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Optimization problems:  Find a solution that is
i. Feasible:  satisfies certain constraints,  and 
ii. Best possible (optimal),  with respect to some well-defined criterion, 

among all feasible solutions  

Linear programming:  A broad class of optimization problems, where     
both the constraints and the optimization criterion are linear functions.

In other words:
Assign  values to a set of variables  x1, x2,…, xn,  so as:
i. satisfy a set of linear equations/ inequalities  (constraints) on them  
ii. Maximize/minimize a given linear objective function of them. 

Almost all the problems we have seen so far

Intro
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Example:  A company has two products 1 and 2 with profits $1 and $6.
The daily demand for their products are  200 pieces of product 1 and  
300 pieces of product 2.  They can also produce 400 pieces of both 
products per day.
How much of each should they produce to maximize their profit?

Variables: x1 and x2 pieces of products

Linear program:

Intro
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Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the objective
function: x1 + 6x2 = c for different values of the profit c.
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Optimum point
Profit = $1900

$1 each, and x2 boxes of Nuit, at a more substantial profit of $6 apiece; x1 and x2 are unknown
values that we wish to determine. But this is not all; there are also some constraints on x1 and
x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
Nuit. Also, the current workforce can produce a total of at most 400 boxes of chocolate per day.
What are the optimal levels of production?
We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.
We want to find the point in this polygon at which the objective function—the profit—is

maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move
the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.

190
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Geometry   
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More products
Intro
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Figure 7.2 The feasible polyhedron for a three-variable linear program.
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Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to
Luxe. The old constraints on x1 and x2 persist, although the labor restriction now extends to
x3 as well: the sum of all three variables can be at most 400. What’s more, it turns out that
Nuit and Luxe require the same packaging machinery, except that Luxe uses it three times
as much, which imposes another constraint x2 + 3x3 ≤ 600. What are the best possible levels
of production?
Here is the updated linear program.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

The space of solutions is now three-dimensional. Each linear equation defines a 3D plane,
and each inequality a half-space on one side of the plane. The feasible region is an intersection
of seven half-spaces, a polyhedron (Figure 7.2). Looking at the figure, can you decipher which
inequality corresponds to each face of the polyhedron?
A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c. As c increases, this profit-plane

moves parallel to itself, further and further into the positive orthant until it no longer touches
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• The  optimum is achieved at a vertex of the feasible region

• The only exceptions are cases in which there is no optimum

1. The LP is infeasible 
too tight constraints; impossible to satisfy all of them
e.g.  x1≤1, x1≥2

2. The LP is unbounded;
too loose constraints;  the feasible region is unbounded
e.g.   arbitrarily high objective values

max x1 + x2

x1,x2 ≥0 

Intro
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LP’s  can be solved by the Simplex Method [G. Dantzig, 1947]
• Starts at a vertex,  say (0, 0)
• Repeatedly looks for an adjacent vertex 

of better objective value
• Halts upon reaching a vertex that has 

no better neighbor and declares it as optimal

Does hill-climbing on the vertices of the polygon, 
from neighbor to neighbor so as to steadily 
increase profit along the way (Local Search) 

Why does its local test imply global optimality? 
By simple geometry—think of the profit line passing through this  
vertex. Since all the vertex’s neighbors lie below the line, the rest of 
the feasible polygon must also lie below this line. 

Intro
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It is a general rule of linear programs that the optimum is achieved at a vertex of the
feasible region. The only exceptions are cases in which there is no optimum; this can happen
in two ways:

1. The linear program is infeasible; that is, the constraints are so tight that it is impossible
to satisfy all of them. For instance,

x ≤ 1, x ≥ 2.

2. The constraints are so loose that the feasible region is unbounded, and it is possible to
achieve arbitrarily high objective values. For instance,

max x1 + x2

x1, x2 ≥ 0

Solving linear programs
Linear programs (LPs) can be solved by the simplex method, devised by George Dantzig in
1947. We shall explain it in more detail in Section 7.6, but briefly, this algorithm starts at a
vertex, in our case perhaps (0, 0), and repeatedly looks for an adjacent vertex (connected by
an edge of the feasible region) of better objective value. In this way it does hill-climbing on
the vertices of the polygon, walking from neighbor to neighbor so as to steadily increase profit
along the way. Here’s a possible trajectory.

100

300

200

100 2000

Profit $1900

$0 $200

$1400

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal and
halts. Why does this local test imply global optimality? By simple geometry—think of the
profit line passing through this vertex. Since all the vertex’s neighbors lie below the line, the
rest of the feasible polygon must also lie below this line.

More products
Encouraged by consumer demand, the chocolatier decides to introduce a third and even more
exclusive line of chocolates, called Pyramide Luxe. One box of these will bring in a profit of $13.

191
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Simplex Method [G. Dantzig, 1947]. 
More products

It would move from vertex to vertex, 
along edges of the polyhedron, 
increasing profit steadily. 

Again by basic geometry, 
if all the vertex’s neighbors 
lie on one side of the profit-plane, 
then so must the entire polyhedron

A possible trajectory 
Vertices: (0,0,0) → (200,0,0) → (200,200,0) → (200,0,200) → (0,300,100) 
Profits         $0            $200             $1400              $2800              $3100 

Intro
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Figure 7.2 The feasible polyhedron for a three-variable linear program.
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Variants of LP’s
• The objective can be Maximization or Minimization 
• The constraints can be equations and/or inequalities.
• The variables can be restricted to be nonnegative, 

but they can also be unrestricted in sign 

All LP’s variants can be reduced to one another  
• Maximization  → Minimization (or vice versa):

Multiply the coefficients of the objective function by −1

• Inequality constraint    →  equality constraint 

s is a new variable called slack variable for the inequality

Intro
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We will now show that these various LP options can all be reduced to one another via simple
transformations. Here’s how.

1. To turn a maximization problem into a minimization (or vice versa), just multiply the
coefficients of the objective function by −1.

2a. To turn an inequality constraint like ∑n
i=1 aixi ≤ b into an equation, introduce a new

variable s and use
n∑

i=1

aixi + s = b

s ≥ 0.

This s is called the slack variable for the inequality. As justification, observe that a
vector (x1, . . . , xn) satisfies the original inequality constraint if and only if there is some
s ≥ 0 for which it satisfies the new equality constraint.

2b. To change an equality constraint into inequalities is easy: rewrite ax = b as the equiva-
lent pair of constraints ax ≤ b and ax ≥ b.

3. Finally, to deal with a variable x that is unrestricted in sign, do the following:

• Introduce two nonnegative variables, x+, x− ≥ 0.
• Replace x, wherever it occurs in the constraints or the objective function, by x+−x−.

This way, x can take on any real value by appropriately adjusting the new variables.
More precisely, any feasible solution to the original LP involving x can be mapped to a
feasible solution of the new LP involving x+, x−, and vice versa.

By applying these transformations we can reduce any LP (maximization or minimization,
with both inequalities and equations, and with both nonnegative and unrestricted variables)
into an LP of a much more constrained kind that we call the standard form, in which the
variables are all nonnegative, the constraints are all equations, and the objective function is
to be minimized.
For example, our first linear program gets rewritten thus:

max x1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

=⇒

min −x1 − 6x2

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + s3 = 400

x1, x2, s1, s2, s3 ≥ 0

The original was also in a useful form: maximize an objective subject to certain inequalities.
Any LP can likewise be recast in this way, using the reductions given earlier.
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All LP’s variants  can be reduced to one another 
• Equality constraint →  Inequalities 

Rewrite an equality constraint as an equivalent pair 
of inequality constraints 

ax = b               ax ≤ b 
ax ≥ b

• Unrestricted in sign variable x →  nonnegative variable(s)
Introduce two nonnegative variables, x+, x− ≥ 0
Replace   x, wherever it appears  

by x+ − x−

Thus, x can take any value by appropriately adjusting x+ and x−.
(any feasible solution to the original LP involving x can be
mapped to a feasible solution of the new LP involving x+ , x−, 
and vice versa)

Intro
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Any LP (maximization or minimization, with both inequalities and 
equations, and with both nonnegative and unrestricted variables)         
can be  transformed to an equivalent  standard form LP                           
in which the variables are all nonnegative, the constraints are all 
equations, and the objective function is to be minimized

The original here is also in a useful form: 
maximize an objective subject to certain inequalities

Intro
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Matrix-vector notation of LP’s  

LP is polynomial
n:  # of variables 
m: # of constraints
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Integer (Linear) Programming (IP)

The variables are restricted to be integers

IP is NP-complete; via a simple reduction from 3-SAT

All the NP-complete problems we have seen can be written as IP’s,            
so, they all reduce to IP  
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Integer Programming Formulations
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Rounding and Integrality gap
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Rounding

Algorithm Rounding achieves an approximation ratio of  2  for the WVC problem

Deterministic rounding for WVC
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Algorithm Rounding achieves an approximation ratio of  2  for WVC 

Proof:   
Let C be the collection of sets picked

i) C is a valid VC

Deterministic rounding for WVC
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Deterministic rounding for WVC
Algorithm Rounding achieves a 2-approximation ratio for WVC 

Proof:   
Let C be the collection of sets picked
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Integrality gap
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Rounding

Algorithm Rounding achieves an approximation ratio 
of  f  for the WSC problem

Deterministic rounding for WSC
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Deterministic rounding for WSC
Algorithm Rounding achieves an f-approximation ratio for WSC 

Proof:   
Let C be the collection of sets picked

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 04 – LP ROUNDING

Ssx

Uuxts

xSw

S

SuFS
S

FS
S

Î"Î

Î"³å
å

ÎÎ

Î

],1,0[

,1..

)(min

:

           

       

      
(W)SC



28

Randomized Rounding
Solve the LP-relaxation in O(poly|I|) time

à Fractional solution x* of cost Z*LP

For each subset Sj set xj =1 with probability x*j , independently

Xj : random variable that is 1 if subset Sj is taken and 0 otherwise

Pr[Xj =1] = x*j

Then the expected value of the solution is: 

Randomized rounding for WSC

28 An introduction to approximation algorithms

Theorem 1.14: There exists some constant c > 0 such that if there exists a c lnn-approximation
algorithm for the unweighted set cover problem, then P = NP.

We will discuss results of this sort at more length in Chapter 16; in Theorem 16.32 we show
how a slightly weaker version of these results can be derived. Results of this type are sometimes
called hardness theorems, as they show that it is NP-hard to provide near-optimal solutions for
a certain problem with certain performance guarantees.

The f -approximation algorithms for the set cover problem imply a 2-approximation algo-
rithm for the special case of the vertex cover problem. No algorithm with a better constant
performance guarantee is known at this point in time. Additionally, two hardness theorems,
Theorems 1.15 and 1.16 below, have been shown.

Theorem 1.15: If there exists an α-approximation algorithm for the vertex cover problem with
α < 10

√
5− 21 ≈ 1.36, then P = NP.

The following theorem mentions a conjecture called the unique games conjecture that we
will discuss more in Section 13.3 and Section 16.5. The conjecture is roughly that a particular
problem (called unique games) is NP-hard.

Theorem 1.16: Assuming the unique games conjecture, if there exists an α-approximation
algorithm for the vertex cover problem with constant α < 2, then P = NP.

Thus, assuming P ̸= NP and the NP-completeness of the unique games problem, we have
found essentially the best possible approximation algorithm for the vertex cover problem.

1.7 A randomized rounding algorithm

In this section, we consider one final technique for devising an approximation algorithm for
the set cover problem. Although the algorithm is slower and has no better guarantee than the
greedy algorithm of the previous section, we include it here because it introduces the notion of
using randomization in approximation algorithms, an idea we will cover in depth in Chapter 5.

As with the algorithm in Section 1.3, the algorithm will solve a linear programming relax-
ation for the set cover problem, and then round the fractional solution to an integral solution.
Rather than doing so deterministically, however, the algorithm will do so randomly using a
technique called randomized rounding. Let x∗ be an optimal solution to the LP relaxation. We
would like to round fractional values of x∗ to either 0 or 1 in such a way that we obtain a solution
x̂ to the integer programming formulation of the set cover problem without increasing the cost
too much. The central idea of randomized rounding is that we interpret the fractional value x∗j
as the probability that x̂j should be set to 1. Thus each subset Sj is included in our solution
with probability x∗j , where these m events (that Sj is included in our solution) are independent
random events. We assume some basic knowledge of probability theory throughout this text;
for those who need some additional background, see the notes at the end of the chapter for
suggested references.

LetXj be a random variable that is 1 if subset Sj is included in the solution, and 0 otherwise.
Then the expected value of the solution is

E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦ =
m∑

j=1

wj Pr[Xj = 1] =
m∑

j=1

wjx
∗
j = Z∗

LP ,

or just the value of the linear programming relaxation, which is no more than OPT! As we
will see below, however, it is quite likely that the solution is not a set cover. Nevertheless, this
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Is such a solution a set cover ?
What is the probability that an element ei is not covered?

constant  and   too high …

Randomized rounding for WSC

1.7 A randomized rounding algorithm 29

illustrates why randomized rounding can provide such good approximation algorithms in some
cases, and we will see further examples of this in Chapter 5.

Let us now calculate the probability that a given element ei is not covered by this procedure.
This is the probability that none of the subsets containing ei are included in the solution, or

∏

j:ei∈Sj

(1− x∗j ).

We can bound this probability by using the fact that 1−x ≤ e−x for any x, where e is the base
of the natural logarithm. Then

Pr[ei not covered] =
∏

j:ei∈Sj

(1− x∗j )

≤
∏

j:ei∈Sj

e−x∗
j

= e
−

∑
j:ei∈Sj

x∗
j

≤ e−1,

where the final inequality follows from the LP constraint that
∑

j:ei∈Sj
x∗j ≥ 1. Although e−1 is

an upper bound on the probability that a given element is not covered, it is possible to approach
this bound arbitrarily closely, so in the worst case it is quite likely that this randomized rounding
procedure does not produce a set cover.

How small would this probability have to be in order for it to be very likely that a set cover
is produced? And perhaps even more fundamentally, what is the “right” notion of “very likely”?
The latter question has a number of possible answers; one natural way to think of the situation
is to impose a guarantee in keeping with our focus on polynomial-time algorithms. Suppose
that, for any constant c, we could devise a polynomial-time algorithm whose chance of failure
is at most an inverse polynomial n−c; then we say that we have an algorithm that works with
high probability. To be more precise, we would have a family of algorithms, since it might be
necessary to give progressively slower algorithms, or ones with worse performance guarantees,
to achieve analogously more fail-safe results. If we could devise a randomized procedure such
that Pr[ei not covered] ≤ 1

nc for some constant c ≥ 2, then

Pr[there exists an uncovered element] ≤
n∑

i=1

Pr[ei not covered] ≤
1

nc−1
,

and we would have a set cover with high probability. In fact, we can achieve such a bound in
the following way: for each subset Sj , we imagine a coin that comes up heads with probability
x∗j , and we flip the coin c lnn times. If it comes up heads in any of the c lnn trials, we include

Sj in our solution, otherwise not. Thus the probability that Sj is not included is (1− x∗j )
c lnn.

Furthermore,

Pr[ei not covered] =
∏

j:ei∈Sj

(1− x∗j )
c lnn

≤
∏

j:ei∈Sj

e−x∗
j (c lnn)

= e
−(c lnn)

∑
j:ei∈Sj

x∗
j

≤ 1

nc
,
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Produce a cover whp
Repeat c lnn times:  For each subset Sj set xj =1 with probability x*j

Return the union of the sets taken
Now,

and  for  c³ 2 we get a cover whp as 
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the following way: for each subset Sj , we imagine a coin that comes up heads with probability
x∗j , and we flip the coin c lnn times. If it comes up heads in any of the c lnn trials, we include

Sj in our solution, otherwise not. Thus the probability that Sj is not included is (1− x∗j )
c lnn.

Furthermore,

Pr[ei not covered] =
∏

j:ei∈Sj

(1− x∗j )
c lnn

≤
∏

j:ei∈Sj

e−x∗
j (c lnn)

= e
−(c lnn)

∑
j:ei∈Sj

x∗
j

≤ 1

nc
,
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as desired.
We now only need to prove that the algorithm has a good expected value given that it

produces a set cover.

Theorem 1.17: The algorithm is a randomized O(lnn)-approximation algorithm that produces
a set cover with high probability.

Proof. Let pj(x∗j ) be the probability that a given subset Sj is included in the solution as a

function of x∗j . By construction of the algorithm, we know that pj(x∗j ) = 1 − (1 − x∗j )
c lnn.

Observe that if x∗j ∈ [0, 1] and c lnn ≥ 1, then we can bound the derivative p′j at x∗j by

p′j(x
∗
j ) = (c lnn)(1− x∗j )

(c lnn)−1 ≤ (c lnn).

Then since pj(0) = 0, and the slope of the function pj is bounded above by c lnn on the interval
[0,1], pj(x∗j ) ≤ (c lnn)x∗j on the interval [0,1]. If Xj is a random variable that is 1 if the subset
Sj is included in the solution, and 0 otherwise, then the expected value of the random procedure
is

E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦ =
m∑

j=1

wj Pr[Xj = 1]

≤
m∑

j=1

wj(c lnn)x
∗
j

= (c lnn)
m∑

j=1

wjx
∗
j = (c lnn)Z∗

LP .

However, we would like to bound the expected value of the solution given that a set cover
is produced. Let F be the event that the solution obtained by the procedure is a feasible set
cover, and let F̄ be the complement of this event. We know from the previous discussion that
Pr[F ] ≥ 1− 1

nc−1 , and we also know that

E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦ = E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F

⎤

⎦Pr[F ] + E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦Pr[F̄ ],

Since wj ≥ 0 for all j,

E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦ ≥ 0.

Thus

E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F

⎤

⎦ =
1

Pr[F ]

⎛

⎝E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦− E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦Pr[F̄ ]

⎞

⎠

≤ 1

Pr[F ]
· E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦

≤ (c lnn)Z∗
LP

1− 1
nc−1

≤ 2c(lnn)Z∗
LP
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However, we would like to bound the expected value of the solution given that a set cover
is produced. Let F be the event that the solution obtained by the procedure is a feasible set
cover, and let F̄ be the complement of this event. We know from the previous discussion that
Pr[F ] ≥ 1− 1
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⎡

⎣
m∑
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wjXj

∣∣∣∣∣∣
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⎤
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⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦Pr[F̄ ],

Since wj ≥ 0 for all j,

E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦ ≥ 0.

Thus

E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F

⎤

⎦ =
1

Pr[F ]

⎛

⎝E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦− E

⎡

⎣
m∑

j=1

wjXj

∣∣∣∣∣∣
F̄

⎤

⎦Pr[F̄ ]

⎞

⎠

≤ 1

Pr[F ]
· E

⎡

⎣
m∑

j=1

wjXj

⎤

⎦

≤ (c lnn)Z∗
LP

1− 1
nc−1

≤ 2c(lnn)Z∗
LP
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⎦ = E

⎡
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wjXj

∣∣∣∣∣∣
F
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⎦Pr[F ] + E

⎡
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j=1

wjXj

∣∣∣∣∣∣
F̄
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Since wj ≥ 0 for all j,

E

⎡

⎣
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⎣
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F̄
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⎠
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Pr[F ]
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⎣
m∑

j=1

wjXj
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⎦
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⎠
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⎣
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for n ≥ 2 and c ≥ 2.

While in this case there is a simpler and faster approximation algorithm that achieves a bet-
ter performance guarantee, we will see in Chapter 5 that sometimes randomized algorithms are
simpler to describe and analyze than deterministic algorithms. In fact, most of the randomized
algorithms we present in this book can be derandomized: that is, a deterministic variant of them
can be created that achieves the expected performance guarantee of the randomized algorithm.
However, these deterministic algorithms are sometimes more complicated to describe. In addi-
tion, there are some cases in which the deterministic variant is easy to state, but the only way
in which we know how to analyze the algorithm is by analyzing a corresponding randomized
algorithm.

This brings us to the end of our introduction to approximation algorithms. In subsequent
chapters, we will look at the techniques introduced here – as well as a few others – in greater
depth, and see their application to many other problems.

Exercises

1.1 In the set cover problem, the goal is to find a collection of subsets indexed by I that
minimizes

∑
j∈I wj such that ∣∣∣∣∣∣

⋃

j∈I
Sj

∣∣∣∣∣∣
= |E|.

Consider the partial cover problem, in which one finds a collection of subsets indexed by
I that minimizes

∑
j∈I wj such that

∣∣∣∣∣∣

⋃

j∈I
Sj

∣∣∣∣∣∣
≥ p|E|,

where 0 < p < 1 is some constant.

(a) Give a polynomial-time algorithm to find a solution to the partial cover problem in
which the value is no more than c(p) · OPT, where c(p) is a constant that depends
on p, and OPT is the value of the optimal solution to the set cover problem.

(b) Give an f(p)-approximation algorithm for the partial cover problem, such that f is
nondecreasing in p and f(1) ≤ H|E|.

1.2 In the directed Steiner tree problem, we are given as input a directed graph G = (V,A),
nonnegative costs cij ≥ 0 for arcs (i, j) ∈ A, a root vertex r ∈ V , and a set of terminals
T ⊆ V . The goal is to find a minimum-cost tree such that for each i ∈ T there exists a
directed path from r to i.

Prove that for some constant c there can be no c log |T |-approximation algorithm for the
directed Steiner tree problem, unless P = NP.

1.3 In the metric asymmetric traveling salesman problem, we are given as input a complete
directed graph G = (V,A) with costs cij ≥ 0 for all arcs (i, j) ∈ A, such that the arc costs
obey the triangle inequality: for all i, j, k ∈ V , we have that cij + cjk ≥ cik. The goal is
to find a tour of minimum cost; that is, a directed cycle that contains each vertex exactly
once, such that the sum of the cost of the arcs in the cycle is minimized.
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MAX SAT 
I:  A  CNF formula φ
Q: Find an assignment satisfying the 

maximum number of  clauses 



Set each variable TRUE with probability p=…

X=# of satisfied clauses

Xj : random variable that is 1 if clause Cj is satisfied and 0 otherwise

E[Xj] = Pr[Clause Cj satisfied]
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Randomized algorithms for MAX SAT
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Algorithm R1:   Set each variable TRUE with probability  p=½

--------------------------------------------------------------------------------
Algorithm R2:   Set each variable TRUE with probability  p ³ ½
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Randomized algorithms R1 and R2
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IP binary variables 



Algorithm LP
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αi ³0, i=1,2,…,k



g(z)  concave function of z,  g(0) = 0,  g(1) = βk   Þ g(z) ³ βk z, z Î[0,1]
Hence, 
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Algorithm LP, γ = 3/4
(LP)	

LP	returns	

But			OPT=3			and		hence			

)()()()( 21212121 xxxxxxxx ÚÙÚÙÚÙÚ=f

4   Z,,1     ,,2/1 *
LP

** ="="= jziy ji

 
4
3

=g

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 04 – LP ROUNDING 41

) x variable(n   1,2,...,i    ,}1,0{

)  clause (  m1,2,...,j   ,}1,0{

,)1(

max
1

ii

jj

j
Ni

ji
Pi

i

m

j
j

y
Cz

Czyy

z

jj

"=Î

"=Î

"³-+åå

å

ÎÎ

=



Algorithms  R1 + LP
Run	both	and	return	the	best	(or	run	either	R1	or	LP	uniformly	at	random)
Consider	a	clause	Cj containing	k	literals

Hence,
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Achieving γ without using Algo R1
Non-linear	randomized	rounding
g(y)	a	function																																												for	

à Set								to	1	with	probability												
If

analyze	g(y)
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This	generalizes	to	any															
form	of	clauses		


