ALMA ALGORITHMS

Fall 2016

Ioannis Milis

Approximation Algorithms

P vs NP

No O(poly) algorithm is known for any \mathcal{NP} -complete problem

P vs NP

Hard problems (NP-complete)	Easy problems (in P)
3sat	2sat, Horn sat
TRAVELING SALESMAN PROBLEM	MINIMUM SPANNING TREE
LONGEST PATH	SHORTEST PATH
3D matching	BIPARTITE MATCHING
KNAPSACK	UNARY KNAPSACK
INDEPENDENT SET	INDEPENDENT SET on trees
INTEGER LINEAR PROGRAMMING	LINEAR PROGRAMMING
RUDRATA PATH	EULER PATH
BALANCED CUT	MINIMUM CUT

No O(poly) algorithm is known for any \mathcal{NP} -complete problem

Coping with NP-complete problems

- 1. Small instances: an O(exp) algorithm may be satisfactory
- 2. Special cases: may be O(poly), e.g. 2-SAT
- Exponential algorithms
 Pseudo-polynomial algorithms, Dynamic Programming,
 Backtracking, Branch-and-Bound
- 4. Approximation algorithms: O(poly) algorithms that produce solutions within a guaranteed factor away from the optimum solution
- Randomized algorithms: O(poly) algorithms
 Monte Carlo: Deterministic complexity; whp a correct solution
 Las Vegas: Expected complexity; always a correct solution
- 5. Heuristic algorithms: any O(poly) approach without a formal guarantee of performance but valid in practical situations

Approximation algorithms

O(poly) algorithms obtaining a solution of cost C within a factor ρ of the optimum cost OPT Max

Minimization problems: C/OPT $\leq \rho = 1 + \epsilon$, $\epsilon > 0$

Maximization problems: $C/OPT \le \rho = 1 - \epsilon$, $\epsilon > 0$

$$|OPT - C| / OPT \le \epsilon$$
, $\epsilon > 0$

 ϵ : relative error ($\epsilon \times 100$) %

Approximations: Good, better, best and more ...

Non - constant approximation : $C/OPT \le f(n)$

Constant (ρ -)approximation : C/OPT $\leq \rho$ (a constant, e.g. 3/2)

Polynomial Time Approximation Schemes (PTAS)

- C/OPT \leq 1 + ϵ , for any ϵ >0
- O(poly (|I|)), O(exp $(1/\epsilon)$), e.g. O($n^{3/\epsilon}$)

Fully Polynomial Time Approximation Schemes (FPTAS)

- C/OPT $\leq 1 + \epsilon$, for any $\epsilon > 0$
- O(poly (|I|)), O(poly $(1/\epsilon)$) e.g. O($(1/\epsilon)^2 n^3$)

Additive approximation

C ≤ OPT+ f(n) or C ≤ OPT+ k (a constant), e.g. C ≤ OPT+1!

Vertex Cover Set Cover

(Weighted) Set Cover

WEIGHTED SET COVER (WSC)

- I: a set U of n elements
 - a family $F=\{S_1, S_2, ..., S_m\}$ of subsets of U,
 - a weight w(S_i) for each set S_i
- Q: Find a minimum weight subset $C \subseteq F$ covering all elements of U,

i.e.
$$\bigcup_{S_i \in C} S_i = U$$
 and $W = \sum_{S_i \in C} w(S_i)$ is minimized

SET COVER (SC):
$$w(S_i) = 1, \forall S_i \in F$$
, that is $W = \sum_{S_i \in C} w(S_i) = |C|$

Find a minimum size subset C ⊆ F covering all elements of U,

i.e.
$$\bigcup_{S_i \in C} S_i = U$$
 and $|C|$ is minimized

(Weighted) Vertex Cover

WEIGHTED VERTEX COVER (WVC)

I: a graph G=(V, E), a weight w(u) for each vertex u∈V

Q: Find a minimum weight subset $C \subseteq V$ covering all edges of G i.e. for every edge $(u,v) \in E$ either $u \in C$ or $v \in C$ and $W = \sum_{u \in C} w(u)$ is minimized

VERTEX COVER (VC):
$$w(u) = 1, \forall u \in V \Rightarrow W = \sum_{v \in C} w(u) = |C|$$

Find a minimum size subset $C \subseteq F$ covering all elements of U, i.e. for every edge $(u,v) \in E$ either $u \in C$ or $v \in C$ and |C| is minimized.

Set v.s. Vertex Cover

(WEIGHTED) VERTEX COVER

I: (weighted) graph G=(V,E)

(WEIGHTED) SET COVER

I: U=E |F| = |V| $S_u = \{(u,v) \mid (u,v) \in E \}$

Q: find $C \subseteq V$ s.t.

C covers E and

C is of min size (cost)

Q: find $C \subseteq F$ s.t.

C covers U and

C is of min size (cost)

Hence, all WSC, SC, and WVC problems are strongly NP-complete as generalizations of VC

Set v.s. Vertex Cover

 f_u = frequency of an element $u \in U = \#$ of S_i 's element u belongs to $f = \max_{u \in U} \{ f_u \}$ = frequency of the most frequent element

```
If f=2 (and w(S<sub>i</sub>) =1) then (W)SC reduces to (W)VC: G=(V,E), V=F, E=\{(u,v) \mid S_u \cap S_v \neq 0\}
```

There are approximation algorithms for WSC, and hence, for SC, WVC and VC, of ratios:

- O(log n) (n: the size of the universe U)
- f

(W) VERTEX COVER: f =2

A natural greedy idea: at each step choose the node with the max degree

Greedy-best-node

```
C := \emptyset; while E \neq \emptyset do { choose the vertex u \in V with the largest degree; (break ties arbitrarily) delete u and its incident edges from G; Add u to C }
```

A counterexample for Greedy-best-node

In fact, Greedy-best-node is an O(log n)-approximation algorithm

Greedy-any-node

```
C := Ø;
while E ≠ Ø do
{ choose arbitrarily a vertex u ∈ V;
  delete u and its incident edges from G;
  Add u to C }
```

What is the approximation ratio this algorithm?

Greedy-any-edge

```
\label{eq:continuous} \begin{split} C := \varnothing \;; \\ \text{while } E \neq \varnothing \; \text{do} \\ \{ & \text{choose arbitrarily an edge } (u,v) \in E \;; \\ & \text{delete u and v and their incident edges from G;} \\ & \text{Add u and v to C;} \; \} \end{split}
```

This is a 2-approximation algorithm

Greedy-any-edge is a 2-approximation algorithm Proof:

a) C is a VC

Greedy-any-edge T loops until $E = \emptyset$, therefore each edge is covered by C.

b) 2-approximation ratio

- Let A be the set of edges selected by Greedy-any-edge
- Each selected edge adds two vertices to C ⇒ |C| = 2 |A|
- No two edges in A share a vertex (A is a maximal matching) (edges incident to the endpoints of a selected edge are removed)
- To cover the edges in A, each vertex cover (and the optimal one)
 must contain one of their endpoints ⇒ |A| ≤ OPT
- Thus, $|C| = 2 |A| \le 2 \text{ OPT} \Rightarrow |C| / \text{OPT} \le 2$

The ratio 2 of Greedy-any-edge is tight

Counterexample:

$$C = 2n$$

$$OPT = n$$

$$C/OPT = 2n/n = 2$$

Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm?

We know a lower bound of 1.36 on the approximation factor for VC, i.e.

Unless P=NP, VC can not be approximated with a ratio smaller than 1.36

Weighted Vertex Cover (WVC)

Find a minimum weight subset C ⊆ V covering all edges of G

weight = 9

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex $i: \sum_{e=(i,j)} p_e \le w_i$

Claim. For any vertex cover S and any fair prices p_e : $\sum_e p_e \le w(S)$.

Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$
each edge e covered by sum fairness inequalities at least one node in S for each node in S

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \leq \sum_{i \in V} \sum_{e = (i,j)} p_e = 2 \sum_{e \in E} p_e \leq 2w(S^*). \quad \blacksquare$$
 all nodes in S are tight $S \subseteq V$, each edge counted twice fairness lemma prices ≥ 0

Tightness?

ΕΙΣΟΔΟΣ: Σύνολο U, η στοιχείων και m υποσύνολα $S_1, S_2, ..., S_m \subseteq U$

ΕΞΟΔΟΣ: Ο ελάχιστος αριθμός υποσυνόλων που καλύπτουν το U

Παράδειγμα:

- U: σύνολο η πόλεων
- Τοποθέτηση σχολείων έτσι ώστε καμία πόλη να μην απέχει περισσότερα από 30 χιλ. από κάποιο σχολείο (να καλύπτονται όλες οι πόλεις)
- Υποσύνολα: Για κάθε πόλη i, S_i είναι το σύνολο των πόλεων που απέχουν μέχρι 30 χιλ. από αυτή
- Ποιος είναι ελάχιστος αριθμός σχολείων?

ΕΙΣΟΔΟΣ: Σύνολο U, n στοιχείων και m υποσύνολα $S_1, S_2, \dots, S_m \subseteq U$

ΕΞΟΔΟΣ: Ο ελάχιστος αριθμός υποσυνόλων που καλύπτουν το U

Σύνολο U (n=11) π.χ. πόλεις Υποσύνολα $S_1, S_2, ..., S_m$ πόλεις που απέχουν ≤ 30 χιλ.

Greedy idea?

Greedy idea:

While υπάρχουν ακάλυπτες πόλεις:

Διάλεξε το υποσύνολο (πόλη) με το μεγαλύτερο πλήθος ακάλυπτων στοιχείων

Is the greedy optimal?

Greedy idea:

While υπάρχουν ακάλυπτες πόλεις:

Διάλεξε το υποσύνολο (πόλη) με το μεγαλύτερο πλήθος ακάλυπτων στοιχείων

Greedy is NOT optimal

- 1. S_b
- 2. S_f
- 4. S_i

OPT=3

Greedy idea:

```
While υπάρχουν ακάλυπτες στοιχεία του U (πόλεις):
Διάλεξε το υποσύνολο (πόλη) με το μεγαλύτερο πλήθος ακάλυπτων στοιχείων
```

This greedy is NOT optimal, but how good is?

OPT: min # of subsets

 n_t : the # of uncovered elements after the t-th iteration of greedy $n_0 = n (=|U|)$

Key point: After any iteration t, there is subset covering at least n_t /OPT of uncovered elements n_t

Proof: the uncovered elements n_t are covered by the OPT subsets hence, there is subset covering at least n_t /OPT of them (otherwise, the OPT # of subsets doesn't cover all elements)

This greedy is NOT optimal, but how good is?

Key point: After any iteration t, there is subset covering at least n_t /OPT of uncovered elements n_t

Thus,
$$n_{t} \le n_{t-1} - \frac{n_{t-1}}{OPT} = n_{t-1} \left(1 - \frac{1}{OPT} \right)$$

and solving this recurrence with iterative substitutions we get

$$n_{t} \le n_{t-1} \left(1 - \frac{1}{OPT} \right) \le n_{t-2} \left(1 - \frac{1}{OPT} \right)^{2} \le n_{t-3} \left(1 - \frac{1}{OPT} \right)^{3} \le \dots \le n_{0} \left(1 - \frac{1}{OPT} \right)^{t}$$

that is
$$n_t \le n_0 \left(1 - \frac{1}{OPT}\right)^t$$

This greedy is NOT optimal, but how good is?

$$n_{t} \le n_{0} \left(1 - \frac{1}{OPT}\right)^{t} = n_{0} (1 - x)^{t}, \text{ where } x = \frac{1}{OPT}$$
but
$$(1 - x) < e^{-x}, x \ne 0$$

Hence,
$$n_t \le n_0 (e^{-1/OPT})^t = n_0 e^{-t/OPT}$$

that is, $n_t < ne^{-t/OPT}$, since $n_0 = n$

This greedy is NOT optimal, but how good is?

$$n_t < ne^{-t/OPT}$$

For
$$t = OPT \ln n$$

we get
$$ne^{-t/OPT} = ne^{-OPT \ln n/OPT} = ne^{-\ln n} = n\frac{1}{e^{\ln n}} = n\frac{1}{n} = 1$$
,

that is $n_t < 1$, and hence all elements are covered and the greedy returns a solution of C = t subsets (a subset is selected in each one of the t iterations)

Therefore,
$$\frac{t}{OPT} = \frac{C}{OPT} \le \ln n$$

This greedy returns a solution AT MOST In n times an optimal one

The O(logn) ratio of Greedy-best-node is tight

- Partition b-nodes into pairs, triples, quadtuples,...,(n-1)tuples
- Connect the nodes in each i-tuple above with a new a-node

$$L(n) = \sum_{j=2}^{n-1} \left| \frac{n}{j} \right| \le \sum_{j=1}^{n} \frac{n}{j} \le n \sum_{j=1}^{n} \frac{1}{j} = nO(\log n)$$

The O(logn) ratio of Greedy-best-node is tight

C =
$$\{a_7, a_6, a_5, a_4, a_4, a_2, a_1\}$$

OPT = $\{b_1, b_2, b_3, b_4, b_5, b_6\}$

$$\frac{C}{OPT} = \frac{L(n)}{n} = O(\log n)$$

Greedy-best-node is not a constant approximation algorithm

The O(logn) ratio of Greedy-best-set for SET COVER is also tight - why?

(Weighted) Set Cover

WEIGHTED SET COVER (WSC)

- l: a set U of n elements
 - a family $F=\{S_1, S_2, ..., S_m\}$ of subsets of U,
 - a weight w(S_i) for each set S_i
- Q: Find a minimum weight subset $C \subseteq F$ covering all elements of U,

i.e.
$$\bigcup_{S_i \in C} S_i = U$$
 and $W = \sum_{S_i \in C} w(S_i)$ is minimized

SET COVER (SC):
$$w(S_i) = 1, \forall S_i \in F$$
, that is $W = \sum_{S_i \in C} w(S_i) = |C|$

Find a minimum size subset $C \subseteq F$ covering all elements of U,

i.e.
$$\bigcup_{S_i \in C} S_i = U$$
 and $|C|$ is minimized

Weighted Set Cover (WSC)

Greedy-best-set

```
C := Ø;
while C ≠ U do
{ choose the best set S;
  remove S from F;
  C:= C U S;}
```

C: elements covered before iteration i S: Set chosen at iteration i

What means best set?

S covers |S-C| new elements

Covering those |S-C| elements costs w(S)

Covering each element
$$x \in S - C \cos \frac{w(S)}{|S - C|}$$

Best set: this with the smallest cost ratio $\frac{w(S)}{|S-C|} = p(x)$

Weighted Set Cover (WSC)

Greedy-best-set (cont.)

Let x_1, x_2, \dots, x_k be the order in which U's elements are covered S_1, S_2, \dots, S_i be the order in which F's sets are chosen Set S_i covers element x_k

Claim:
$$p(x_k) \le \frac{OPT}{n-k+1}$$

- $C = \bigcup_{j=1}^{i-1} S_j$: elements covered by iterations 1,2,...,i-1
- U-C: uncovered elements before iteration i
- $|U-C| \ge n-k+1$, since element x_k is covered in iteration i
- Those U-C elements are covered in the optimal solution with cost ≤ OPT
- There is an element $x \in U-C$ of $cost \le \frac{OPT}{|U-C|} \le \frac{OPT}{n-k+1}$

Weighted Set Cover (WSC)

Greedy-best-set (cont.)

Claim:
$$p(x_k) \le \frac{OPT}{n-k+1}$$

- There is a set $S_{i, S_{i+1, S_{i+2, ...}}} S_{i+2, ...}$ of cost ratio $\leq \frac{OPT}{|U-C|} \leq \frac{OPT}{n-k+1}$
- Among them the set S_i has the smallest cost ratio and covers x_k
- that is $p(x_k) \le \frac{OPT}{n-k+1}$ q.e.d.

$$W = \sum_{k=1}^{n} p(x_k) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = OPT \sum_{k=1}^{n} \frac{1}{k} = OPT \cdot H_n = O(\log n)OPT$$

Weighted Set Cover (WSC)

Tightness

The greedy algorithm outputs the n singleton sets with total cost

$$W = \frac{1}{n} + \frac{1}{n-1} + \dots + 1 = H_n$$

The optimal cover takes only the other set of cost 1+e

Travelling Salesman Problem (TSP)

There is a 2-approximation algorithm for Δ -TSP

Find a minimum spanning tree, T, of G, of cost C(T)

Let H* be an optimal tour of cost C(H*)

Let e be an edge of H* and T' be the rest of H* (this is a chain/tree)

$$C(H^*) = w(e) + C(T') \ge w(e) + C(T) \ge C(T) \Rightarrow C(T) \le C(H^*)$$

Double the edges of T and let T" be the obtained (multi)graph

All vertices of T" are of even degree

Find an Euler cycle, W, in T"

Euler cycle W: 1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

W traverses each edge of T twice: $C(W) = 2 C(T) \le 2 C(H^*)$

Find a tour H by shortcutting W:

H: 1, 2, 3, 2, 4, 6, 5, 7, $\cancel{5}$, $\cancel{6}$, 8, 10, 9, 1 $\cancel{0}$, $\cancel{8}$, $\cancel{6}$, $\cancel{4}$, $\cancel{2}$, 1

 $C(H) \le C(W)$, because of the triangle inequality

 $C(H) \le C(W) \le 2 C(H^*) \Rightarrow C(H) / C(H^*) \le 2$

QUESTION: What is the complexity of this algorithm?

Δ -TSP: Tightness of ρ =2

Example

Complete graph K_n

Red edges: w =2

Other edges: w=1

Optimal tour

$$C(H^*) = n$$

Δ -TSP: Tightness of ρ =2

Minimum MST

Solution

$$C(H) = (n-2)*2 + 2*1 = 2n-2$$

Hence, C(H) / C(H*) =
$$(2n-2) / n \rightarrow 2$$

Matching problems

Matching in a graph G=(V,E):

A subset M ⊆E of edges s.t. no two edges in M have a vertex in common.

- Maximal: it is not a subset of another matching,
 i.e. it can not be extended
- Maximum: a matching of maximum cardinality, |M|,
 i.e. a maximum maximal matching
- Perfect: a matching of cardinality |M|=n/2
 (it is defined only for graphs with even # of vertices)

Matching problems

Examples

Matching problems

Matching problems

- Maximal matching: find a matching where no more edges can be added
- Maximum matching: find a matching with a maximum number of edges
- Perfect matching: find a matching where every vertex is matched (if |V| is even and if one exists)
- Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight
- Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All matching problems are polynomial, even their weighted versions

There is a 1.5-approximation algorithm for Δ -TSP [Chistofides 1976]

Find a minimum spanning tree, T, of G, of cost C(T)

Let H* be an optimal tour of cost C(H*)

Let e be an edge of H* and T' be the rest of H* (this is a chain/tree)

$$C(H^*) = w(e) + C(T') \ge w(e) + C(T) \ge C(T) \Rightarrow C(T) \le C(H^*)$$

Find the set of vertices of T of odd degree (S)

S contains an even number of vertices – why?

Consider the graph G_S induced by S

Find a minimum weight perfect matching, M, in G_S

Consider the odd degree vertices in S in the order that they appear in H*

Consider the red, M_1 , and the black, M_2 matchings between them

Then $C(H^*) \ge C(M_1) + C(M_2)$, by the triangle inequality

Also $C(H^*) \ge C(M_1) + C(M_2) \ge C(M) + C(M)$, since M is optimal

Hence, $C(M) \le C(H^*) / 2$

Add the edges of M to T and let T" be the obtained (multi)graph

All vertices of T" are of even degree

Find an Euler cycle, W, in T"

Euler cycle W: 1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

W traverses each edge of T once:

$$C(W) = C(T) + C(M) \le C(H^*) + C(H^*) / 2 = 1.5 C(H^*)$$

Find a tour H by shortcutting W:

H: 1, 2, 3, 6, 8, 10, 9, 7, 5, \cancel{p} , 4, $\cancel{2}$, 1

 $C(H) \le C(W)$, by of the triangle inequality

 $C(H) \le C(W) \le 1.5 C(H^*) \Rightarrow C(H) / C(H^*) \le 1.5$

QUESTION: What is the complexity of this algorithm?

Δ-TSP: Tightness of ρ =1.5

 $C(H) / C(H^*) \rightarrow 3/2$