
1

ALMA
ALGORITHMS

Fall 2016

Ioannis Milis

Approximation Algorithms
PTASs and FPTASs

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 2

Approximations:
Good, better, best and more …

Non - constant approximation : C/OPT £ f(n)

Constant (ρ-)approximation : C/OPT £ ρ (a constant, e.g. 3/2)

Polynomial Time Approximation Schemes (PTAS)
§ C/OPT £ 1 + ε, for any ε >0
§ O(poly (|I|)), O(exp (1/ε)), e.g. O(n3/ε)

Fully Polynomial Time Approximation Schemes (FPTAS)
§ C/OPT £ 1 + ε, for any ε >0
§ O(poly (|I|)), O(poly (1/ ε)) !!! e.g. O((1/ε)2n3)

Additive approximation
§ C £ OPT+ f(n) or C £ OPT+ k (a constant), e.g. C £ OPT+1 !

Partitions of weighted sets
SUBSET SUM
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n, positive integer W

Q: is there A Í S s.t. = W?

PARTITION
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n

Q: is there A Í S s.t ?

0-1 KNAPSACK
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n,

values vi , i=1,…,n, positive integer W

Q: find A Í S s.t. and is maximized.

3ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

Ww
Ai

i £å
Î

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

Partitions of weighted sets
BIN PACKING
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n, positive integer W

Q: find a partition of S into s.t.
and m is minimized

SCHEDULING (P||Cmax)
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n, positive integer m

Q: find a partition of S into s.t. is minimized

mjWw
jAi
i ,...,2,1, =£å

Î

4

5

Knapsack problems

§ We are given a knapsack with maximum capacity W,
and a set S={1,2,…,n} of n items

§ Each item i has weight wi and value vi

(all wi, vi and W are integers)

Problem: How to pack the knapsack to achieve maximum total
value of packed items?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

6

Knapsack problems

W = 20

wi vi

9

5

4
3
2

Weight

Knapsack of capacity W

Items

Value

10

8

5
4
3

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

7

Knapsack problems
Three (basic) versions of the problem:

1. Fractional knapsack
Items are divisible: take any fraction of an item
O(poly) by a greedy algorithm

2. 0-1 knapsack
Items are indivisible: take an item or not
NP-complete, O(nW), by a DP algorithm

3. Integer knapsack
Multiple copies of indivisible items:

take any number of copies of an item
NP-complete, O(nW), by a DP algorithm

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

8

Knapsack problems

Fractional knapsack

0-1 Knapsack

Integer Knapsack

 [0,1] xand , s.t. , Î£åå
ÎÎ

i
Si

iii
Si

i Wxwxvmax

 {0,1} xand , s.t. , Î£åå
ÎÎ

i
Si

iii
Si
i Wxwxvmax

Ν x, Wxw. , xv i
Si

iii
Si

i Î£åå
ÎÎ

ands.tmax

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

9

Fractional Knapsack

Greedy algorithm:
take the item with the maximum value per unit (vi/wi) among the
remaining items, as much as the capacity of the knapsack allows

Note: knapsack is loaded by the whole items, but the last

Q: Prove that the greedy algorithm is optimal

Complexity: O(n logn) – why?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

10

Fractional vs 0-1 Knapsack

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

0-1 Knapsack vs SUBSET SUM
0-1 KNAPSACK (DECISION)
I: objects S={1,…,n}, positive integer weights wi , i=1,…,n,

values vi , i=1,…,n, positive integer W, positive integer V
Q: Is there A Í S s.t. and .

Let an instance of 0-1 KNAPSACK where : wi = vi , 1£ i £ n, and W = V
Then, the Question becomes:
Q: Is there A Í S s.t. and , that is

Q: Is there A Í S s.t. and , that is

Q: Is there A Í S s.t. , that is SUMSET-SUM

Hence, 0-1 KNAPSACK is a generalization of SUBSET SUM

11

Ww
Ai

i £å
Î

Vv
Ai

i ³å
Î

Ww
Ai

i £å
Î

Vv
Ai

i ³å
Î

Ww
Ai

i £å
Î

Ww
Ai

i ³å
Î

Ww
Ai

i =å
Î

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

12

0-1 Knapsack

Brute-force approach

§ there are 2n possible combinations of n items
§ Go through all combinations and find the one with the most total

value and with total weight less or equal to W
§ Running time: O(n2n)

Can we do better?
§ Yes, with a DP algorithm

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

13

DP for 0-1 Knapsack
Subproblem:
V[k,w] : the subproblem with Sk={1, 2, …, k} items and capacity w

Item k either can be in the optimal solution to V[k,w] or not.

• First case: wk > w.
§ item k can not be in the optimal solution
§ V[k,w] = V[k-1, w]

• Second case: wk ≤ w.
§ item k can be in the optimal solution
§ the best solution for V[k,w] is one of the next two:

– the best solution for V[k-1, w] or
– the best solution for V[k-1, w-wk] plus the value of item k:

V[k-1, w-wk] +vk
§ V[k,w] = max { V[k-1, w], V[k-1, w-wk] +vk }

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

14

DP for 0-1 Knapsack

Recursive Formula

ï
ï
ï

î

ï
ï
ï

í

ì

£³
+---

>³-

==

=

wwwk
vwwkVwkV

wwwkwkV

wk

wkV

k

kk

k

 and if

 and if

 or if

1,
}],1[],,1[max{

1,],1[

00
0

],[

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

15

DP for 0-1 Knapsack
0-1 Knapsack Value (w,v,W)
{
for w := 0 to W do V[0,w] := 0;
for k = 0 to n do
{ V[k,0] := 0

for w := 1 to W do
if wk ≤ w // item i can be in the solution
then V[k,w]:= max { vk + V[k-1,w-wk], V[k-1,w]}
else V[k,w]:= V[k-1,w] } // wk > w

}

Complexity O(nW)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

16

Another DP for 0-1 Knapsack
Previous Algorithm:

OPT = V[n,W] can be found in O(nW) time

Another Algorithm:

OPT can be found in O(n OPT), that is O(n2 vmax) time (why?)

Subproblem:
C[k,v] : the minimum capacity yielding a value v using items 1,2,…,k

OPT = maximum v for which C[n,v] ≤ W

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

17

Another DP algorithm for 0-1 knapsack
Subproblem:
C[k,v]: the smallest capacity yielding a value v using items 1,2,…,k

C[k,0] = 0, k=1,2,…,n

The optimal solution to C[k,v] either contains item k or not.
§ First case: vk > v.

– item k can not be part of the solution
• it yields to a total value > v, which is unacceptable

– C[k,v] = C[k-1, v]

§ Second case: vk ≤ v.
– item k can be in the solution
– the best solution for C[k,v] is one of the two:

• the best solution for C[k-1, v] or
• the best solution for C[k-1, v-vk] plus the weight of item k

– C[k,v] = min {C[k-1,v], C[k-1, v-vk] +wk}

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

18

Another DP algorithm for 0-1 knapsack
What values C[k,v] we have to calculate?

Let OPT be the (value of the) optimal solution

vmax = maxk { vk } OPT ≤ n vmax

Calculate the values C[k,v], 0 ≤ k≤ n, 0 ≤ v ≤ n vmax

0 1 2 3 … … n vmax

1 0

2 0

3 0

. 0

. 0

n 0

k v

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

19

Another DP algorithm for 0-1 knapsack
Which C[k,v] corresponds to the optimal solution ?

OPT = maximum v for which C[n, v] ≤ W

Complexity O(n2 vmax)

0 1 2 3 … … n vmax

1 0

2 0

3 0

. 0

. 0

n 0

k v

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

20

A FPTAS for 0-1 KNAPSACK

Max Σi vixi = OPT (optimal value)
such that : Σi xiwi £ W

and xi Î {0, 1}, 0 £ i £ n

There is an O(n2 vmax) DP algorithm for 0-1 KNAPSACK

Recall that vmax = maxi {vi } and vmax £ OPT £ nvmax

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

21

A FPTAS for 0-1 KNAPSACK

SCALED PROBLEM
Scale all items values by k, i.e. vj(k) = ëvj / kû

Algo-S
{ Solve the scaled problem by the last DP algorithm;

Let S(k) Í {1,2,…,n} be the optimal solution to the scaled problem;
Return the value of this solution for the original problem; }

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

22

knOPTkOPT

nSknOPT

SkOPTkv
k
v

k

k
v

k
v

(k)v
k
v

kvkkvk

kvkvkOPT

Sj Sj
j

Sj

j

jj
j

j

Sj
j

kSj
j

kSj
j

kSj
j

-³Þ

£-³

-=-=-³

£ú
û

ú
ê
ë

ê
=<-=³=

³=

å åå

åå

åå

Î ÎÎ

ÎÎ

ÎÎ

)(

*,

*1)1(

1)()(

)()(

* **

*)(

)()(

since

 (1)by

(2)(1)*by

(2)by

Algo-S is a FPTAS for 0-1 KNAPSACK
Proof:
Optimal solution of the original problem: S* Í {1,2,…,n} of value OPT
Optimal solution of the scaled problem: S(k) Í {1,2,…,n}

of value OPT(k) for the original problem
* S(k) is of greater value than any solution (and S*) for the scaled problem

A FPTAS for 0-1 KNAPSACK

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

23

A FPTAS for 0-1 KNAPSACK

Proof (cont.):

Complexity

ee
n

k
vnO

k
vnO =úû

ú
êë
ê

÷÷
ø

ö
çç
è

æ
úû
ú

êë
ê max3max2 since),1(is that ,

O(poly(n))

O(poly(1/ε)) A FPTAS !

OPTOPTOPTkOPT

OPTv
n
OPT

n
vk

knOPTkOPT

)1()(Hence,

 since , Choose

 ,)(

max
max

ee

ee

-=×-³

£
×

£
×

=

×-³

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 24

Strong NP-completeness
and pseudo-polynomial algorithms

A problem Π is strongly NP-complete if
§ it remains NP-complete even if any instance of length |I| is restricted to

contain integers at most O(poly(|I|)) or
§ it remains NP-complete even if its instances are coded in unary

0-1 Knapsack is NOT strongly NP-complete but it is NP-complete.
There is an O(nW) algorithm; it is O(poly) if W is O(poly(|I|))

Let N(I) be the largest number appearing in an instance of a problem
§ An algorithm is a pseudo-polynomial one if it is polynomial in |I| and N(I)
§ Unless P=NP, there is no pseudo-polynomial algorithm for strongly NP-

complete problems (next slide)
§ For problems that are NP-complete, but not strongly NP-complete there

is a pseudo-polynomial algorithm
(usually a dynamic programming one)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 25

Strong NP-completeness
and pseudo-polynomial algorithms

Let : I be an instance of a problem Π, of size |I|
N(I) be the largest number in I
p(n) be a polynomial
Πp(n) be Π restricted to instances for which N(I) ≤ p(|I|)

We say that Π is strongly NP-complete if Πp(n) is NP-complete

Th. Unless P=NP, there is no pseudo-polynomial algorithm for
a strongly NP-complete problem Π

Proof:
Suppose that there exists such a pseudo-polynomial algorithm Q for Π
Q solves any instance of Π in q(|I|, N(I)) time; q: a polynomial
Q solves Πp(n) in q(|I|, p(|I|)) time, that is polynomial in |I|
P=NP !

26

Strong NP-completeness and FPTASs
Let :
Π be a strongly NP-complete optimization problem (its decision version)
I be an instance of Π, of size |I|
N(I) be the largest number in I
p(n) be a polynomial
All the values in the input and output of Π are integers
For any instance of Π it holds that C* ≤ p(N(I))
Th. Unless P=NP, there is no an FPTAS for Π
Proof:
• Suppose that there an FPTAS, F, for Π
• Apply this to Π with ε = 1 / (p(N(I)) +1)
• (|C*-C|)/C*≤ε => |C*-C| ≤ε C* = C* / (p(N(I)) +1) < 1, since C* ≤ p(N(I))
• F solves Π exactly ! (since all feasible solutions are integers)
• F takes q(|I|, 1/e) time; q: polynomial,

that is q(|I|, p(N(I)) +1)) time, a polynomial in both |I| and N(I) !
• F is pseudo-polynomial algorithm for Π !
• P=NP !

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II

BIN PACKING

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 27

Approximations for BIN-PACKING

Alternative	instance	for	BIN-PACKING:
M=1,																											for																								.
Q:	Can	S	be	packed	into	B	bins		?

BIN-PACKING	is	(weakly)	NP-complete	since	PARTITION	is	a	special	case	
of		BIN-PACKING	for																	and																													

However,	we	know	that	BIN	PACKING	is	stronly NP-complete

Approximation	algorithms	for	BIN-PACKING:
• NEXT-FIT:																											(tight)
• FIRST-FIT:																																					(tight)						
• and	many	other	…

OPTm 7.1£

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 28

Approximations for BIN-PACKING
Unless																					,		there	is	no																	-approximation	algorithm	for
BIN-PACKING

Proof:
Assume	that	there	is	an	algorithm	A	such	that																																				.
Run	A	for																										

If	m=2	then	PARTITION	has	answer	YES!
If	m	> 3	we	have	

So	OPT>2	and	thus,	PARTITION	has	answer	NO!
Hence,	we	have	an	O(poly)	algorithm	for	PARTITION,
That	is	P=NP,	a	contradiction.																											What	if	OPT	increases	with	n?

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 29

APTAS for BIN-PACKING

An	Asymptotic	PTAS		(APTAS)	produces	a	(1+ε)-approximate	solution,
that	is,	for	each	ε>0,	there	is	N>0		such	that	the	APTAS	has	an	approximation	
ratio		1+ε for	all	instances	having	OPT≧N.

There	is	an	APTAS	for	BIN-PACKING.

Three		steps:
(1) Instances	with	fixed	number,	k,	of	items	sizes

optimal	in	O(poly|I|)
(2)			Instances	with	items	of	size	s															

(1+ε)-approximation	in	O(poly|I|)
(3) First-Fit	for	items	of	sizes

(1+2ε)OPT	+	1		approximation	in	O(poly|I|)	

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 30

BIN-PACKING: fixed # of item sizes
Instance:																								,								:		#	of	items	of	size	j,																						.	()

Consider	a	k-tuple																							,																								,																						.

:	min	#	of		bins	required	to	pack	those														items.

:	all	k-tuples	such	that																																												,																									,				

i.e.	the														items	can	be	packed	in	one	bin.

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 31

BIN-PACKING: fixed # of item sizes

- Find	Q	in																time,		O(poly)		as	k	is	fixed.

- Fill	the	k-dimensional	table																																	.

- Recurrence	(DP):

- Return																																				in																			time.		

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 32

BIN-PACKING: sizes at least ε
Round-Up

Round-Down

Pack									(fixed	number																						of	object	sizes)
In																		time,		that	is																				.		

The	algorithm	returns	a	solution	OPT().
Return	this	packing	for		instance	I	(this	is	a	feasible	packing).

Sort	items	in	non-decreasing	order.
Partition	items	into																							groups	
each	of	them	having	at	most		
items.
(Two	groups	may	contain	items	of	the
same	size.)

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 33

Analysis:

1) OPT(I)	³ n	ε,				standard	lower	bound

2)		OPT	(Idown)	£ OPT(I) ,		all	items		have	smaller	sizes	

3)	 OPT(Idown)		is	also	a	packing	for		Iup,		but	for	Q	largest	items.

Hence,		

Since,			OPT(I)	³ n	ε and																											we		get		Q	£ ε	OPT

Therefore:	

BIN-PACKING: sizes at least ε

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 34

APTAS for BIN-PACKING

I:	original	instance	of	the	problem.

1. Ignore	items	of	sizes																			(instance	I’)
2. Construct	instance	Iup’

3. Find	an	optimal	packing	for	this	instance		OPT(Iup’)
4. Return		this	packing	for	original	items	in	I’
5. Pack	items	of	sizes																	using	First-Fit	on	this	packing.	

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 35

APTAS for BIN-PACKING

Let	M	the	total	number	of	bins	used	after	First-Fit.
• If	no		additional	bins	are	needed.

• If	additional	bins	are	needed.
All,	but	the	last,	bins	are	full	to	at	least	1-ε.
Thus,	

,		 2/1 £efor

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 03 - APPROX II 36

