for SAT?
(we believe) NO

Is there a pseudo-polynomial algorithm for SAT? NO!
(SAT is not a problem with numbers)

Review

Problem	Algorithms (complexity)			
	$\exp (\|\mathrm{I}\|)$	poly(N(I)) (pseudo-poly)	poly(\|I)
Exponentiation		$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	
Fibonacci numbers	$\Omega\left(2^{\mathrm{n} / 2}\right)$	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\log \mathrm{n})$	
SUBSET SUM	$\mathrm{O}\left(2^{\mathrm{n}}\right)$	$\mathrm{O}(\mathrm{nB})$	NO *	
SAT	$\mathrm{O}\left(1,33334^{\mathrm{n}}\right)$	NO *		

Randomization for MAX k-SAT

MAX k-SAT- Randomized algorithm [CLRS 35.4]

MAX k-SAT (opt)
I: A k-CNF formula φ
Q: find an assignment satisfying the maximum number of clauses
NP-complete problem (as MAX 2-SAT or k-SAT are NP-complete)
Each clause contains $\mathrm{c}_{\mathrm{i}}, 1 \leq \mathrm{b} \leq \mathrm{c}_{\mathrm{i}} \leq \mathrm{k}$, distinct literals (no clause contains a variable and its negation)

Randomized algorithm:

Independently set each variable $=\left\{\begin{array}{l}1, \text { with probality } \frac{1}{2} \\ 0, \text { with probality } \frac{1}{2}\end{array}\right.$

MAX k-SAT- Randomized algorithm

$X=\#$ of true clauses (random variable)

$$
\begin{aligned}
& X=X_{1}+X_{2}+\ldots .+X_{m}=\sum_{i=1}^{m} X_{i}, \quad X_{i}= \begin{cases}1, & \text { if } C_{i}=1 \\
0, \text { if } C_{i}=0\end{cases} \\
& E\left[X_{i}\right]=1 \cdot \operatorname{Pr}\left[C_{i}=1\right]+0 \cdot \operatorname{Pr}\left[C_{i}=0\right]=\operatorname{Pr}\left[C_{i}=1\right] \\
& E[X]=E\left[\sum_{i=1}^{m} X_{i}\right]=\sum_{i=1}^{m} E\left[X_{i}\right]=\sum_{i=1}^{m} \operatorname{Pr}\left[C_{i}=1\right] \\
& E[X]=\sum_{i=1}^{m} \operatorname{Pr}\left[C_{i}=1\right]
\end{aligned}
$$

MAX k-SAT- Randomized algorithm [CLRS 35.4]

$\operatorname{Pr}\left[C_{i}=0\right]=\frac{1}{2} \cdot \frac{1}{2} \ldots \frac{1}{2}=\frac{1}{2^{i}}$
$\operatorname{Pr}\left[C_{i}=1\right]=1-\frac{1}{2^{a}} \geq 1-\frac{1}{2^{b}} \geq \frac{1}{2}$
that is,
$E[X]=\sum_{i=1}^{m} \operatorname{Pr}\left[C_{i}=1\right] \geq \sum_{i=1}^{m}\left(1-\frac{1}{2^{b}}\right)=\left(1-\frac{1}{2^{b}}\right) m \geq \frac{1}{2} m \quad($ for $b=1)$
At least $\left(1-\frac{1}{2^{b}}\right.$) of all the caluses are satisfied (in expectation)
$O P T=$ maximum $\#$ of true clauses, Obviously, $O P T \leq m$
Hence, $E[X] \geq\left(1-\frac{1}{2^{b}}\right) O P T \geq \frac{1}{2} O P T \quad($ for $b=1)$, that is, $E[X] \geq 0,5 O P T$ \square

MAX 3-SAT- Randomized algorithm

MAX 3-SAT (opt)
I: A 3-CNF formula φ,
Q: find an assignment satisfying the maximum number of clauses

$$
b=c_{i}=k=3, \forall i: \quad E[X] \geq\left(1-\frac{1}{2^{3}}\right) m=\frac{7}{8} m=0.875 m
$$

Fact 1: for every instance of 3-SAT, the expected \# of clauses satisfied by a random assignment is at least $7 / 8 \mathrm{~m}$

MAX 3-SAT- Randomized algorithm [KT 13.4]

Fact 1: for every instance of 3-SAT, the expected \# of clauses satisfied by a random assignment is at least $7 / 8 \mathrm{~m}$

But, for any random variable, there is some point at which it assumes a value at least as large as its expectation Thus,

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 of all clauses

Fact 3: every instance of 3-SAT with at most $\mathrm{m} \leq 7$ clauses is satisfliable ! Proof:

- By F2 there is an assignment satisfying at least $\mathrm{t}=7 / 8 \mathrm{~m}$ clauses
- For $m<8$ it holds that $7 / 8 \mathrm{~m}>\mathrm{m}-1$
- That is, all the $\mathrm{m}<8$ clause are satisfied !

MAX 3-SAT- Randomized algorithm

Fact 2: for every instance of 3-SAT, there is an assignment satisfying at least 7/8 of all clauses

How can we find such an assignment? What is the complexity ? How long it take until we find one by random trials?

Waiting for the first success: $\mathrm{Z}=\#$ of trials until success (random variable)
$\mathrm{p}=\operatorname{Pr}$ [a random assignment satisfies at least 7/8m clauses]
$\operatorname{Pr}[Z=j]$: probability for success in the j-th trial

$$
\operatorname{Pr}[\mathrm{Z}=\mathrm{j}]=(1-\mathrm{p})^{\mathrm{j}-1} \mathrm{p}
$$

$$
E[Z]=\sum_{j=1}^{\infty} j \operatorname{Pr}[Z=j]=\sum_{j=1}^{\infty} j(1-p)^{j-1} p=\frac{p}{1-p} \sum_{j=1}^{\infty} j(1-p)^{j}
$$

$$
=\frac{p}{1-p} \frac{(1-p)}{p^{2}}=\frac{1}{p}
$$

MAX 3-SAT- Randomized algorithm

Fact 4: for every instance of 3-SAT, an assignment satisfying at least 7/8 of all clauses can be found by 1/p expected random trials.

Can we bound 1/p?
X=\# of satisfied clauses by a random assignment; Recall: $\mathbf{E}[\mathbf{X}]=7 / 8 \mathrm{~m}$ $\mathrm{p}_{\mathrm{j}}{ }^{=} \operatorname{Pr}$ [a random assignment satisfies exactly j clauses]

Recall: $\mathrm{p}=\operatorname{Pr}$ [a random assignment satisfies at least 7/8m clauses]

$$
\begin{aligned}
& \quad \sum_{j<7 m / 8} p_{j}=1-p, \quad \sum_{j \geq 7 m / 8} p_{j}=p \\
& \text { Let } \mathrm{m}^{\prime}=\text { the largest integer }<7 / 8 \mathrm{~m}, \mathrm{~m}^{\prime}<\mathrm{m} \quad E[X]=\sum_{j=1}^{m} j p_{j} \\
& \frac{7}{8} m=E[X]=\sum_{j=1}^{m} j p_{j}=\sum_{j<7 m / 8} j p_{j}+\sum_{j \geq 7 m / 8} j p_{j} \leq \sum_{j<7 m / 8} m^{\prime} p_{j}+\sum_{j \geq 7 m / 8} m p_{j} \\
& =m^{\prime}(1-p)+m p=m^{\prime}+\left(m-m^{\prime}\right) p \leq m^{\prime}+m p
\end{aligned}
$$

MAX 3-SAT- Randomized algorithm

$$
\begin{aligned}
& \frac{7}{8} m \leq m^{\prime}+m p \Rightarrow p \geq \frac{7 / 8 m-m^{\prime}}{m} \\
& m^{\prime}=\text { largest integer }<7 / 8 m \Rightarrow 7 / 8 m-m^{\prime} \geq 1 / 8
\end{aligned}
$$

Thus, $p \geq \frac{1}{8 m} \Rightarrow \frac{1}{p} \leq 8 m$

Fact 5: there is a randomized algorithm of $O(m)$ expected complexity for finding an assignment satisfying at least 7/8 of all clauses of a 3-SAT instance

$2^{\text {nd }}$ Randomized algorithm for MAX k-SAT

Set each variable to be TRUE, independently, with probability $p \geq 1 / 2$

CASE I: All c_{i} 's with $\left|c_{j}\right|=1$ consist of a positive literal
CLAIM $\operatorname{Pr}\left[c_{j}=1\right] \geq \min \left(p, 1-p^{2}\right)$

Proof:

- if $\left|c_{j}\right|=1$, then $\operatorname{Pr}\left[c_{j}=1\right]=p$
- if $\left|\mathrm{c}_{\mathrm{j}}\right|=2$, then $\operatorname{Pr}\left[c_{j}=1\right]=1-p^{2}$, since:

$$
\begin{aligned}
& c_{j}=\overline{x_{1}} \vee \overline{x_{2}}: \operatorname{Pr}[c=1]=1-p \cdot p=1-p^{2} \\
& c_{j}=\overline{x_{1}} \vee x_{2}: \operatorname{Pr}[c=1]=1-p \cdot(1-p) \geq 1-p^{2} \\
& c_{j}=x_{1} \vee x_{2}: \operatorname{Pr}[c=1]=1-(1-p) \cdot(1-p) \geq 1-p^{2}
\end{aligned}
$$

$2^{\text {nd }}$ Randomized algorithm for MAX k-SAT

Proof (cntd)

- If $\left|\mathrm{c}_{\mathrm{j}}\right|=\mathrm{k}$, then $\operatorname{Pr}\left[c_{j}=1\right]=1-p_{1} p_{2} \ldots p_{k} \geq 1-p^{k} \geq 1-p^{2}$, where

$$
\mathrm{p}_{\mathrm{i}}=\left\{\begin{array}{l}
p, \quad \text { for positive literals } \\
1-p \leq p, \text { for negative literals }
\end{array}\right.
$$

Taking into account all the case we have $\operatorname{Pr}\left[c_{j}=1\right] \geq \min \left(p, 1-p^{2}\right)$
Setting $p=1-p^{2} \Rightarrow p=\frac{\sqrt{5}-1}{2}=0,618$

$$
\begin{aligned}
& \operatorname{Pr}\left[c_{j}=1\right] \geq 0,618 \\
& E[X]=\sum_{i=1}^{m} \operatorname{Pr}\left[C_{i}=1\right] \geq 0.618 m
\end{aligned}
$$

$2^{\text {nd }}$ Randomized algorithm for MAX k-SAT

CASE II: there are c_{i}^{\prime} 's with $\left|c_{i}\right|=1$ consisting of a negative literal
Let $c_{j}=\{\bar{x}\}$

- if x does not appear in other c_{j} 's with $\left|\mathrm{c}_{\mathrm{j}}\right|=1$:

Swap and (in all clauses)

- If x appears in other c_{j} 's with $\left|\mathrm{c}_{\mathrm{j}}\right|=1$
neg $=\#$ of those c_{j} 's
Then, at most m - ne g can be satisfied

$$
E[X]=\sum_{\substack{i=1 \\ C_{i} \neq \bar{x}}}^{m} \operatorname{Pr}\left[C_{i}=1\right] \geq 0,618(n-n e g)
$$

