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Polynomial, 
Pseudo-Polynomial  and

Exponential 

algorithms and problems
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Problems
EXP(onentiation) FIBONACCI NUMBERS 
I: positive integers a,n I: a positive integer n
Q: calculate an Q: calculate n-th Fibonacci number Fn

SUBSET SUM
I: a set S={a1, a2, ..., an} of n positive integers and integer B

Q: is there a subset A Í S s. t. 

SAT(isfiability) 
Instance: a boolean formula  φ
Question: Is φ satisfiable ?  

(is there a value assignment to its variables making φ TRUE ?
= truth assignment ) 
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Consider the description of an instance,
i.e., of all the parameters and constraints

Instance I (encoded instance)

|I| = length of encoded instance / input  
= # of digits of the encoded input  I 

Integer n :   Decimal            Binary            Unary
# bits : n

6

Size of Instance and complexity  

ë û 1log10 +n

encoding

e.g. in decimal / binary / unary

ë û 1log2 +n
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|I| = length of encoded instance / input  
= # of digits of the encoded input  I 

Polynomial algorithms:  O(poly(|I|) 

N(I) = the largest  number in the input

Pseudo-Polynomial algorithms: O(poly(N(I)) 
• N(I) is  O(exp( |I| ) 
• They are O(poly(|I|)) if we consider I encoded in unary 
• ONLY FOR PROBLEMS WITH NUMBERS 

Exponential algorithms:  O(exp(|I|)
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Size of Instance and complexity  
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Exponentiation
EXP(onentiation)
I: positive integers a,n
Q: calculate  an

Algorithm exp1(a,n);
// a, n positive integers
p:= 1; 
for i:=1 to n do p:=p*a; 
return p;

Correctness:  obvious  
Complexity:    O(n)  

|I|= logn Þ n = 2|I| ,  O(n) is O(2|I| ), O(exp(I))    NOT POLYNOMIAL ! 

N(I) =n,  O(n) is O(poly(N(I))                   PSEUDO-POLYNOMIAL !

Can we do better? Is there a polynomial algorithm for EXP ?
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Exponentiation
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Algorithm exp2 (a,n);
// a, n positive integers  
if n =0 then return 1;
z:= exp2 (a, );
if n is even then return z2

else return az2 

ë û2/n

Correctness:  obvious 
Complexity:   O(log n), polynomial in  |I|  (why?)
T(n)=T(n/2) + O(1)

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO



10

Fibonacci numbers
FIBONACCI
I: Recursion  F0 = 0;    F1 = 1;    Fn = Fn-1 + Fn-2,  n ≥ 2
Q: Calculate Fn

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 

Algorithm fib1(n) // Direct implementation of recursion
{if n<2 then return n 

else return fib1(n-1)+ fib1(n-2) }

Complexity of fib1(n):    T(0)=T(1)=1,   
T(n)= T(n-1) + T(n-2) + 1    (= 2 Fn – 1)
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fib(1): Call structure of recursion for  n=6

Fibonacci numbers

Very inefficient:  Τ(n) is  Ω (2n/2) 
Full Binary Tree at least to depth  n/2 à 2n/2 nodes
Why? It calulates the same values  several times

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO



12

Fibonacci numbers

Algorithm fib2(n) // recall computed values

{f[0]:=0; f[1]:=1;

for i:=2 to n do f[i]:= f[i-1] + f[i-2]}

Complexity of  fib(2):  O(n)  NOT polynomial in |I|=log n

What about space complexity?

Can we do better?  
Is there an O(poly(I)) , that is an O(log n)  algorithm for Fn ? 
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Fibonacci numbers
fib3(n): an  O(log n) algorithm for Fn

Claim:  It holds that (prove it)  

Exponentiation 
It  suffices to compute  

In fact, Fn is the closest integer to  Fn=φn /Ö5,  thus:                (why?)

Complexity of  fib3(n): O(log n) (why?), but with use of irrational numbers
Machines use finite arithmetic, irrational numbers causes precision issues 

Can we do better? 
Is there a O(log n) algorithm for Fn using only integer numbers? 
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Fibonacci numbers
fib4(n): an  O(log n) algorithm for Fn using only integer numbers
Claim: It holds that (prove it)  

Exponentiation 

It suffices to compute 

Complexity of  fib4(n): O(log n)    (why?) 
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Subset Sum
SUBSET SUM
I: a set S={a1, a2, ..., an} of n positive integers and integer B

Q: is there a subset A Í S such  that

BRUTE FORCE  
– there are 2n possible combinations of n  items
– Go through all combinations;

stop in the first one such that  ; otherwise  report NO
– Complexity:  O(n2n)

Can we do better? 

? Ba
Ai i =åÎ

 Ba
Ai i =åÎ

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO



16

Subset Sum
RECALL COMPUTED VALUES
• Let  Si={a1, a2,…,ai) 
• IDEA: Compute the sums of all subsets of Si 

using the sums of all subsets of Si-1!      (exclude sums  > B)

• L: a list of integers
• L+x : a new list with all elements of L increased by x

e.g. L=[1,2,3,5], L+2=[3,4,5,7] 

• MERGE (L,L’) 
– Returns a sorted list that is the merge of the sorted lists L and L’

with no duplicate values
– Complexity O(|L|+|L’|)    (why ?)
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RECALL COMPUTED VALUES
Li : list of the sums of all subsets of  Si (sums ≤ B)  

Algorithm SubsetSum (S,B);
L0=[0];
for i=1 to n do 

Li=MERGE(Li-1, Li-1+ai);
Remove from Li every element >B;

Check if the largest element in L equals B;

Example
S={1,4,5}, n=3, B=8
L0=[0]             L0+a1 =[1]
L1=[0,1]          L1+a2 =[4,5]
L2=[0,1,4,5]    L2+a3 =[5,6,9,10]
L3=[0,1,4,5,6]  Answer: NO

17

Subset Sum

Complexity ? 

17
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Complexity: O(nB)
At every step, the list we keep has at most B elements 

|I|= log a1 + log a2 + …+ log an + log B
≤ (n+1) log B = O(n log B)

Hence,    O(nB) is O(exp(I))      NOT POLYNOMIAL 

But,  N(I) =B,  that is  O(nB)  is O(poly(N(I))    PSEUDO-POLYNOMIAL

Can we do better ?  
Is there an O(poly) algorithm for SUBSET SUM ?   (we believe)  NO ! 
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Subset Sum
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Boolean Formulas and SAT
Boolean variable x:  T(RUE) /  F(ALSE)  or 1 / 0 

_
Boolean operators:  AND (x Ùy),   OR  (x Ú y),   NOT (¬x   /   x )

_
Literal:  Boolean variable (x) or its negation (¬x /  x )

Boolean formula:  f(x,y) = (¬x Ú y) Ù (x Ú ¬y)

SAT
Instance: a boolean formula f
Question: Is f satisfiable ?  

(is there a value assignment to its variables making f TRUE ?
= Truth Assignment- TA ) 

Example:  f(x,y) = (¬x Ú y) Ù (x Ú ¬y)  is satisfiable
by the assignments x=y=T
and x=y=F
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CNF- SAT

Clause =  A set of OR-ed literals, e.g.  (x Ú ¬y Ú z)

Conjunctive Normal Form (CNF) of  a formula f:  
it is the AND of a set of clauses

E.g.   

Any  formula f can be written in CNF 

(CNF) SAT
Instance: a  CNF boolean formula f
Question: Is f satisfiable ?  
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SAT
Brute-force approach 

– there are 2n possible assignments for n variables 
– Go through all possible assignments; 

stop in the first truth assignment or report NO  
– Running time:  O(poly(n) 2n)

Backtracing: 
• Intelligent exhaustive search
• Consider partial assignmnets
• Prune the search space 
• Example:
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SAT

Start for the initial formula 
Branch on a variable, e.g. w

Plug  into φ the values of w 
No clause is immediately violated
Keep active both branches
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SAT
Expand an active node on a new variable, e.g.  x

( ): FALSE clause; 
Do not expand,  this partial assignment  can not be expanded  to a TA 
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SAT
Finally:  

The answer is NO
There is no TA for φ
Did not have to search all (2n) assignmnets
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SAT

choose: the smallest clause, the lowest in the tree,…
expand: select a variable to branch on 
Test(Pi): success: Pi is  a TA 

failure: Pi does not lead to a TA
uncertainty: Pi is to be expanded  

Worst case complexity; explore all O(2n) possible branchings
O(poly(n) 2n) 
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3-SAT
(CNF) 3-SAT
Instance: a  3-CNF boolean formula f (all φ’s clauses have 3 literals)
Question: Is f satisfiable ?  
e.g.

n = # variables of f
m = # clauses of  f,  m=O(n3)   Why?

Recursion:  A 3SAT formula is either nothing 
or a clause with three literals Ù a 3SAT formula

Φ = (x Ú y Ú z) Ù Φ’ 
Φ = (x Ù Φ’ ) Ú (y Ù Φ’ ) Ú (z Ù Φ’ )  

Φ|x :  the formula obtained from Φ by assuming x=TRUE
Φ = Φ’|x Ú Φ’|y  Ú Φ’|z
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3-SAT
A naive recursive algorithm: 

Φ = Φ’|x Ú Φ’|y  Ú Φ’|z

3SAT (Φ)
if Φ=⌀ return TRUE
(x Ú y Ú z) ÙΦ’ =Φ
if 3SAT(Φ’|x) return TRUE 
if 3SAT(Φ’|y) return TRUE 
return 3SAT(Φ’|z) 

Complexity:  T(n)=3T(n-1) + poly(n), that is O(3n poly(n)) 

worst than O(2n poly(n)) !
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A better recursive algorithm: 
Φ = Φ’|x Ú Φ’ |y  Ú Φ’ |z
These three recursive cases are not independent 
If Φ’|x is not satisfiable, then x=FALSE in ANY TA of Φ:

recurse on
If             is not satisfiable, then y=false in ANY TA of Φ:
recurse on  

28

3-SAT

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula  and any literal x , let  |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0  �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�
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must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
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T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

Complexity:  
T(n)=T(n-1)+T(n-2)+T(n-3)+poly(n)

T(n)=O(λn poly(n)), 
where λ=1,83928675521…. 
is the largest root of r3 - r2 -r -1=0,
that is   O(1,83928675522n)

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula  and any literal x , let  |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0  �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

Since polynomial factors like n3 are essentially noise when the overall running time is
exponential, from now on I’ll use poly(n) to represent some arbitrary polynomial in n; in other
words, poly(n) = nO(1). For example, the trivial algorithm for �SAT runs in time O(2n

poly(n)).
We can make this algorithm smarter by exploiting the special recursive structure of �CNF

formulas:

A �CNF formula is either nothing
or a clause with three literals ^ a �CNF formula

Suppose we want to decide whether some �CNF formula � with n variables is satisfiable. Of
course this is trivial if � is the empty formula, so suppose

� = (x _ y _ z)^�0

for some literals x , y, z and some �CNF formula �0. By distributing the ^ across the _s, we can
rewrite � as follows:

� = (x ^�0)_ (y ^�0)_ (z ^�0)
For any boolean formula  and any literal x , let  |x (pronounced “sigh given eks") denote the
simpler boolean formula obtained by assuming x is true. It’s not hard to prove by induction (hint,
hint) that x ^ = x ^ |x , which implies that

� = (x ^�0|x)_ (y ^�0|y)_ (z ^�0|z).

Thus, in any satisfying assignment for �, either x is true and �0|x is satisfiable, or y is true and
�0|y is satisfiable, or z is true and �0|z is satisfiable. Each of the smaller formulas has at most
n� 1 variables. If we recursively check all three possibilities, we get the running time recurrence

T (n) 3T (n� 1) + poly(n),

whose solution is O(3n
poly(n)). So we’ve actually done worse!

But these three recursive cases are not mutually exclusive! If �0|x is not satisfiable, then x
must be false in any satisfying assignment for �. So instead of recursively checking �0|y in the
second step, we can check the even simpler formula �0|¯x y . Similarly, if �0|¯x y is not satisfiable,
then we know that y must be false in any satisfying assignment, so we can recursively check
�0|¯x ¯yz in the third step.

����(�):
if � = ?

return T���

(x _ y _ z)^�0  �
if ����(�|x)

return T���
if ����(�|¯x y)

return T���
return ����(�|¯x ¯yz)

The running time off this algorithm obeys the recurrence

T (n) = T (n� 1) + T (n� 2) + T (n� 3) + poly(n),

�



An even  better recursive algorithm: 
Pure literal x: it appears in Φ, but its negation does not 

it should be TRUE in ANY TA of Φ
If Φ has no pure literals then

and we can eliminate y and z, as well as u and v as before

29

3-SAT

Complexity:  
T(n)=2T(n-2)+2T(n-3)+poly(n)

T(n)=O(μn poly(n)), 
where μ=1,76929235424…. 
is the largest root of r3 - 2r -2=0,
that is   O(1,76929235425n)

Algorithms Lecture �: Efficient Exponential-Time Algorithms [Fa’��]

where poly(n) denotes the polynomial time required to simplify boolean formulas, handle control
flow, move stuff into and out of the recursion stack, and so on. The annihilator method gives us
the solution

T (n) = O(�n
poly(n)) = O(1.83928675522

n)

where � ⇡ 1.83928675521 . . . is the largest root of the characteristic polynomial r3 � r2 � r � 1.
(Notice that we cleverly eliminated the polynomial noise by increasing the base of the exponent
ever so slightly.)

We can improve this algorithm further by eliminating pure literals from the formula before
recursing. A literal x is pure in if it appears in the formula � but its negation ¯x does not. It’s not
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Naturally, this approach can be extended much further; since ����, at least fifteen different

�SAT algorithms have been published, each improving the running time by a small amount. As of
����, the fastest deterministic algorithm for �SAT runs in O(1.33334

n) time², and the fastest

²Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. ArXiv:����.����,
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3-SAT
Can we do better ?

Yes, but still exponentially ! 

Best deterministic algorithm: O(1,33334n)  [2010] 

Best randomized algorithm: O(1,32113n)  [2010]

Is there a polynomial algorithm for SAT ?                (we believe ) NO 

Is there a pseudo-polynomial algorithm for SAT?   NO ! 
(SAT is not a problem with numbers)
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Review

Problem 
Algorithms (complexity)

exp(|I|) poly(N(I))
(pseudo-poly)

poly(|I|) 

Exponentiation O(n) O(log n) 

Fibonacci 
numbers 

Ω(2n/2) O(n) O(log n) 

SUBSET SUM O(2n) O(nB) NO *

SAT O(1,33334n) NO *

* Unless P=NP
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Randomization 
for MAX k-SAT 
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MAX k-SAT- Randomized algorithm [CLRS 35.4]

MAX k-SAT (opt)
I:  A k-CNF formula φ
Q: find an assignment satisfying the maximum number of  clauses 

NP-complete problem (as MAX 2-SAT  or k-SAT are NP-complete) 

Each clause contains ci,  1 ≤ b ≤ ci ≤k, distinct literals
(no clause contains a variable and its negation)

Randomized algorithm:

Independently set each variable  

ï
ï
î

ïï
í

ì

=

2
1probality   with ,0

2
1probality    with ,1
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MAX k-SAT- Randomized algorithm
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MAX k-SAT- Randomized algorithm [CLRS 35.4]
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MAX 3-SAT- Randomized algorithm
MAX 3-SAT (opt)
I:  A 3-CNF formula φ, 
Q: find an  assignment satisfying the maximum number of  clauses 

Fact 1: for every instance of 3-SAT, the expected # of clauses         
satisfied by a random assignment is at least 7/8 m   

mmmXEi, kcb i 875.0
8
7)

2
11(][   :3 3 ==-³"===
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MAX 3-SAT- Randomized algorithm  [KT 13.4] 

Fact 1: for every instance of 3-SAT, the expected # of clauses         
satisfied by a random assignment is at least 7/8 m

But, 
for any random variable, there is some point at which it assumes 
a value at least as large as its expectation 
Thus,

Fact 2: for every instance of 3-SAT, there is an assignment    
satisfying at least 7/8  of  all clauses 

Fact 3: every instance of 3-SAT with at most m≤7 clauses is satisfliable ! 
Proof:   
• By F2 there is an assignment satisfying at least t=7/8m clauses
• For m<8 it holds that 7/8m > m-1
• That is, all the m<8 clause are satisfied !
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MAX 3-SAT- Randomized algorithm
Fact 2: for every instance of 3-SAT, there is an assignment    

satisfying at least 7/8 of all clauses

How can we find such an assignment? What is the complexity ?
How long it take until we find one by random trials ?

Waiting for the first success: Z= # of trials until success  (random variable)

p= Pr [a random assignment satisfies at least 7/8m clauses] 
Pr[Z=j] : probability for success in the j-th trial

Pr[Z=j] = (1-p)j-1p

pp
p

p
p

pj
p
pppjjZjZE

j j

jj

j
1)1(

1

)1(
1

)1(]Pr[][

2

1 1

1

1

=
-

-
=

-
-

=-=== å åå
¥

=

¥

=

-
¥

=

        

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
38



MAX 3-SAT- Randomized algorithm
Fact 4: for every instance of 3-SAT, an assignment satisfying at least 7/8 

of  all clauses can be found by 1/p expected random trials. 

Can we bound 1/p ?

X=# of satisfied clauses by a random assignment; 

pj
= Pr [ a random assignment satisfies exactly  j clauses]  

Recall: p= Pr [a random assignment satisfies at least 7/8m clauses]

Let  m’= the largest integer < 7/8m, m’ < m 
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Recall:  E[X]=7/8m
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MAX 3-SAT- Randomized algorithm

Fact 5: there is a randomized algorithm of O(m) expected complexity for 
finding an assignment satisfying at least 7/8 of  all clauses of a 
3-SAT instance 
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Set each variable to be TRUE, independently, with probability

CASE I: All cj’s with |cj| = 1 consist of a positive literal

CLAIM

Proof:  
• if |cj| = 1, then 

• if |cj| = 2,  then                                , since:

pc j == ]1Pr[
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2nd Randomized algorithm for MAX k-SAT
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Proof (cntd)
• If  |cj| = k, then 

,    for positive literals
pi = 

, for negative literals

Taking into account all the case we have                                                           
q.e.d.

Setting  

2nd Randomized algorithm for MAX k-SAT
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2nd Randomized algorithm for MAX k-SAT
CASE	II:	there	are	cj’s with	|cj|=1	consisting	of	a	negative	literal

Let																		
• if			x			does	not	appear	in	other	cj’s with	|cj|	=	1:

Swap			 and							(in	all	clauses)

• If			x		appears	in	other	cj’s with	|cj|	=	1
neg =	#	of	those	cj’s

satisfied becan  most at  Then, negm-

)(618,0]1Pr[][
1

negnCXE
m

xC
i

i

i

-³== å
¹

=

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 01 - INTRO
43


