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Approximations: 
Good, better, best and more …

Non - constant approximation :  C/OPT £ f(n)

Constant (ρ-)approximation : C/OPT £ ρ (a constant, e.g. 3/2)

Polynomial Time Approximation Schemes (PTAS) 
§ C/OPT £ 1 + ε,  for any  ε >0
§ O(poly (|I|) ),  O(exp (1/ε) ),    e.g.  O( n3/ε ) 

Fully Polynomial Time Approximation Schemes (FPTAS) 
§ C/OPT £ 1 + ε,  for any ε >0
§ O(poly (|I|) ),  O(poly (1/ ε) )  !!!   e.g.  O( (1/ε)2n3 ) 

Additive approximation 
§ C £ OPT+  f(n)   or  C £ OPT+ k  (a constant), e.g. C £ OPT+1 !



Partitions of weighted sets
SUBSET SUM
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n, positive integer W

Q: is there A Í S  s.t.           = W?

PARTITION
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n

Q:  is there A Í S  s.t ?

0-1 KNAPSACK
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n, 

values vi , i=1,…,n,  positive integer W

Q: find A Í S  s.t.                   and            is maximized.
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Partitions of weighted sets
BIN PACKING
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n, positive integer W 

Q: find a partition of S into                    s.t.                 
and m is minimized

SCHEDULING  (P||Cmax ) 
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n, positive integer m 

Q: find a partition of S into                    s.t.                       is minimized
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Knapsack problems

§ We are given a knapsack with maximum capacity W, 
and a set S={1,2,…,n} of  n items

§ Each item i has  weight wi and value vi

(all wi, vi and W are integers)

Problem: How to pack the knapsack to achieve maximum total 
value of packed items?
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Knapsack problems

W = 20
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Knapsack problems
Three (basic) versions of the problem:

1. Fractional knapsack 
Items are divisible: take any fraction of an item
O(poly)  by a greedy algorithm

2. 0-1 knapsack 
Items are indivisible: take an item or not
NP-complete,  O(nW), by a  DP algorithm 

3. Integer knapsack 
Multiple copies of indivisible items: 

take any number of copies of an  item 
NP-complete,  O(nW), by a  DP algorithm 
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Knapsack problems

Fractional  knapsack 

0-1 Knapsack

Integer Knapsack
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Fractional Knapsack

Greedy algorithm:
take the item with the maximum value per unit (vi/wi) among the 
remaining items, as much as the capacity of  the knapsack allows 

Note: knapsack is loaded by the whole items, but  the last  

Q:  Prove that the greedy algorithm is optimal

Complexity: O(n logn) – why?
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Fractional vs 0-1 Knapsack

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 



0-1 Knapsack vs SUBSET SUM  
0-1 KNAPSACK (DECISION) 
I: objects S={1,…,n}, positive integer weights  wi , i=1,…,n, 

values vi , i=1,…,n,  positive integer W, positive integer V
Q:  Is there A Í S  s.t.                   and                . 

Let an instance of  0-1 KNAPSACK where :  wi = vi ,  1£ i £ n,  and  W = V
Then,  the Question becomes: 
Q: Is  there    A Í S  s.t.                   and                 ,  that is 

Q: Is there  A Í S  s.t.                   and                 ,  that is 

Q: Is there  A Í S  s.t.              ,    that is SUMSET-SUM

Hence,  0-1 KNAPSACK  is  a generalization of SUBSET SUM
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0-1 Knapsack 

Brute-force approach 

§ there are 2n possible combinations of n  items
§ Go through all combinations and find the one with the most total 

value and with total weight less or equal to W
§ Running time:  O(n2n)

Can we do better? 
§ Yes, with a  DP  algorithm
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DP for 0-1 Knapsack
Subproblem:  
V[k,w] :  the subproblem with  Sk={1, 2, …, k} items  and capacity  w

Item k either can be in the optimal solution to  V[k,w] or not.

• First case: wk > w.
§ item k can not be in the optimal solution 
§ V[k,w] = V[k-1, w] 

• Second case: wk ≤ w.
§ item k can be in the optimal solution 
§ the best solution for  V[k,w]  is one of the next  two:

– the best  solution for  V[k-1, w] or
– the best  solution for  V[k-1, w-wk]  plus the value of  item k:

V[k-1, w-wk] +vk
§ V[k,w] = max { V[k-1, w], V[k-1, w-wk] +vk }
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DP for 0-1 Knapsack

Recursive Formula  
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DP for 0-1 Knapsack
0-1 Knapsack Value (w,v,W)
{
for w := 0 to W do V[0,w] := 0; 
for k = 0 to n do 
{ V[k,0] := 0

for w := 1 to W do 
if wk ≤ w // item i can be in the solution
then  V[k,w]:= max { vk + V[k-1,w-wk], V[k-1,w]} 
else V[k,w]:= V[k-1,w]  } // wk > w

}

Complexity O(nW) 
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Another DP for 0-1 Knapsack
Previous  Algorithm:

OPT = V[n,W]  can be found  in O(nW) time

Another  Algorithm:

OPT  can be found in  O(n OPT), that is  O(n2 vmax)  time  (why?)

Subproblem:  
C[k,v] : the minimum capacity yielding a value v using items 1,2,…,k 

OPT = maximum v for which  C[n,v]   ≤  W 
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Another DP algorithm for 0-1 knapsack  
Subproblem: 
C[k,v]:  the smallest capacity yielding a value v using items 1,2,…,k 

C[k,0] = 0, k=1,2,…,n

The optimal solution to C[k,v]  either contains item k or not.
§ First case: vk > v.

– item k can not  be part of the solution 
• it yields to a total value  > v, which is unacceptable

– C[k,v] = C[k-1, v] 

§ Second case: vk ≤ v.
– item k can be in the solution
– the best solution for  C[k,v]  is one of the two:

• the best  solution for  C[k-1, v]   or
• the best  solution for  C[k-1, v-vk]  plus the weight  of item k 

– C[k,v] = min {C[k-1,v],  C[k-1, v-vk] +wk} 
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Another DP algorithm for 0-1 knapsack  
What values C[k,v] we have to calculate?

Let OPT be the (value of the)  optimal solution 

vmax =  maxk { vk }      OPT ≤ n vmax

Calculate the values C[k,v],   0 ≤ k≤ n,  0 ≤ v ≤ n vmax

0 1 2 3 … … n  vmax

1 0

2 0

3 0

. 0

. 0

n 0

k v
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Another DP algorithm for 0-1 knapsack  
Which C[k,v]  corresponds to the optimal solution ?

OPT = maximum v for which  C[n, v]   ≤  W 

Complexity O(n2 vmax )

0 1 2 3 … … n vmax

1 0

2 0

3 0

. 0

. 0

n 0

k v
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A FPTAS for 0-1 KNAPSACK

Max Σi vixi = OPT (optimal value)
such that : Σi xiwi £ W 

and xi Î {0, 1},  0 £ i  £ n

There is an O(n2 vmax)  DP algorithm  for 0-1 KNAPSACK

Recall that  vmax = maxi {vi }   and   vmax £ OPT  £ nvmax
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A FPTAS for 0-1 KNAPSACK

SCALED PROBLEM 
Scale all items values by k,  i.e.  vj(k) = ëvj / kû

Algo-S
{  Solve the scaled problem by the last DP  algorithm;

Let S(k) Í {1,2,…,n} be the optimal solution to the scaled problem;
Return the value of this solution for the original problem; }
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Algo-S is a FPTAS for 0-1 KNAPSACK
Proof:   
Optimal solution of the original problem: S* Í {1,2,…,n}  of value OPT
Optimal solution of the scaled problem:  S(k) Í {1,2,…,n} 

of value OPT(k)  for the original problem 
* S(k) is of greater value than any solution (and  S*) for the scaled problem

A FPTAS for 0-1 KNAPSACK
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A FPTAS for 0-1 KNAPSACK

Proof (cont.):

Complexity
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Strong NP-completeness 
and pseudo-polynomial algorithms 

A problem Π is strongly NP-complete if 
§ it remains NP-complete even if any instance of length |I| is restricted to 

contain integers at most O(poly(|I|))   or
§ it remains NP-complete even if its instances are coded in unary

0-1 Knapsack  is NOT strongly NP-complete but it is NP-complete. 
There is an O(nW) algorithm; it is O(poly) if W is O(poly(|I|)) 

Let N(I) be the largest number appearing in an instance of a problem 
§ An algorithm is a pseudo-polynomial one if it is polynomial in |I| and N(I)
§ Unless P=NP, there is no pseudo-polynomial algorithm for strongly NP-

complete problems  (next  slide) 
§ For problems that are NP-complete, but not strongly NP-complete there 

is a pseudo-polynomial algorithm 
(usually a dynamic programming one)
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Strong NP-completeness
and pseudo-polynomial algorithms  

Let : I  be  an instance of a problem Π, of  size |I|
N(I) be  the largest  number in I 
p(n) be  a polynomial
Πp(n) be Π restricted to instances  for which N(I) ≤ p(|I|)

We say that Π is strongly NP-complete if Πp(n)  is NP-complete

Th. Unless P=NP, there is no pseudo-polynomial algorithm for  
a strongly NP-complete problem Π

Proof: 
Suppose that there exists such a pseudo-polynomial algorithm Q for Π
Q solves any instance of  Π in q( |I|, N(I) ) time;   q: a polynomial
Q solves Πp(n) in q( |I|, p(|I|) ) time,  that is  polynomial in |I|
P=NP !
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Strong NP-completeness and FPTASs
Let :
Π be a strongly NP-complete optimization problem  (its decision version) 
I  be  an instance of Π, of  size |I|
N(I) be  the largest  number in I 
p(n) be  a polynomial
All the values in the input and output of Π are integers
For any instance of Π it holds that  C* ≤ p( N(I) )
Th. Unless P=NP, there is no an FPTAS for Π 
Proof: 
• Suppose that there an FPTAS, F, for Π
• Apply this to Π with ε = 1 / ( p( N(I))  +1  ) 
• (|C*-C|)/C*≤ε => |C*-C| ≤ε C* = C* / ( p( N(I))  +1  ) < 1, since C* ≤ p( N(I) )
• F solves Π exactly !  (since all feasible solutions are integers) 
• F takes q( |I|,  1/e ) time;   q: polynomial, 

that is  q( |I|, p( N(I))  +1 ) ) time, a polynomial in both |I| and  N(I) !
• F is pseudo-polynomial algorithm for Π !
• P=NP !
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BIN PACKING 
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Approximations for BIN-PACKING

Alternative	instance	for	BIN-PACKING:
M=1,																											for																								.
Q:	Can	S	be	packed	into	B	bins		?

BIN-PACKING	is	(weakly)	NP-complete	since	PARTITION	is	a	special	case	
of		BIN-PACKING	for																	and																													

However,	we	know	that	BIN	PACKING	is	stronly NP-complete

Approximation	algorithms	for	BIN-PACKING:
• NEXT-FIT:																											(tight)
• FIRST-FIT:																																					(tight)						
• and	many	other	…

OPTm 7.1£
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Approximations for BIN-PACKING
Unless																					,		there	is	no																	-approximation	algorithm	for
BIN-PACKING

Proof:
Assume	that	there	is	an	algorithm	A	such	that																																				.
Run	A	for																										

If	m=2	then	PARTITION	has	answer	YES!
If	m	> 3	we	have	

So	OPT>2	and	thus,	PARTITION	has	answer	NO!
Hence,	we	have	an	O(poly)	algorithm	for	PARTITION,
That	is	P=NP,	a	contradiction.																											What	if	OPT	increases	with	n?
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APTAS for BIN-PACKING

An	Asymptotic	PTAS		(APTAS)	produces	a	(1+ε)-approximate	solution,
that	is,	for	each	ε>0,	there	is	N>0		such	that	the	APTAS	has	an	approximation	
ratio		1+ε for	all	instances	having	OPT≧N.

There	is	an	APTAS	for	BIN-PACKING.

Three		steps:
(1) Instances	with	fixed	number,	k,	of	items	sizes

optimal	in	O(poly|I|)
(2)			Instances	with	items	of	size	s															

(1+ε)-approximation	in	O(poly|I|)
(3) First-Fit	for	items	of	sizes

(1+2ε)OPT	+	1		approximation	in	O(poly|I|)	
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BIN-PACKING: fixed # of item sizes
Instance:																								,								:		#	of	items	of	size	j,																						.	(																							)

Consider	a	k-tuple																							,																								,																						.

:	min	#	of		bins	required	to	pack	those														items.

:	all	k-tuples	such	that																																												,																									,				

i.e.	the														items	can	be	packed	in	one	bin.
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BIN-PACKING: fixed # of item sizes

- Find	Q	in																time,		O(poly)		as	k	is	fixed.

- Fill	the	k-dimensional	table																																	.

- Recurrence	(DP):

- Return																																				in																			time.		
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BIN-PACKING: sizes at least ε
Round-Up

Round-Down

Pack									(fixed	number																						of	object	sizes	)
In																		time,		that	is																				.		

The	algorithm	returns	a	solution	OPT(								).
Return	this	packing	for		instance	I	(this	is	a	feasible	packing).

Sort	items	in	non-decreasing	order.
Partition	items	into																							groups	
each	of	them	having	at	most		
items.
(Two	groups	may	contain	items	of	the
same	size.)
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Analysis:

1) OPT(I)	³ n	ε,				standard	lower	bound

2)		OPT	(Idown )	£ OPT(I) ,		all	items		have	smaller	sizes	

3)	 OPT(	Idown )		is	also	a	packing	for		Iup,		but	for	Q	largest	items.

Hence,		

Since,			OPT(I)	³ n	ε and																											we		get		Q	£ ε	OPT

Therefore:	

BIN-PACKING: sizes at least ε
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APTAS for BIN-PACKING

I:	original	instance	of	the	problem.

1. Ignore	items	of	sizes																			(instance	I’)
2. Construct	instance	Iup’

3. Find	an	optimal	packing	for	this	instance		OPT(Iup’	)
4. Return		this	packing	for	original	items	in	I’
5. Pack	items	of	sizes																	using	First-Fit	on	this	packing.	
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APTAS for BIN-PACKING

Let	M	the	total	number	of	bins	used	after	First-Fit.
• If	no		additional	bins	are	needed.

• If	additional	bins	are	needed.
All,	but	the	last,	bins	are	full	to	at	least	1-ε.
Thus,	

,		 2/1  £efor
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