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P vs NP

NP NP NP

P / |
P=NP

NP - Gmplste

NP - complete

/

The common belief Not possible Nobody believes this
(Ladner’s theorem)

No O(poly) algorithm is known for any a®-complete problem
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P vs NP

Hard problems (NP-complete) Easy problems (in P)
3SAT 2SAT, HORN SAT
TRAVELING SALESMAN PROBLEM | MINIMUM SPANNING TREE
LONGEST PATH SHORTEST PATH
3D MATCHING BIPARTITE MATCHING
KNAPSACK UNARY KNAPSACK
INDEPENDENT SET INDEPENDENT SET on trees
INTEGER LINEAR PROGRAMMING LINEAR PROGRAMMING
RUDRATA PATH EULER PATH
BALANCED CUT MINIMUM CUT

No O(poly) algorithm is known for any i\ -complete problem
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Coping with NP-complete problems
1. Small instances: an O(exp) algorithm may be satisfactory
2. Special cases: may be O(poly), e.g. 2-SAT

3. Exponential algorithms
Pseudo-polynomial algorithms, Dynamic Programming,
Backtracking, Branch-and-Bound

4. Approximation algorithms : O(poly) algorithms that produce
solutions within a guaranteed factor away from the optimum solution

5. Randomized algorithms: O(poly) algorithms
Monte Carlo: Deterministic complexity; whp a correct solution
Las Vegas: Expected complexity; always a correct solution

5. Heuristic algorithms: any O(poly) approach without a formal
guarantee of performance but valid in practical situations
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Approximation algorithms

O(poly) algorithms obtaining a solution of cost C
within a factor p of the optimum cost OPT Max Min

OPT
Minimization problems: C/OPT<p=1+¢, €>0

Maximization problems: C/OPT<p=1-¢,€>0

|OPT —C|/ OPT <¢, €¢>0

. relative error (¢ x 100) %
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Approximations:
Good, better, best and more ...

Non - constant approximation : C/OPT < f(n)
Constant (p-)approximation : C/OPT < p (a constant, e.g. 3/2)

Polynomial Time Approximation Schemes (PTAS)
= C/OPT< 1+¢, forany €>0
= O(poly (|l]) ), O(exp (1/e)), e.g. O(n%*)

Fully Polynomial Time Approximation Schemes (FPTAS)
= C/OPT< 1+¢, forany >0
= O(poly (JI]) ), O(poly (1/€)) e.g. O((1/€)°n3)

Additive approximation
= C<OPT+ f(n) or C<OPT+ Kk (aconstant), e.g. C<OPT+1!
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Vertex Cover
Set Cover
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(Weighted) Set Cover

WEIGHTED SET COVER (WSC)
|: a set U of n elements

a family F={S,, S,, ...,S,,} of subsets of U,
a weight w(S;) for each set S,

Q: Find a minimum weight subset C < F covering all elements of U,
le. | JS,=U and W = > w(S,) is minimized

e S,eC

SET COVER (SC): W(S;)=1,VS, e F, thatis W =) w(S,)=C|

S;eC

Find a minimum size subset C — F covering all elements of U,
6. | JS,=U and|C| is minimized

S, eC

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 02 - APPROX



(Weighted) Vertex Cover

WEIGHTED VERTEX COVER (WVQC)
|: agraph G=(V, E),
a weight w(u) for each vertex ueV
Q: Find a minimum weight subset C — V covering all edges of G
l.e. for every edge (u,v) € Eeitherue CorveC
and W =% w(u) is minimized

ueC

VERTEX COVER (VC): w(u)=1,VueV=W=> wu)=/C|

veC

Find a minimum size subset C — F covering all elements of U,
i.e. for every edge (u,v) € E eitheru € C or v e C and |C| is minimized.
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Set v.s. Vertex Cover

(WEIGHTED) VERTEX COVER (WEIGHTED) SET COVER
I: (weighted) graph G=(V,E) I: U=E

IF| = |VI

Sy={(u,v) [ (uv) e E}

Q: find C c V s.t. Q: find C c F s.t.
C covers E and C covers U and
C is of min size (cost) C is of min size (cost)

Hence, all WSC, SC, and WVC problems are strongly NP-complete
as generalizations of VC
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Set v.s. Vertex Cover

f, = frequency of an elementu € U = # of S;'s element u belongs to
f=max, cy{f,} = frequency of the most frequent element

If f=2 (and w(S;) =1) then (W)SC reduces to (W)VC:
G=(V,E), V=F,E={(u,v)| S,NS,#0}

There are approximation algorithms for WSC,
and hence, for SC, WVC and VC,
of ratios:
= O(log n) (n: the size of the universe U)
= f

(W) VERTEX COVER: f =2
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Vertex Cover (VC)

A natural greedy idea: at each step choose the node with the max degree

Greedy-best-node

C=0;

while E = & do

{ choose the vertex u € V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
Add uto C}

A counterexample for Greedy-best-node

O GQGG::CO
O O OI—O

A graph instance A vertex cover of size 5 A vertex coverol size d
obtained by the greedy optimal solutien!!
algorithm.

In fact, Greedy-best-node is an O(log n)-approximation algorithm
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Vertex Cover (VC)

Greedy-any-node

C=0;

while E # & do

{ choose arbitrarily a vertex u € V;
delete u and its incident edges from G;
Add uto C}

What is the approximation ratio this algorithm ?
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Vertex Cover (VC)

Greedy-any-edge

C=09;

while E = & do

{ choose arbitrarily an edge (u,v) € E;
delete u and v and their incident edges from G;
Adduandv to C; }

This is a 2-approximation algorithm
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Vertex Cover (VC)

Greedy-any-edge is a 2-approximation algorithm

Proof:

a) CisaVC
Greedy-any-edge T loops until E =,
therefore each edge is covered by C.

b) 2-approximation ratio

Let A be the set of edges selected by Greedy-any-edge
Each selected edge adds two verticesto C = |C| = 2 |A|
No two edges in A share a vertex (A is a maximal matching)

(edges incident to the endpoints of a selected edge are
removed)

To cover the edges in A, each vertex cover

(and the optimal one)

must contain one of their endpoints = |A| < OPT
Thus, |C|=2|A] £ 2 OPT = |C|/OPT < 2
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Vertex Cover (VC)

The ratio 2 of Greedy-any-edge is tight

Counterexample:

G

C=2n
OPT =n

C/IOPT =2n/n=2
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Vertex Cover (VC)

Greedy-any-edge is almost the best known for VC
Is there a better approximation algorithm ?
We know a lower bound of 1.36 on the approximation factor for VC,

l.e.
Unless P=NP, VC can not be approximated with a ratio smaller than 1.36

2—0(1/+/logn
1.36 (1/ylogn)
| » |
| |
BEST KNOWN BEST KNOWN
LOWER BOUND APPROXIMATION RATIO
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Weighted Vertex Cover (WVC)

Find a minimum weight subset C — V covering all edges of G

Q 2 4
é 9 2

weight=2+2+4 weight = 9
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ALMA

WVC - Pricing method

Pricing method. Each edge must be covered by some vertex i. Edge e

pays price p, = O to use vertex i.

Fairness. Edges incident to vertex i should pay < w; in total.

®

foreach vertexi: Y p, =W
e=(1.])

@

@

O

Claim. For any vertex cover S and any fair prices p;: 3. p. = w(5S).

Proof.
E P, = E 2 Do = 2 W;
ecE €S e=(1.)) [ ES
cach edge € covered by sum fairness inequalities
at least one node in S for each node in S

19



WVC - Pricing method
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WVC - Pricing method

(a)
a: tight
price of edge a-b ( 4 4
A 3 o N\ 3 AN
vertex weight
0 0 0 2
O € E—E—CG
b: tight ¢ d b tight ¢ d: tight

(c) (d)
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WVC - Pricing method

Theorem. Pricing method is a 2-approximation.
Pf.

«» Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

» Let S = set of all tight nodes upon termination of algorithm. Sis a
vertex cover: if some edge i-j is uncovered, then neither i nor j is

tight. But then while loop would not terminate.

« Let S* be optimal vertex cover. We show w(S) < 2w(5%).

wiSl=3Sw =3 3Sp.= 3 Sp=23p = 2w(§.

i€S iI€S e=(i)) ISV e=(i.)) eSE ]
all nodes in S are tight SCV, each edge counted twice  fairness lemma
prices=0
Tightness ?
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Set Cover

EI2OAQOX: 20voAo U, n oToIx€iwv KOl m UTTOOUVOAQ S4,S,,...,S,, cU
E=OAO2: O eAaxioToC apIOUOC UTTOOUVOAWYV TTOU KaAUTITOUV TO U

MNapadelyua:

« U: ouvoAo n TTOAswv

e TomoBETNON OXOAEIWY £TO1 WOTE KAMIA TTOAN VA PNV ATTEXEI
TeEPICOOTEPA ATTO 30 XIA. ATTO KATTOIO OXOAEIO
(va KQAUTTTOVTOI OAEG OI TTOAEIG)

* YTmroouvoAa: la kaBe 1mOAn i, S; €ival To CUVOAO TWV TTOAEWYV TTOU
atmréxouv hEXPI 30 XIA. atrd auTh

» [loiog €ival EAGXIOTOGC ApPIOPOC OXOAEIWV?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 02 - APPROX 23



Set Cover

EI2OAQOX: 20voAo U, n oToIxeEiwv Kal m UTToOUVOAQ S4,S,,...,S,, cU
E=OAOX: O eAaxio0TOC ApIBUOC UTTOOUVOAWY TTOU KaAUTTTOUV TO U

e C

eb
(e

k, ‘g
i. ©» h
®]
2Uvoho U (n=11) YTToouUvoAa S4,S,,...,5,,
TT.X. TTOAEIC TTOAEIG TTou aTtrExouv < 30 XIA.

Greedy idea?
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Set Cover
Greedy idea:

While undpyxouv okKAAUTNITEC NOAELC:

ALdAefe 1O UnTOOUVOAO (mOAnN) upe 1o ueyaAUtepo nANOoC
AKAAUTITOV OTOLlXE WV

1. S,

2. S (or Sy)
3. S,
4. S,

C=4 (# ouvoAwv)

OPT=?

Is the greedy optimal?
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. Set Cover
Greedy idea:

While undpyxouv okKAAUTNITEC NOAELC:

ALdAefe 1O UnTOOUVOAO (mOAnN) upe 1o ueyaAUtepo nANOoC
AKAAUTITOV OTOLlXE WV

Greedy is NOT optimal
B 1.S
- Op
2. S;
4. S,

OPT=3
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Set Cover
Greedy idea:

While undpyxouv ak&Auntec otolxela tou U (mmdAeLq) :

ALdAefe 1O UNTOOUVOAO (mOAnN) upe 10 ueyaAUtepo TTANOOC
AKAAUTITOV OCTOLlXElwv

This greedy is NOT optimal, but how good is ?

OPT: min # of subsets
n, . the # of uncovered elements after the t-th iteration of greedy
N =n(=[U])

Key point: After any iteration t, there is subset covering at least n,/OPT of
uncovered elements n;
Proof. the uncovered elements n, are covered by the OPT subsets
hence, there is subset covering at least n,/OPT of them
(otherwise, the OPT # of subsets doesn't cover all elements)
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Set Cover
This greedy is NOT optimal, but how good is ?

Key point: After any iteration t, there is subset covering at least n,/OPT of
uncovered elements n,

n,_, 1
Thus, 1, <00 =0l 1= pr

and solving this recurrence with iterative substitutions we get

1 1Y 1Y 1Y
ntgntl(l—mjgntz(l—mj Snt3(1—mj SSnO(l_O})T’j

| 1Y
that is n, gno l—ﬁ
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Set Cover
This greedy is NOT optimal, but how good is ?

t
ntﬁno(l—ﬁj :no(l—x)t, WhGI‘GXZ%

but| (1-x)<e ™, x#0

-1/OPT —t/OPT

<nyfe"")
Hence, n, <n,le =n,e

thatis, n, <ne™'?”’, since n,=n
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Set Cover

This greedy is NOT optimal, but how good is ?

—t/OPT
n, <ne "’

For t = OPT Inn

—t/OPT —OPT Inn/OPT -1 1 1
= n” =ne "=n——=n—=1,

e n
thatisn, <1, and hence all elements are covered

we get ne ne

and the greedy returns a solution of C = ¢ subsets

(a subset 1s selected in each one of the 7 iterations)

t C
OPT OPT

This greedy returns a solution AT MOST In n times an optimal one

<Inn

Therefore,
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Vertex Cover (VC)

The O(logn) ratio of Greedy-best-node is tight
(n)

L(n)

— Partition b-nodes into pairs, triples, quadtuples,...,(n-1)tuples

— Connect the nodes in each i-tuple above with a new a-node

L(n) = ZIZBJ < Zn:Z < nZl — nO(logn)

=1 J j=1J
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Vertex Cover (VC)

The O(logn) ratio of Greedy-best-node is tight

C ={as,as,as,a4,24,2z,21}
OPT = {b,,b,,b;,b,,bs,be}

C L(n)
OPT n

n | 6 10 30 100 1000
CIOPT | 217 26 367 48 7

= O(logn)

Greedy-best-node is not a constant approximation algorithm

The O(logn) ratio of Greedy-best-set for SET COVER s also tight - why?
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(Weighted) Set Cover

WEIGHTED SET COVER (WSC)
|: a set U of n elements

a family F={S,, S,, ...,S,,} of subsets of U,
a weight w(S;) for each set S,

Q: Find a minimum weight subset C < F covering all elements of U,
le. | JS,=U and W = > w(S,) is minimized

e S,eC

SET COVER (SC): W(S;)=1,VS, e F, thatis W =) w(S,)=C|

S;eC
Find a minimum size subset C — F covering all elements of U,
6. | JS,=U and|C| is minimized

S, eC
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Weighted Set Cover (WSC)

Greedy-best-set

C=0;
while C # U do C: elements covered before iteration i
{ choose the best set S; S: Set chosen at iteration i

remove S from F;
C=CUS;}

What means best set ?
S covers |S-C| new elements
Covering those |S-C| elements costs w(S)

w(S)
| §-C]|
w(S

Covering each element xe.§—C costs

|S_2,|=p<x>
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Weighted Set Cover (WSC)

Greedy-best-set (cont.)

Let x; x, [..X, .].x, be the order in which U’s elements are covered
S; S, .. ;| ... Dbethe orderin which F’s sets are chosen
Set S; covers element x,

OPT
n—k+1

i—1
C = US],: elements covered by iterations 1,2,...,i-1

J=1

Claim: p(x,)<

« U-C: uncovered elements before iteration i
« |U-C| 2n-k+1, since element x, is covered in iteration i

 Those U-C elements are covered in the optimal solution
with cost < OPT
OPT OPT

« There is an element x € U-C of cost < <
U-C| n—-k+1
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Weighted Set Cover (WSC)

Greedy-best-set (cont.)

OPT
Claim:  p(x,) <
n—k+1
OPT OPT
« Thereisaset S; S;;4 Si;» ... of costratio < <
T U-C| n—-k+1

 Among them the set S, has the smallest cost ratio and covers x,

OPT
k+1

e thatis p(x k)<n g.e.d.

"]
W= Zp(xk sz _k+1_OPTZ;:OPT-Hn=0(1ogn)0PT
k=1 k=1 =1
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Weighted Set Cover (WSC)

Tightness
N AD— N
\L.. _i ) l..' b I‘.' B “ . / l+¢€
v o gV

1/n 1/(n-1) 1

The greedy algorithm outputs the n singleton sets with total cost

1 1
W= — +
n n-—1

++l:Hn

The optimal cover takes only the other set of cost /+e
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Travelling Salesman Problem
(TSP)
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A-TSP: p=2

There is a 2-approximation algorithm for A-TSP

Find a minimum spanning tree, T, of G, of cost C(T)

lo 5 /
Q O 2
4 6
@)
3 8 10

Let H* be an optimal tour of cost C(H*)
Let e be an edge of H* and T' be the rest of H* (this is a chain/tree)

C(H*) = w(e) + C(T") >wf(e) + C(T) > C(T) = C(T) < C(H*)
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Sl
o))

Double the edges of T and let T” be the obtained (multi)graph
All vertices of T” are of even degree
Find an Euler cycle, W, inT”

Euler cycle W: 1,2,3,2,4,6,5,7,5,6,8,10,9,10,8,6,4, 2,1
W traverses each edge of T twice: C(W) =2 C(T) <2 C(H¥)
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Find a tour H by shortcutting W:

H: 1,2,3,2,4,6,5,7,5,8,8,10,9,10,8,6,4, 2, 1
C(H) < C(W), because of the triangle inequality
C(HH<CW)<2C(H*) = C(H)/C(H*)<2

QUESTION: What is the complexity of this algorithm ?
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A-TSP: Tightness of p=2

Example

Complete graph K,
Red edges: w =2
Other edges: w=1

Optimal tour

C(H*) =n

]
\
\ f
\ y
\ J
\ I}
I. .
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A-TSP: Tightness of p=2

Minimum MST Solution
@3
Ny A
§ o 2/ N\ \4
O ®

C(H) = (n-2)*2 + 2*1 = 2n-2

Hence, C(H) / C(H*) = (2n-2) / n> 2
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Matching problems

Matching in a graph G=(V,E):
A subset M cE of edges s.t. no two edges in M have a vertex in common.

= Maximal: it is not a subset of another matching,
l.e. it can not be extended

= Maximum: a matching of maximum cardinality, |M|,
l.e. a maximum maximal matching

= Perfect: a matching of cardinality |M|=n/2
(it is defined only for graphs with even # of vertices)
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Matching problems

Examples

a matching in a
bipartite graph

general graph
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Matching problems

Matching problems

« Maximal matching: find a matching where no more edges can be added
« Maximum matching: find a matching with a maximum number of edges
« Perfect matching: find a matching where every vertex is matched
(if V| is even and if one exists)
- Maximum weight matching: given a weighted graph, find a matching
with maximum possible total weight
«  Minimum weight perfect matching: given a weighted graph, find a
perfect matching with minimum cost

All matching problems are polynomial, even their weighted versions
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A-TSP: p=1.5

There is a 1.5-approximation algorithm for A-TSP [Chistofides 1976]

Find a minimum spanning tree, T, of G, of cost C(T)

lo 5 /
Q O 2
4 6
@)
3 8 10

Let H* be an optimal tour of cost C(H*)
Let e be an edge of H* and T' be the rest of H* (this is a chain/tree)

C(H*) =w(e) + C(T') >w(e) + C(T)> C(T) = C(T) < C(H%)
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A-TSP: p=1.5

Find the set of vertices of T of odd degree (S)

S contains an even number of vertices — why ?

Consider the graph Gs induced by S

Find a minimum weight perfect matching, M, in Gg
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A-TSP: p=1.5

odd degree vertices

H*

Consider the odd degree vertices in S in the order that they appear in H*
Consider the red, M,, and the black, M, matchings between them

Then C(H*) =2 C(M,) + C(M,), by the triangle inequality

Also C(H*) =2 C(M,) + C(M;) =2 C(M) + C(M), since M is optimal

Hence, C(M) s C(H*) / 2
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A-TSP: p=1.5

Add the edges of Mto T and let T” be the obtained (multi)graph
All vertices of T” are of even degree
Find an Euler cycle, W, inT”
Euler cycle W: 1,2,3,6,8,10,9,7,5,6,4,2,1
W traverses each edge of T once:

C(W) = C(T) + C(M) < C(H*) + C(H*)/ 2 = 1.5 C(H*)
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A-TSP: p=1.5

3 8 10 3

Find a tour H by shortcutting W:

H: 1,2,3,6,8,10,9,7,5,8 4, 2, 1

C(H) < C(W), by of the triangle inequality
C(H <C(W)<15C(H*) = C(H)/C(H*)<1.5

QUESTION: What is the complexity of this algorithm ?
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A-TSP: Tightness of p=1.5

bl b2 b3 bn—l bn
Q
1/ \1
O
a2 ]_—?3 dn-1

T,S,MT' H
C(H)=n+n+n=3n

b1 bz b3 I'-')n 1 I:)n

O O O O O H*
/ \C(H)=n+(n-1) +2 =2n+1
a1 a2 as dn-1 dn dn+1

C(H) / C(H*) > 3/2
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