ALMA ALGORITHMS

Fall 2016
Ioannis Milis

Approximation Algorithms LP Rounding

Intro

Optimization problems: Find a solution that is
i. Feasible: satisfies certain constraints, and
ii. Best possible (optimal), with respect to some well-defined criterion, among all feasible solutions

Linear programming: A broad class of optimization problems, where both the constraints and the optimization criterion are linear functions.

In other words:
Assign values to a set of variables $x_{1}, x_{2}, \ldots, x_{n}$, so as:
i. satisfy a set of linear equations/ inequalities (constraints) on them
ii. Maximize/minimize a given linear objective function of them.

Almost all the problems we have seen so far

Intro

Example: A company has two products 1 and 2 with profits $\$ 1$ and $\$ 6$. The daily demand for their products are 200 pieces of product 1 and 300 pieces of product 2. They can also produce 400 pieces of both products per day.
How much of each should they produce to maximize their profit?

Variables: x_{1} and x_{2} pieces of products

Linear program:
Objective function $\max x_{1}+6 x_{2}$
Constraints

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Intro

Geometry

> Objective function $\max x_{1}+6 x_{2}$
> Constraints
> $x_{1} \leq 200$
> $x_{2} \leq 300$
> $x_{1}+x_{2} \leq 400$
> $x_{1}, x_{2} \geq 0$

Feasible region

Profits

Intro

More products

$$
\begin{aligned}
\max x_{1}+6 x_{2} & +13 x_{3} \\
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Each constraint corresponds to a face of the polyhedron

Intro

- The optimum is achieved at a vertex of the feasible region
- The only exceptions are cases in which there is no optimum

1. The LP is infeasible
too tight constraints; impossible to satisfy all of them
e.g. $x_{1} \leq 1, x_{1} \geq 2$
2. The LP is unbounded;
too loose constraints; the feasible region is unbounded
e.g. arbitrarily high objective values

$$
\max x_{1}+x_{2}
$$

$$
\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
$$

Intro

LP's can be solved by the Simplex Method [G. Dantzig, 1947]

- Starts at a vertex, say (0,0)
- Repeatedly looks for an adjacent vertex of better objective value
- Halts upon reaching a vertex that has no better neighbor and declares it as optimal

Why does its local test imply global optimality?
By simple geometry-think of the profit line passing through this vertex. Since all the vertex's neighbors lie below the line, the rest of the feasible polygon must also lie below this line.

Intro

Simplex Method [G. Dantzig, 1947].
More products

It would move from vertex to vertex, along edges of the polyhedron, increasing profit steadily.

Again by basic geometry, if all the vertex's neighbors lie on one side of the profit-plane, then so must the entire polyhedron

A possible trajectory
Vertices: $(0,0,0) \rightarrow(200,0,0) \rightarrow(200,200,0) \rightarrow(200,0,200) \rightarrow(0,300,100)$
Profits
\$200
\$1400
\$2800
\$3100

Intro

Variants of LP's

- The objective can be Maximization or Minimization
- The constraints can be equations and/or inequalities.
- The variables can be restricted to be nonnegative,
but they can also be unrestricted in sign

All LP's variants can be reduced to one another

- Maximization \rightarrow Minimization (or vice versa):

Multiply the coefficients of the objective function by -1

- Inequality constraint \rightarrow equality constraint

$$
\sum_{i=1}^{n} a_{i} x_{i} \leq b
$$

$$
\begin{array}{r}
\sum_{i=1}^{n} a_{i} x_{i}+s=b \\
s \geq 0
\end{array}
$$

s is a new variable called slack variable for the inequality

Intro

All LP's variants can be reduced to one another

- Equality constraint \rightarrow Inequalities

Rewrite an equality constraint as an equivalent pair
of inequality constraints

$$
\begin{array}{ll}
a x=b & a x \leq b \\
& a x \geq b
\end{array}
$$

- Unrestricted in sign variable $x \rightarrow$ nonnegative variable(s)

Introduce two nonnegative variables, $\mathrm{x}^{+}, \mathrm{x}^{-} \geq 0$
Replace x, wherever it appears

$$
\text { by } x^{+}-x^{-}
$$

Thus, x can take any value by appropriately adjusting x^{+}and x^{-}. (any feasible solution to the original LP involving x can be mapped to a feasible solution of the new LP involving $\mathrm{x}^{+}, \mathrm{x}^{-}$, and vice versa)

Intro

Any LP (maximization or minimization, with both inequalities and equations, and with both nonnegative and unrestricted variables) can be transformed to an equivalent standard form LP
in which the variables are all nonnegative, the constraints are all equations, and the objective function is to be minimized

```
max }\mp@subsup{x}{1}{}+6\mp@subsup{x}{2}{
    x
    x
x
    x},\mp@subsup{x}{2}{}\geq
\[
\begin{aligned}
& \min -x_{1}-6 x_{2} \\
& x_{1}+s_{1}=200 \\
& x_{2}+s_{2}=300 \\
& x_{1}+x_{2}+s_{3}=400 \\
& x_{1}, x_{2}, s_{1}, s_{2}, s_{3} \geq 0
\end{aligned}
\]
```

The original here is also in a useful form:
maximize an objective subject to certain inequalities

Matrix-vector notation of LP's

$$
\begin{gathered}
\max x_{1}+6 x_{2} \\
\text { s.t. } x_{1} \leq 200 \\
x_{2} \leq 300 \\
x_{1}+x_{2} \leq 400 \\
x_{1}, x_{2} \geq 0 \\
\hline
\end{gathered}
$$

$\mathbf{c}=\binom{1}{6}$ and $\mathrm{x}=\binom{x_{1}}{x_{2}}$

LP is polynomial
n : \# of variables
m : \# of constraints

Method	Typical cost	Worst case cost
Simplex	$O\left(n^{2} m\right)$	Very bad - Not polynomial
Ellipsoid	$O\left(n^{8}\right)$	$O\left(n^{8}\right)$

Everything you need to know about solving linear programs

Integer (Linear) Programming (IP)

\max	$x_{1}+6 x_{2}$
s.t.	$x_{1} \leq 200$
	$x_{2} \leq 300$
	$x_{1}+x_{2} \leq 400$
	$x_{1}, x_{2} \in N$

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b}
\end{gathered}
$$

$$
\mathbf{c}=\binom{1}{6} \text { and } \mathrm{x}=\binom{x_{1}}{x_{2}}
$$

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400
\end{aligned} \Longrightarrow \underbrace{\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right)}_{\mathbf{A}} \quad\binom{x_{1}}{x_{2}} \leq \underbrace{\leq}_{\mathbf{x}}\left(\begin{array}{l}
200 \\
300 \\
400
\end{array}\right)
$$

The variables are restricted to be integers

IP is NP-complete; via a simple reduction from 3-SAT
All the NP-complete problems we have seen can be written as IP's, so, they all reduce to IP

Integer Programming Formulations

To formulate a problem as an integer program (IP), in general, we assign a binary variable x_{i} to items to be included in a solution
$x_{i}= \begin{cases}1, & \text { if item } i \text { is in a solution } \\ 0, & \text { otherwise }\end{cases}$
0-1 KNAPSACK
$\max \quad \sum_{s \in S} v(s) x_{s}$
s.t. $\quad \sum_{s \in S} w(s) \cdot x_{s} \leq W$

$$
x_{s} \in\{0,1\}, \forall s \in S
$$

Integer Programming Formulations

To formulate a problem as an integer program (IP), in general, we assign a binary variable x_{i} to items to be included in a solution

$$
\left.\begin{array}{ll}
x_{i}= \begin{cases}1, & \text { if item } i \text { is in a solution } \\
0, & \text { otherwise }\end{cases} \\
\frac{\text { CLIQUE, } G=(V, E)}{\max \sum_{u \in V} x_{u}} & \frac{\text { IndSet, } G=(V, E)}{\max \sum_{u \in V} x_{u}} \\
\text { s.t. } \quad x_{u}+x_{v} \leq 1, \forall(u, v) \oplus E & \text { s.t. } \quad x_{u}+x_{v} \leq 1, \forall(u, v) \boxminus E \\
\quad x_{u} \in\{0,1\}, \forall u \in V & \\
x_{u} \in\{0,1\}, \forall u \in V
\end{array}\right]
$$

Integer Programming Formulations

To formulate a problem as an integer program (IP), in general, we assign a binary variable x_{i} to items to be included in a solution

$$
x_{i}= \begin{cases}1, & \text { if item } i \text { is in a solution } \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{array}{ll}
\frac{(\mathrm{W}) \mathrm{VC}}{\min } & \sum_{u \in V} w(u) \cdot x_{u} \\
\text { s.t. } & x_{u}+x_{v} \geq 1, \forall(u, v) \in E \\
& x_{u} \in\{0,1\}, \forall u \in V
\end{array}
$$

Integer Programming Formulations

To formulate a problem as an integer program (IP), in general, we assign a binary variable x_{i} to items to be included in a solution
$x_{i}= \begin{cases}1, & \text { if item } i \text { is in a solution } \\ 0, & \text { otherwise }\end{cases}$

$$
\begin{array}{ll}
\frac{\text { KNAPSACK }}{\max } & \sum_{s \in S} v(s) x_{s} \\
\text { s.t. } & \sum_{s \in S} w(s) \cdot x_{s} \leq W \\
& x_{s} \in\{0,1\}, \forall s \in S
\end{array}
$$

$\begin{array}{ll}\text { CLIQUE, } G=(V, E) \\ \max & \sum_{u \in V} x_{u} \\ \text { s.t. } & x_{u}+x_{v} \leq 1, \forall(u, v) \notin E \\ & x_{u} \in\{0,1\}, \forall u \in V\end{array}$

$$
\begin{aligned}
& \text { IndSet, } G=(V, E) \\
& \text { max } \sum_{u \in V} x_{u} \\
& \text { s.t. } \quad x_{u}+x_{v} \leq 1, \forall(u, v) \in E \\
& \\
& x_{u} \in\{0,1\}, \forall u \in V
\end{aligned}
$$

(W)SC

$$
\begin{array}{ll}
\overline{\min } & \sum_{S \in F} w(S) x_{S} \\
\text { s.t. } & \sum_{S \in F: u \in S} x_{S} \geq 1, \forall u \in U \\
& x_{S} \in\{0,1\}, \forall s \in S
\end{array}
$$

LP based approximation algorithms

Linear Programming Relaxations

Relax the integer constraint

KNAPSACK

\max	$\sum_{s \in S} v(s) x_{s}$
s.t.	$\sum_{s \in S} w(s) \cdot x_{s} \leq W$
	$x_{s} \in[0,1], \forall s \in S$

CLIQUE, $G=(V, E)$
$\max \sum_{u \in V} x_{u}$
$\begin{array}{ll}\text { s.t. } & x_{u}+x_{v} \leq 1, \forall(u, v) \notin E \\ & x_{u} \in[0,1], \forall u \in V \\ & \end{array}$
$\frac{\text { IndSet, } G=(V, E)}{\max \sum_{u \in V} x_{u}}$
s.t. $\quad x_{u}+x_{v} \leq 1, \forall(u, v) \in E$
$x_{u} \in[0,1], \forall u \in V$
(W)VC, $\quad G=(V, E)$
$\min \quad \sum_{u \in V} w(u) \cdot x_{u}$
s.t.

$$
\begin{aligned}
& x_{u}+x_{v} \geq 1, \forall(u, v) \in E \\
& x_{u} \in[0,1], \forall u \in V
\end{aligned}
$$

(W)SC
$\min \quad \sum_{S \in F} w(S) x_{S}$
$\begin{array}{ll}\text { s.t. } & \sum^{S \in F} x_{S} \geq 1, \forall u \in U \\ & x_{S} \in[0,1], \forall s \in S\end{array}$

Rounding and Integrality gap

Rounding

Solve the LP-relaxation in $O($ poly $|I|)$ time
\rightarrow fractional solution \bar{x} of cost \bar{W}
Round x to an integral solution to the IP problem of cost W
But,

We bound the ratio $\frac{W}{\bar{W}} \leq \rho$, that is, $\frac{W}{O P T} \leq \frac{W}{\bar{W}} \leq \rho$

Let $\gamma=\frac{O P T}{\bar{W}}$, then $\gamma=\frac{O P T}{\bar{W}} \leq \frac{W}{\bar{W}} \leq \rho$
γ is called integrality gap and always $\gamma \leq \rho$

Deterministic rounding for WVC

Rounding

$$
\begin{array}{ll}
\text { (W)VC, } \quad G=(V, E) \\
\hline \min & \sum_{u \in V} w(u) \cdot x_{u} \\
\text { s.t. } & x_{u}+x_{v} \geq 1, \forall(u, v) \in E \\
& x_{u} \in[0,1], \forall u \in V
\end{array}
$$

\rightarrow fractional solution \bar{x}_{u} of cost \bar{W}
If $\bar{x}_{u} \geq \frac{1}{2}$ then $x_{u}=1$ else $x_{u}=0$ (pick all vertices with $\bar{x}_{u} \geq \frac{1}{2}$)

Algorithm Rounding achieves an approximation ratio of 2 for the WVC problem

Deterministic rounding for WVC

Algorithm Rounding achieves an approximation ratio of 2 for WVC
Proof:
Let C be the collection of sets picked
i) C is a valid VC

$$
\begin{array}{ll}
\frac{(\mathrm{W}) \mathrm{VC},}{} \quad G=(V, E) \\
\min & \sum_{u \in V} w(u) \cdot x_{u} \\
\text { s.t. } & x_{u}+x_{v} \geq 1, \forall(u, v) \in E \\
& x_{u} \in[0,1], \forall u \in V
\end{array}
$$

Assume that there is an edge $(u, v) \in E$ s.t. $u, v \notin C$
That is, $\bar{x}_{u}<1 / 2$ and $\bar{x}_{v}<1 / 2$
Hence, $x_{u}+x_{v}<1$, a contradiction, as this violates the LP constraint for edge (u, v) Hence, either $u \in C$ or $u \in C$ and C is a valid VC

Deterministic rounding for WVC

Algorithm Rounding achieves a 2-approximation ratio for WVC
Proof:
Let C be the collection of sets picked

$$
\text { ii) } \frac{W}{O P T} \leq 2
$$

Recall that $\bar{x}_{u} \geq \frac{1}{2}$ for each $u \in C$

$$
W=\sum_{u \in C} w(u) \leq \bar{x}_{u} \geq \frac{1}{2} \leq \bar{x}_{u \in C} w(u) \cdot \bar{x}_{u} \cdot 2 \leq 2 \sum_{u \in C} w(u) \cdot \bar{x}_{u}
$$

$$
\leq 2 \sum_{u \in V} w(u) \cdot \bar{x}_{u}=2 \cdot \bar{W} \leq 2 \cdot O P T \quad(\bar{W} \leq O P T \leq W)
$$

Deterministic rounding for WVC

Integrality gap

$\mathrm{K}_{\mathrm{n}}=(\mathrm{V}, \mathrm{ExE}),|\mathrm{V}|=\mathrm{n}$, $w(u)=1$, for each $u \in V$

- $\quad \mathrm{OPT}=\mathrm{n}-1$ (all vertices but one)

$$
\begin{array}{ll}
(\mathrm{W}) \mathrm{VC}, & G=(V, E) \\
\hline \min & \sum_{u \in V} w(u) \cdot x_{u} \\
\text { s.t. } & x_{u}+x_{v} \geq 1, \forall(u, v) \in E \\
& x_{u} \in[0,1], \forall u \in V
\end{array}
$$

- $\bar{x}_{u}=\frac{1}{2}, \forall u \in V$ (due to symmetry) $\Rightarrow \bar{W}=\frac{n}{2}$

$$
\gamma=\frac{O P T}{\bar{W}}=\frac{n-1}{n / 2} \rightarrow 2
$$

$$
\gamma=2=\frac{O P T}{\bar{W}} \leq \frac{W}{\bar{W}} \leq \rho
$$

Deterministic rounding for WSC

Rounding

(W)SC

Solve the LP - relaxation in $O($ poly $|I|)$ time
\rightarrow fractional solution \bar{x}_{S} of cost \bar{W}
$\begin{array}{ll}\min & \sum_{S \in F} w(S) x_{S} \\ \text { s.t. } & \sum_{S \in F: u \in S} x_{S} \geq 1, \forall u \in U \\ & x_{S} \in[0,1], \forall s \in S\end{array}$
If $\bar{x}_{S} \geq \frac{1}{f}$ then $x_{S}=1$ else $x_{S}=0$ (pick all sets with $\bar{x}_{S} \geq \frac{1}{f}$)

Algorithm Rounding achieves an approximation ratio of f for the WSC problem

Deterministic rounding for WSC

Algorithm Rounding achieves an approximation ratio of f for WSC

Proof:
Let C be the collection of sets picked
i) C is a valid $S C$

Assume that there is $u \in U$ s.t. $u \notin C$ (W)SC

$$
\begin{array}{ll}
\overline{\min } & \sum_{S \in F} w(S) x_{S} \\
\text { s.t. } & \sum_{S \in F: u \in S} x_{S} \geq 1, \forall u \in U \\
& x_{S} \in[0,1], \forall s \in S
\end{array}
$$

For each set $S_{i} \in F$, s.t $u \in S_{i}$, we have $\bar{x}_{S}<1 / f$
That is, $\sum_{S: u \in S} \bar{x}_{S} \measuredangle \frac{1}{f}|\{S: u \in S\}|=\frac{1}{f} f_{u} \leq \frac{1}{f} f=1$
A contradiction, as this violates the LP constraint for element u Hence, $u \in C$ and C is a valid SC

Deterministic rounding for WSC

Algorithm Rounding achieves an f-approximation ratio for WSC
Proof:
Let C be the collection of sets picked
ii) $\frac{W}{O P T} \leq f$

Recall that $\bar{x}_{S} \geq \frac{1}{f}$ for each $S \in C$
$W=\sum_{S \in C} w(S) \leq \overline{\bar{x}}_{s} \geq \frac{1}{f} \leq \sum_{S \in C} w(S) \cdot \bar{x}_{S} \cdot f \leq f \sum_{S \in C} w(S) \cdot \bar{x}_{S}$
$\leq f \sum_{S \in F} w(S) \cdot \bar{x}_{S}=f \cdot \bar{W} \leq f \cdot O P T \quad(\bar{W} \leq O P T \leq W)$

Randomized rounding for WSC

Randomized Rounding

Solve the LP-relaxation in O (poly|l|) time
\rightarrow Fractional solution x^{*} of cost Z^{*} LP
For each subset S_{j} set $x_{j}=1$ with probability $x^{*}{ }_{j}$, independently
X_{j} : random variable that is 1 if subset S_{j} is taken and 0 otherwise
$\operatorname{Pr}\left[X_{j}=1\right]=x^{*}{ }_{j}$

Then the expected value of the solution is:
$E\left[\sum_{j=1}^{m} w_{j} X_{j}\right]=\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[X_{j}=1\right]=\sum_{j=1}^{m} w_{j} x_{j}^{*}=Z_{L P}^{*}$,

Randomized rounding for WSC

Is such a solution a set cover ?

What is the probability that an element e_{i} is not covered?

$$
\begin{array}{rlr}
\operatorname{Pr}\left[e_{i} \text { not covered }\right] & =\prod_{j: e_{i} \in S_{j}}\left(1-x_{j}^{*}\right) & 1-x \leq e^{-x} \\
& \leq \prod_{j: e_{i} \in S_{j}} e^{-x_{j}^{*}} & \\
& =e^{-\sum_{j: e_{i} \in S_{j} x_{j}^{*}}} \\
& \leq e^{-1}, & \sum_{j: e_{i} \in S_{j}} x_{j}^{*} \geq 1
\end{array}
$$

constant and too high ...

Randomized rounding for WSC

Produce a cover whp

Repeat $\mathbf{c} \ln n$ times: For each subset S_{j} set $x_{j}=1$ with probability $x^{*}{ }_{j}$ Return the union of the sets taken
Now,

$$
\begin{aligned}
\operatorname{Pr}\left[e_{i} \text { not covered }\right] & =\prod_{j: e_{i} \in S_{j}}\left(1-x_{j}^{*}\right)^{c \ln n} \\
& \leq \prod_{j: e_{i} \in S_{j}} e^{-x_{j}^{*}(c \ln n)} \\
& =e^{-(c \ln n) \sum_{j: e_{i} \in S_{j}} x_{j}^{*}} \\
& \leq \frac{1}{n^{c}},
\end{aligned}
$$

and for $\mathrm{c} \geq 2$ we get a cover whp as
$\operatorname{Pr}[$ there exists an uncovered element $] \leq \sum_{i=1}^{n} \operatorname{Pr}\left[e_{i}\right.$ not covered $] \leq \frac{1}{n^{c-1}}$.

Randomized rounding for WSC

Bound the cost of the solution

As we repeat $\mathrm{c} \ln \mathrm{n}$ we have $\operatorname{Pr}\left[\mathrm{X}_{\mathrm{j}}=1\right] \leq(\mathrm{c} \ln \mathrm{n}) \mathrm{x}^{*}{ }_{\mathrm{j}}$, and

$$
\begin{aligned}
E\left[\sum_{j=1}^{m} w_{j} X_{j}\right] & =\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[X_{j}=1\right] \\
& \leq \sum_{j=1}^{m} w_{j}(c \ln n) x_{j}^{*} \\
& =(c \ln n) \sum_{j=1}^{m} w_{j} x_{j}^{*}=(c \ln n) Z_{L P}^{*}
\end{aligned}
$$

But we are interested in the cost of the solution given that a cover is produced whp (fact F). that is

$$
\begin{equation*}
E\left[\sum_{j=1}^{m} w_{j} X_{j}\right]=E\left[\sum_{j=1}^{m} w_{j} X_{j} \mid F\right] \operatorname{Pr}[F]+E\left[\sum_{j=1}^{m} w_{j} X_{j} \mid \bar{F}\right] \operatorname{Pr}[\bar{F}] \tag{*}
\end{equation*}
$$

Randomized rounding for WSC

Bound the cost of the solution

From (*) we get
$E\left[\sum_{j=1}^{m} w_{j} X_{j} \mid F\right]=\frac{1}{\operatorname{Pr}[F]}\left(E\left[\sum_{j=1}^{m} w_{j} X_{j}\right]-E\left[\sum_{j=1}^{m} w_{j} X_{j} \mid \bar{F}\right] \operatorname{Pr}[\bar{F}]\right)$

$$
\begin{array}{lr}
\leq \frac{1}{\operatorname{Pr}[F]} \cdot E\left[\sum_{j=1}^{m} w_{j} X_{j}\right] & E\left[\sum_{j=1}^{m} w_{j} X_{j} \mid \bar{F}\right] \geq 0 \\
\leq \frac{(c \ln n) Z_{L P}^{*}}{1-\frac{1}{n^{c-1}}} & \operatorname{Pr}[F] \geq 1-\frac{1}{n^{c-1}}
\end{array}
$$

$$
\leq 2 c(\ln n) Z_{L P}^{*}
$$

$$
\text { for } n \geq 2 \text { and } c \geq 2 \text {. }
$$

That is a randomized $\mathrm{O}(\log \mathrm{n})$-approximation algorithm !

Randomized algorithms for MAX SAT

Set each variable TRUE with probability $p=\ldots$
X=\# of satisfied clauses
X_{j} : random variable that is 1 if clause C_{j} is satisfied and 0 otherwise
$E\left[X_{j}\right]=\operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $]$
$E[X]=E\left[\sum_{j=1}^{m} X_{j}\right]=\sum_{j=1}^{m} E[X j]=\sum_{j=1}^{m} \operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $]$

Randomized algorithms R1 and R2

Algorithm R1: Set each variable TRUE with probability $p=1 / 2$
k : \# of literals in clause C_{j}
$E\left[X_{i}\right]=\operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $]=1-\frac{1}{2^{k}}=\mathrm{a}_{k} \geq \frac{1}{2}($ for $\mathrm{k}=1)$
$E[X]=\sum_{j=1}^{m} \operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $] \geq \frac{1}{2} m \geq \frac{1}{2} O P T$

Algorithm R2: Set each variable TRUE with probability $p \geq 1 / 2$
$E\left[X_{i}\right]=\operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $]=\frac{\sqrt{5}-1}{2}=0,618$
$E[X]=\sum_{j=1}^{m} \operatorname{Pr}\left[\right.$ Clause C_{j} satisfied $] \geq 0,618 m \geq 0,618 O P T$

Algorithm LP

for each variable $\mathrm{x}_{\mathrm{i}}: y_{i}=\left\{\begin{array}{lr}0, & F A L S E \\ 1, & T R U E\end{array}\right.$
for each clause $\mathrm{C}_{\mathrm{j}}: \quad z_{j}=\left\{\begin{array}{c}0, F A L S E \\ 1, \\ \hline\end{array}\right] \quad$ IP binary variables
for a clause c: $\left\{\begin{array}{ll}P_{c} & \text { positive variables } \\ N_{c} & \text { negative variables }\end{array} \quad C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}\right.$
for $z_{c}=1\left\{\begin{array}{l}\text { at least one variable in } P_{c} \text { is } 1 \\ \mathrm{OR} \text { at least one variable in } N_{c} \text { is } 0\end{array}\right.$

Algorithm LP

(IP) $\quad \max \sum_{j=1}^{m} z_{j}$
$\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, \forall C_{j}$
$z_{j} \in\{0,1\}, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m}\left(\forall\right.$ clause $\left.C_{j}\right)$
$y_{i} \in\{0,1\}, \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \quad\left(\forall\right.$ variable $\left.\mathrm{x}_{i}\right)$

Relax y_{i}, z_{j} and solve LP
x_{i}^{*}, y_{j}^{*} : optimal solution of $\operatorname{cost} \mathrm{Z}_{\mathrm{LP}}^{*} \geq \mathrm{Z}_{\mathrm{IP}}^{*}=O P T$
Rounding : Set each x_{i} TRUE with probability y_{i}^{*}, independently

Algorithm LP

$\operatorname{Pr}\left[\right.$ clause C_{j} not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$

$$
\frac{\sqrt[k]{\prod_{i=1}^{k} a_{i}} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}}{\mathbf{\alpha}_{\mathrm{i}} \geq 0, \mathrm{i}=1,2, \ldots, \mathrm{k}}
$$

$\operatorname{Pr}\left[\right.$ clause C_{j} not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \leq\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}}$

$$
\begin{aligned}
& =\left[1-\frac{1}{l_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{l_{j}} \\
& \leq\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}
\end{aligned}
$$

Algorithm LP

$\operatorname{Pr}\left[\right.$ clause C_{j} satisfied $] \geq 1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}}$
$g(z)=1-\left(1-\frac{z}{k}\right)^{k}$

$$
\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k}
$$

$g(z)$ concave function of $z, g(0)=0, g(1)=\beta_{k} \Rightarrow g(z) \geq \beta_{k} z, z \in[0,1]$ Hence,
$\operatorname{Pr}\left[\right.$ clause C_{j} satisfied $] \geq 1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{\mathrm{j}}} \geq\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*}=\beta_{j} z_{j}^{*}$

$$
\beta_{j}=1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}
$$

(1$)^{t^{\prime}} \quad$ Algorithm LP
$\beta_{j}=1-\left(1-\frac{1}{l_{j}}\right)$ is a decreasing function of l_{j}
Assume that all clauses have at most k literals, i.e. $\mathrm{l}_{\mathrm{j}} \leq \mathrm{k}$
$E[W]=\sum_{j=1}^{m} E\left[w_{j}\right]=\sum_{j=1}^{m} \operatorname{Pr}\left[C_{j}=1\right] \geq \beta_{j} \sum_{j=1}^{m} z_{j}^{*} \geq \beta_{k} Z_{L P}^{*} \geq \beta_{k} O P T$
Ratio $\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k} \quad E[W] \quad O P T \quad Z_{L P}^{*}$
$\left(1-\frac{1}{k}\right)^{k}<\frac{1}{e}, \forall k \in Z^{+}$, that is $\beta_{k}>1-\frac{1}{e}=0,632$

$$
E[W] \geq 0.632 O P T
$$

Algorithm LP, $\gamma=3 / 4$

(LP) $\quad \max \sum_{j=1}^{m} z_{j}$
$\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, \forall C_{j}$

$$
z_{j} \in\{0,1\}, \quad \mathrm{j}=1,2, \ldots, \mathrm{~m} \quad\left(\forall \text { clause } C_{j}\right)
$$

$$
y_{i} \in\{0,1\}, \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \quad\left(\forall \text { variable } \mathrm{x}_{i}\right)
$$

$$
\phi=\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right) \wedge\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right)
$$

LP returns $\quad y_{i}^{*}=1 / 2, \forall i, \quad z_{j}^{*}=1, \forall j, \quad Z_{\mathrm{LP}}^{*}=4$

But $\mathrm{OPT}=3$ and hence $\quad \gamma=\frac{3}{4}$

Algorithms R1 + LP

Run both and return the best (or run either R1 or LP uniformly at random)
Consider a clause C_{j} containing k literals

$$
\begin{aligned}
& \mathrm{R} 1: E\left[X_{j} \mid R 1\right] \geq a_{k} \geq a_{k} z_{j}^{*}\left(\text { as } z_{j}^{*} \leq 1\right) \\
& \mathrm{LP}: E\left[X_{j} \mid L P\right] \geq \beta_{k} z_{j}^{*} \\
& E\left[X_{j}\right]=\max \left\{E\left[X_{j} \mid R 1\right], E\left[X_{j} \mid L P\right]\right\}
\end{aligned}
$$

$$
\geq \frac{1}{2}\left(E\left[X_{j} \mid R 1\right]+E\left[X_{j} \mid L P\right]\right\}=\frac{a_{k}+\beta_{k}}{2} z_{j}^{*}
$$

$\left.\begin{array}{l}a_{1}+\beta_{1}=a_{2}+\beta_{2}=\frac{3}{2}, k=1,2 \\ a_{k}+\beta_{k} \geq \frac{7}{8}+\left(1-\frac{1}{e}\right) \geq \frac{3}{2}, \forall k \geq 3\end{array}\right\} \Rightarrow E\left[X_{j}\right] \geq \frac{3}{4} z_{j}^{*}, \forall k$
Hence, $E[X]=\sum_{j=1}^{m} E\left[X_{j}\right]=\frac{3}{4} \sum_{j=1}^{m} z_{j}^{*}=\frac{3}{4} Z_{L P}^{*} \geq \frac{3}{4} O P T$

Achieving y without using Algo R1

Non-linear randomized rounding
$g(y)$ a function $1-4^{-y} \leq g(y) \leq 4^{y-1}$, for $y \in[0,1]$
\rightarrow Set x_{i} to 1 with probability $g\left(y_{i}^{*}\right)$
If $C=x_{1} \vee x_{2} \vee \ldots \vee x_{k}$
$\operatorname{Pr}\left[C_{j}=1\right]=1-\prod_{i=1}^{k}\left(1-g\left(y_{i}^{*}\right)\right) \geq 1-\prod_{i=1}^{k} 4^{-y_{i}^{*}}=1-4^{\left(-\sum_{i=1}^{k} y_{i}^{*}\right)}$
$\geq 1-4^{-z_{j}^{*}} \geq 1-4^{-1} \geq \frac{3}{4} \geq \frac{3}{4} z_{j}^{*}$
$E[W]=\sum_{j=1}^{m} \operatorname{Pr}[c=1] \geq \frac{3}{4} \sum_{j=1}^{m} z_{j}^{*}=\frac{3}{4} Z_{L P}^{*} \geq \frac{3}{4} O P T$
This generalizes to any form of clauses

