

Fall 2016

Ioannis Milis

Approximation Algorithms PTASs and FPTASs

Approximations: Good, better, best and more ...

Non - constant approximation : $C/OPT \leq f(n)$

Constant (ρ -)approximation : C/OPT $\leq \rho$ (a constant, e.g. 3/2)

Polynomial Time Approximation Schemes (PTAS)

- C/OPT $\leq 1 + \epsilon$, for any $\epsilon > 0$
- O(poly (|||)), O(exp (1/ε)), e.g. O(n^{3/ε})

Fully Polynomial Time Approximation Schemes (FPTAS)

- C/OPT $\leq 1 + \epsilon$, for any $\epsilon > 0$
- O(poly (||)), O(poly $(1/\epsilon)$) !!! e.g. O($(1/\epsilon)^2 n^3$)

Additive approximation

• $C \leq OPT+ f(n)$ or $C \leq OPT+ k$ (a constant), e.g. $C \leq OPT+1$!

Partitions of weighted sets

SUBSET SUM

I: objects S={1,...,n}, positive integer weights w_i , i=1,...,n, positive integer W

Q: is there
$$A \subseteq S$$
 s.t. $\sum_{i \in A} w_i = W$?

PARTITION

I: objects S= $\{1,...,n\}$, positive integer weights w_i , i=1,...,n

Q: is there A
$$\subseteq$$
 S s.t $\sum_{i \in A} w_i = \sum_{i \in S-A} w_i (= \frac{1}{2} \sum_{i \in S} w_i)$?

0-1 KNAPSACK

I: objects S={1,...,n}, positive integer weights w_i , i=1,...,n, values v_i , i=1,...,n, positive integer W

Q: find
$$A \subseteq S$$
 s.t. $\sum_{i \in A} w_i \leq W$ and $\sum_{i \in A} v_i$ is maximized.

Partitions of weighted sets

BIN PACKING

I: objects S={1,...,n}, positive integer weights w_i , i=1,...,n, positive integer W

Q: find a partition of S into
$$A_1, ..., A_m$$
 s.t. $\sum_{i \in A_j} w_i \le W, j = 1, 2, ..., m$
and m is minimized

SCHEDULING (P||C_{max})

I: objects S={1,...,n}, positive integer weights w_i , i=1,...,n, positive integer m

Q: find a partition of S into
$$A_1, ..., A_m$$
 s.t. $\max_{1 \le j \le M} \{\sum_{i \in A_j} w_i\}$ is minimized

- We are given a knapsack with maximum capacity W, and a set S={1,2,...,n} of n items
- Each item i has weight w_i and value v_i (all w_i, v_i and W are integers)

Problem: How to pack the knapsack to achieve maximum total value of packed items?

Three (basic) versions of the problem:

1. Fractional knapsack

Items are divisible: take any fraction of an item O(poly) by a greedy algorithm

2. 0-1 knapsack

Items are indivisible: take an item or not NP-complete, O(nW), by a DP algorithm

3. Integer knapsack

Multiple copies of indivisible items: take any number of copies of an item NP-complete, O(nW), by a DP algorithm

Fractional knapsack

$$\max \sum_{i \in S} v_i x_i, \text{ s.t. } \sum_{i \in S} w_i x_i \leq W, \text{ and } \mathbf{x}_i \in [0,1]$$

0-1 Knapsack

$$\max \sum_{i \in S} v_i x_i, \text{ s.t. } \sum_{i \in S} w_i x_i \leq W, \text{ and } \mathbf{x}_i \in \{0, 1\}$$

Integer Knapsack

$$\max \sum_{i \in S} v_i x_i, \text{ s.t. } \sum_{i \in S} w_i x_i \le W, \text{ and } x_i \in N$$

Fractional Knapsack

Greedy algorithm:

take the item with the maximum value per unit (v_i/w_i) among the remaining items, as much as the capacity of the knapsack allows

Note: knapsack is loaded by the whole items, but the last

Q: Prove that the greedy algorithm is optimal

Complexity: O(n logn) – why?

Fractional vs 0-1 Knapsack

Let capacity knapsack be W = 50kg. Let there be 3 items.

ltem	Weight	Value
1	10	60
2	20	100
3	30	120

0-1 Knapsack vs SUBSET SUM

0-1 KNAPSACK (DECISION)

I: objects S={1,...,n}, positive integer weights w_i , i=1,...,n,

values v_i , i=1,...,n, positive integer W, positive integer V Q: Is there $A \subseteq S$ s.t. $\sum_{i \in A} w_i \le W$ and $\sum_{i \in A} v_i \ge V$.

Let an instance of 0-1 KNAPSACK where : $w_i = v_i$, $1 \le i \le n$, and W = VThen, the Question becomes:

Q: Is there
$$A \subseteq S$$
 s.t. $\sum_{i \in A} w_i \leq W$ and $\sum_{i \in A} v_i \geq V$, that is Q: Is there $A \subseteq S$ s.t. $\sum_{i \in A} w_i \leq W$ and $\sum_{i \in A} w_i \geq W$, that is

Q: Is there $A \subseteq S$ s.t. $\sum_{i \in A} w_i = W$, that is SUMSET-SUM Hence, 0-1 KNAPSACK is a generalization of SUBSET SUM

0-1 Knapsack

Brute-force approach

- there are 2ⁿ possible combinations of n items
- Go through all combinations and find the one with the most total value and with total weight less or equal to W
- Running time: O(n2ⁿ)

Can we do better?

Yes, with a DP algorithm

DP for 0-1 Knapsack

Subproblem:

V[k,w]: the subproblem with $S_k = \{1, 2, ..., k\}$ items and capacity w

Item k either can be in the optimal solution to V[k,w] or not.

- First case: $w_k > w$.
 - item k can not be in the optimal solution
 - V[k,w] = V[k-1, w]
- Second case: $w_k \le w$.
 - item k can be in the optimal solution
 - the best solution for V[k,w] is one of the next two:
 - the best solution for V[k-1, w] or
 - the best solution for $V[k-1, w-w_k]$ plus the value of item k:

 $V[k-1, w-w_k] + v_k$

• $V[k,w] = \max \{ V[k-1, w], V[k-1, w-w_k] + v_k \}$

DP for 0-1 Knapsack

Recursive Formula

$$V[k,w] = \begin{cases} 0 & \text{if } k = 0 \text{ or } w = 0 \\ V[k-1,w] & \text{if } k, w \ge 1 \text{ and } w_k > w \\ \max \{V[k-1,w], V[k-1,w-w_k] + v_k\} \\ \text{if } k, w \ge 1 \text{ and } w_k \le w \end{cases}$$

DP for 0-1 Knapsack

```
0-1 Knapsack Value (w,v,W)
{
for w := 0 to W do V[0,w] := 0;
for k = 0 to n do
{ V[k,0] := 0
for w := 1 to W do
    if w_k \leq w // item i can be in the solution
    then V[k,w] := max { v_k + V[k-1,w-w_k], V[k-1,w]}
    else V[k,w] := V[k-1,w] } // w_k > w
}
```

Complexity O(nW)

Another DP for 0-1 Knapsack

Previous Algorithm:

OPT = V[n,W] can be found in O(nW) time

Another Algorithm:

OPT can be found in O(n OPT), that is $O(n^2 v_{max})$ time (why?)

Subproblem:

C[k,v] : the minimum capacity yielding a value v using items 1,2,...,k

OPT = maximum v for which $C[n,v] \leq W$

Another DP algorithm for 0-1 knapsack

Subproblem:

C[k,v]: the smallest capacity yielding a value v using items 1,2,...,k

C[k,0] = 0, k=1,2,...,n

- The optimal solution to C[k,v] either contains item k or not.
 - First case: $v_k > v$.
 - item k can not be part of the solution
 - it yields to a total value > v, which is unacceptable
 - C[k,v] = C[k-1, v]
 - Second case: $v_k \le v$.
 - item k can be in the solution
 - the best solution for C[k,v] is one of the two:
 - the best solution for C[k-1, v] or
 - the best solution for $C[k-1, v-v_k]$ plus the weight of item k
 - $C[k,v] = min \{C[k-1,v], C[k-1, v-v_k] + w_k\}$

Another DP algorithm for 0-1 knapsack

What values C[k,v] we have to calculate?

Let OPT be the (value of the) optimal solution

 $v_{max} = max_k \{v_k\}$ OPT $\leq n v_{max}$

Calculate the values C[k,v], $0 \le k \le n$, $0 \le v \le n v_{max}$

k V	0	1	2	3	 	n v _{max}
1	0	I		I		
2	0					
3	0					
	0					
	0					
n	0	ţ	ł	ł		+

Another DP algorithm for 0-1 knapsack

Which C[k,v] corresponds to the optimal solution ?

OPT = maximum v for which $C[n, v] \leq W$

Complexity $O(n^2 v_{max})$

∕ k	0	1	2	3	 	n v _{max}
1	0	1		1		
2	0					
3	0					
	0					
	0					
n	0	ţ	ł	ł		¥

 $\begin{array}{l} \text{Max } \Sigma_i \; v_i x_i = \text{OPT (optimal value)} \\ \text{such that : } \Sigma_i \;\; x_i w_i \leq W \\ \text{ and } x_i \in \{0, \; 1\}, \;\; 0 \leq i \; \leq n \end{array}$

There is an $O(n^2 v_{max})$ DP algorithm for 0-1 KNAPSACK

Recall that $v_{max} = max_i \{v_i\}$ and $v_{max} \le OPT \le nv_{max}$

SCALED PROBLEM

Scale all items values by k, i.e. $v_j(k) = \lfloor v_j / k \rfloor$

Algo-S

{ Solve the scaled problem by the last DP algorithm;
 Let S(k) ⊆ {1,2,...,n} be the optimal solution to the scaled problem;
 Return the value of this solution for the original problem; }

Algo-S is a FPTAS for 0-1 KNAPSACK

Proof:

Optimal solution of the original problem: $S^* \subseteq \{1,2,...,n\}$ of value OPT Optimal solution of the scaled problem: $S(k) \subseteq \{1,2,...,n\}$

of value OPT(k) for the original problem

* S(k) is of greater value than any solution (and S*) for the scaled problem

$$OPT(k) = \sum_{j \in S(k)} v_j \stackrel{\text{by (2)}}{\geq} \sum_{j \in S(k)} k v_j(k)$$

$$= k \sum_{j \in S(k)} v_j(k) \stackrel{\text{by *}}{\geq} k \sum_{j \in S^*} v_j(k) = \frac{\frac{v_j}{k} - 1 < v_j(k)}{k} = \left\lfloor \frac{\frac{v_j}{k}}{k} \right\rfloor \stackrel{(2)}{\leq} \frac{v_j}{k}$$

$$\stackrel{\text{by (1)}}{\geq} k \sum_{j \in S^*} (\frac{\frac{v_j}{k}}{k} - 1) = \sum_{j \in S^*} v_j - k \sum_{j \in S^*} 1 = OPT - k |S^*|$$

$$\geq OPT - kn, \text{ since } |S^*| \leq n$$

 $\Rightarrow OPT(k) \ge OPT - kn$ ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

Proof (cont.):

 $OPT(k) \ge OPT - n \cdot k,$ Choose $k = \frac{\varepsilon \cdot v_{\max}}{n} \le \frac{\varepsilon \cdot OPT}{n}, \text{ since } v_{\max} \le OPT$ Hence, $OPT(k) \ge OPT - \varepsilon \cdot OPT = (1 - \varepsilon)OPT$

Complexity

$$O\left(n^{2}\left\lfloor\frac{v_{\max}}{k}\right\rfloor\right), \text{ that is } O(n^{3}\frac{1}{\varepsilon}), \text{ since } \left\lfloor\frac{v_{\max}}{k}\right\rfloor = \frac{n}{\varepsilon}$$

O(poly(n))
O(poly(1/\varepsilon)) A FPTAS !

Strong NP-completeness and pseudo-polynomial algorithms

A problem Π is strongly NP-complete if

- it remains NP-complete even if any instance of length || is restricted to contain integers at most O(poly(|I|)) or
- it remains NP-complete even if its instances are coded in unary
- 0-1 Knapsack is NOT strongly NP-complete but it is NP-complete. There is an O(nW) algorithm; it is O(poly) if W is O(poly(|I|))

Let N(I) be the largest number appearing in an instance of a problem

- An algorithm is a pseudo-polynomial one if it is polynomial in || and N(I)
- Unless P=NP, there is no pseudo-polynomial algorithm for strongly NPcomplete problems (next slide)
- For problems that are NP-complete, but not strongly NP-complete there is a pseudo-polynomial algorithm (usually a dynamic programming one)

Strong NP-completeness and pseudo-polynomial algorithms

Let : I be an instance of a problem Π , of size |I| N(I) be the largest number in I p(n) be a polynomial $\Pi_{p(n)}$ be Π restricted to instances for which N(I) \leq p(|I|)

We say that Π is strongly NP-complete if $\Pi_{p(n)}$ is NP-complete

Th. Unless P=NP, there is no pseudo-polynomial algorithm for a strongly NP-complete problem Π

Proof:

Suppose that there exists such a pseudo-polynomial algorithm Q for Π

Q solves any instance of Π in q(|I|, N(I)) time; q: a polynomial

Q solves $\Pi_{p(n)}$ in q(|I|, p(|I|)) time, that is polynomial in |I|

P=NP !

Strong NP-completeness and FPTASs

Let :

Π be a strongly NP-complete optimization problem (its decision version)

I be an instance of Π, of size |I|

N(I) be the largest number in I

p(n) be a polynomial

All the values in the input and output of Π are integers

For any instance of Π it holds that $C^* \leq p(N(I))$

Th. Unless P=NP, there is no an FPTAS for Π Proof:

- Suppose that there an FPTAS, F, for Π
- Apply this to Π with $\epsilon = 1 / (p(N(I)) + 1)$
- $(|C^*-C|)/C^* \le \epsilon \implies |C^*-C| \le \epsilon C^* = C^* / (p(N(I)) + 1) < 1$, since $C^* \le p(N(I))$
- F solves Π exactly ! (since all feasible solutions are integers)
- F takes q(|I|, 1/e) time; q: polynomial, that is q(|I|, p(N(I)) +1)) time, a polynomial in both |I| and N(I) !
- F is pseudo-polynomial algorithm for Π !
- P=NP !

BIN PACKING

Approximations for BIN-PACKING

Alternative instance for BIN-PACKING: M=1, $w_i \in (0,1]$ for $1 \le i \le n$. Q: Can S be packed into B bins ?

BIN-PACKING is (weakly) NP-complete since PARTITION is a special case of BIN-PACKING for B = 2 and $M = \frac{1}{2} \sum_{i \in S} w_i$

However, we know that BIN PACKING is stronly NP-complete

Approximation algorithms for BIN-PACKING:

- NEXT-FIT: $m \leq 2OPT$ (tight)
- FIRST-FIT: $m \leq 1.7OPT$ (tight)
- and many other ...

Approximations for BIN-PACKING Unless $P \neq NP$, there is $no(\frac{3}{2} - \delta)$ -approximation algorithm for **BIN-PACKING**

Proof:

Assume that there is an algorithm A such that $m \le \left(\frac{3}{2} - \delta\right) OPT$. Run A for $M = \frac{1}{2} \sum_{i=1}^{N} w_i$

If m=2 then PARTITION has answer YES! If m > 3 we have

$$m < \frac{3}{2}OPT \Rightarrow OPT > \frac{2}{3}m \ge \frac{2}{3} \cdot 3 = 2$$

So OPT>2 and thus, PARTITION has answer NO! Hence, we have an O(poly) algorithm for PARTITION, That is P=NP, a contradiction. What if OPT increases with n?

APTAS for BIN-PACKING

An Asymptotic PTAS (APTAS) produces a $(1+\epsilon)$ -approximate solution, that is, for each $\epsilon > 0$, there is N>0 such that the APTAS has an approximation ratio $1+\epsilon$ for all instances having OPT $\geq N$.

There is an APTAS for BIN-PACKING.

Three steps:

- (1) Instances with fixed number, k, of items sizes optimal in O(poly|I|)
- (2) Instances with items of size s $w_i \ge \varepsilon$ (1+ ε)-approximation in O(poly|I|)
- (3) First-Fit for items of sizes $w_i < \varepsilon$ (1+2 ε)OPT + 1 approximation in O(poly|I|)

BIN-PACKING: fixed # of item sizes

Instance: $(n_1, ..., n_k)$, n_j : # of items of size j, $0 \le j \le k$. $(\sum_{j=1}^n n_j = n)$

Consider a k-tuple $(i_1, ..., i_k)$, $0 \le i_j \le n_j$, $1 \le i \le k$. $(i_1, ..., i_k) \subset \{0, 1, ..., n_1\} \times \{0, 1, ..., n_2\} \times ... \times \{0, 1, ..., n_k\} = A$ $|A| = O(n^k)$

BINS $(i_1, ..., i_k)$: min # of bins required to pack those $\sum_{j=1}^{k} i_j$ items.

 $Q \subset A$: all k-tuples such that $BINS(q_1, ..., q_k) = 1$, $0 \le q_j \le n_j$, $1 \le j \le k$ i.e. the $\sum_{j=1}^k q_j$ items can be packed in one bin.

 $Q \subset A \Rightarrow |Q| \sim \mathcal{O}(n^k)$

BIN-PACKING: fixed # of item sizes

- Find Q in $O(n^k)$ time, O(poly) as k is fixed.
- Fill the k-dimensional table $BINS(i_1, ..., i_k)$
- Recurrence (DP): $BINS(i_1, ..., i_k) = 1 + \min_Q \{BINS(i_1 - q_1, ..., i_k - q_k)\}$ $BINS(q_1, ..., q_k) = 1, \forall (q_1, ..., q_k) \in Q$
- Return $BINS(n_1, ..., n_k)$ in $O(n^{2k})$ time.

BIN-PACKING: sizes at least ε

Sort items in non-decreasing order. Partition items into $K = \begin{bmatrix} 1 \\ \epsilon^2 \end{bmatrix}$ groups each of them having at most $Q = \lfloor n\epsilon^2 \rfloor$ items.

(Two groups may contain items of the same size.)

Pack I^{up} (fixed number $K = \begin{bmatrix} 1 \\ \varepsilon^2 \end{bmatrix}$ of object sizes) In $O(n^{2k})$ time, that is $O(n^{2/e^2})$.

The algorithm returns a solution $OPT(I^{up})$. Return this packing for instance I (this is a feasible packing).

BIN-PACKING: sizes at least ϵ

Analysis:

- 1) $OPT(I) \ge n \varepsilon$, standard lower bound
- 2) $OPT(I^{down}) \leq OPT(I)$, all items have smaller sizes
- 3) $OPT(I^{down})$ is also a packing for I^{up} , but for Q largest items. Hence, $OPT(I^{up}) \leq OPT(I^{down}) + Q \leq OPT(I) + Q$ Since, $OPT(I) \geq n \varepsilon$ and $Q = [n\varepsilon^2]$ we get $Q \leq \varepsilon OPT$ Therefore: $OPT(I^{up}) \leq (1 + \varepsilon)OPT(I)$ ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 34

APTAS for BIN-PACKING

I: original instance of the problem.

- 1. Ignore items of sizes $w_i < \varepsilon$ (instance I')
- 2. Construct instance I^{up'}
- 3. Find an optimal packing for this instance $OPT(I^{up'})$
- 4. Return this packing for original items in I'
- 5. Pack items of sizes $w_i < \varepsilon$ using First-Fit on this packing.

APTAS for BIN-PACKING

Let M the total number of bins used after First-Fit.

• If no additional bins are needed.

 $M = OPT(I^{up'}) \le (1 + \varepsilon)OPT(I') \le (1 + \varepsilon)OPT(I)$

If additional bins are needed.
 All, but the last, bins are full to at least 1-ε.
 Thus,

$$\sum w_i \ge (M-1)(1-\varepsilon)$$

$$OPT \ge \sum w_i$$

$$\Rightarrow M \le \left(\frac{1}{1-\varepsilon}\right)OPT + 1 \Rightarrow$$

$$\Rightarrow M \le (1+2\varepsilon)OPT + 1, \text{ for } \varepsilon \le 1$$

12