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Intro

Optimization problems: Find a solution that is

I. Feasible: satisfies certain constraints, and

ii. Best possible (optimal), with respect to some well-defined criterion,
among all feasible solutions

Linear programming: A broad class of optimization problems, where
both the constraints and the optimization criterion are linear functions.

In other words:
Assign values to a set of variables x4, X,,..., X,, SO as:

I. satisfy a set of linear equations/ inequalities (constraints) on them
ii. Maximize/minimize a given linear objective function of them.

Almost all the problems we have seen so far
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Intro

Example: A company has two products 1 and 2 with profits $1 and $6.

The daily demand for their products are 200 pieces of product 1 and
300 pieces of product 2. They can also produce 400 pieces of both

products per day.
How much of each should they produce to maximize their profit?

Variables: x4, and x, pieces of products

Linear program:

Objective function max x1 + 629
Constraints x1 < 200
ro < 300
x1 + 19 < 400

x1,29 > 0
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Intro
Geometry

Objective function max x1 + 629
r1 < 200
zo < 300
1 + xo <400
x1,x2 >0

Constraints
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Intro

More products

max x1 + 6xg + 1373
r1 < 200
xo < 300
1 + x2 + 23 < 400
x9 + 3x3 < 600

L1,T2,T3 Z 0

/
/
/
/
/

T3

Each constraint corresponds
to a face of the polyhedron
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Intro

« The optimum is achieved at a vertex of the feasible region

« The only exceptions are cases in which there is no optimum

1. The LP is infeasible
too tight constraints; impossible to satisfy all of them
e.g. X4=1, x422

2. The LP is unbounded;
too loose constraints; the feasible region is unbounded
e.g. arbitrarily high objective values
max X, + X,
X4,Xo 20
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Intro

LP’s can be solved by the Simplex Method [G. Dantzig, 1947]
« Starts at a vertex, say (0, 0)

« Repeatedly looks for an adjacent vertex 500 Profit $1900
of better objective value
» Halts upon reaching a vertex that has
no better neighbor and declares it as optimal 200 $1400
100 A
Does hill-climbing on the vertices of the polygon,
from neighbor to neighbor so as to steadily
increase profit along the way (Local Search) $05 e 230$200

Why does its local test imply global optimality?
By simple geometry—think of the profit line passing through this
vertex. Since all the vertex’s neighbors lie below the line, the rest of
the feasible polygon must also lie below this line.
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Intro

Simplex Method [G. Dantzig, 1947].
More products

It would move from vertex to vertex,
along edges of the polyhedron,
increasing profit steadily.

Again by basic geometry,

if all the vertex’s neighbors

lie on one side of the profit-plane,
then so must the entire polyhedron

A possible trajectory
Vertices: (0,0,0) — (200,0,0) — (200,200,0) — (200,0,200) — (0,300,100)
Profits $0 $200 $1400 $2800 $3100

ALMA / ALGORITHMS / Fall 2016/ I. MILIS / 04 — LP ROUNDING 8



Intro

Variants of LP’s

» The objective can be Maximization or Minimization

« The constraints can be equations and/or inequalities.

« The variables can be restricted to be nonnegative,
but they can also be unrestricted in sign

All LP’s variants can be reduced to one another
« Maximization — Minimization (or vice versa):
Multiply the coefficients of the objective function by -1

* Inequality constraint — equality constraint

n mn
Zi:l Qi Lq < b Zaiazi—ks = b
=1
s > 0.

S is a new variable called slack variable for the inequality
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Intro

All LP’s variants can be reduced to one another
« Equality constraint — Inequalities
Rewrite an equality constraint as an equivalent pair
of inequality constraints
ax=>b ax<b
ax=b

« Unrestricted in sign variable x — nonnegative variable(s)
Introduce two nonnegative variables, x*, x= =20
Replace x, wherever it appears
by x* — x~
Thus, x can take any value by appropriately adjusting x* and x".

(any feasible solution to the original LP involving x can be
mapped to a feasible solution of the new LP involving x* , x~,
and vice versa)
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Intro

Any LP (maximization or minimization, with both inequalities and
equations, and with both nonnegative and unrestricted variables)
can be transformed to an equivalent standard form LP
In which the variables are all nonnegative, the constraints are all
equations, and the objective function is to be minimized

max x1 + 6x9 min —x] — 6x9
x1 < 200 x1 + 51 = 200
xo < 300 — T2 + s9 = 300
r1 + x9 < 400 x1 + x2 + s3 = 400
xr1,x2 > 0 T1,T2,81,82,83 > 0

The original here is also in a useful form:
maximize an objective subject to certain inequalities
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Matrix-vector notation of LP’s

max x, +6x,
st x;, <200
x, <300
x, +x, <400

X;,%, 20

T

max € X

Ax < Db
x = 0.

LP is polynomial

C= (1> and x = (11)
6 4 ))

” < 20 1o\ 200
2 < 300 0 1 (m) < [300].

2y < 400 11 400
N—— N——

A X < b

n: # of variables
m: # of constraints

Method | Typical cost | Worst case cost
Simplex O(n*m)
Ellipsoid O(n®) O(n®)

Very bad - Not polynomial

Everything vou need to know about solving linear programs
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Integer (Linear) Programming (IP)

max x, + 6x, T 1 z

st. x, <200 max ¢ X °° (6) and x = (a:z)
x, <300 Ax < b » < 200 1o\ 200
X, +x, <400 — mo<oan = [01) (2) < (o).
S— < 11 400

EEE <o o LET
— A X b

VAN

The variables are restricted to be integers

IP Is NP-complete; via a simple reduction from 3-SAT

All the NP-complete problems we have seen can be written as IP’s,
so, they all reduce to IP
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Integer Programming Formulations

To formulate a problem as an integer program (IP), in general,
we assign a binary variable x; to items to be included in a solution

i

{1, if item 7 is in a solution

0, otherwise

0-1 KNAPSACK
max Z v(s)x,

x, €10,1},Vse S
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Integer Programming Formulations

To formulate a problem as an integer program (IP), in general,
we assign a binary variable x; to items to be included in a solution

i

I, 1fitemi 1s1n a solution
X =
0, otherwise

CLIQUE, G=(V,E) IndSet, G =(V,E)
max ) x, max Y x,
uelV uelV
st X, +x, <LV(u,v)EE st x,+x, <1,V(u,v)
x, €0,15,Vu eV x, €{01},YueV
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Integer Programming Formulations

To formulate a problem as an integer program (IP), in general,
we assign a binary variable x; to items to be included in a solution

i

1, 1f itemiisina solution
X =
0, otherwise

(W)VC, G=(V,E) (W)SC

min Z w(u)-x, min Z w(S) X
uelV SeF

s.t. x, +x, 2L, V(u,v)eE s.t. ZXS >1,YVuelU
x, €{0,1},YuelV Sefues

x, €1{0,1},Vs e S
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Integer Programming Formulations

To formulate a problem as an integer program (IP), in general,
we assign a binary variable x; to items to be included in a solution

i

et if itemiisina solution
|0, otherwise

KNAPSACK CLIQUE, G=(VE) IndSet, G=(V,E)
max Zv(s)xs max qu max Z X,
ses uey uel
s.t. ZW(S)'XS <W st x,+x, <LV(u,v)gFE st. x,+x, <1,V(u,v)EE
xS e {0,1},VseS ¥, €401}, VueV x, €{0,1},Vu eV
(W)VC, G=(V,E) (W)SC
min Z w(u)-x, min Z w(S)xg
uel’ SeF
s.t. x,+x,2LVu,v)e & o, sz >1.Vuel
X, € {0,1},Vu eV SeFueS

x, €{0,1},Vse S
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LP based
approximation algorithms
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Linear Programming Relaxations

Relax the integer constraint

KNAPSACK CLIQUE, G=(VE) IndSet, G=(V,E)
max Zv(s)xs max qu max qu
sed uey uel
s.t. ZW(S)'XS <W st x,+x, <1L,V(u,v)gE st. x,+x, <1,V(u,v)EE
xS c[0,1].Vs €S 27, Elll e € x, €[0I],Vu el
(W)VC, G=V,E) (W)SC
min ) w(u)-x, min Y w(S)xg
uel’ SeF
s.t. x, +x, 21L,V(u,v)e E o7 sz >1Vuel
x, €[0,1,Vu eV SeFues

x; €[0,1],Vs e S
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Rounding and Integrality gap

Rounding

Solve the LP -relaxation in O(poly|[|) time
— fractional solution x of cost W
Round x to anintegral solution to the IP problem of cost

But J ! |
’ ! | P
/4 OPT /4 W <OPT <W (min problems)

We bound the ratio Z < p, thatis, v <
W OPT

S| S
A
S

Lety:g, then y:OfT
/4 /4

<

SIS

sp

y 1s called integrality gap and always y < p
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Deterministic rounding for WVC
(WWVC, G=(V,E)
min Zw(u)-xu

Rounding uel
s.t. x,+x,2LLV(u,v)e E
Solve the LP -relaxation in 0(poly|[| ) time x, €[0,1],YueV

— fractional solution x, of cost W

If x, > % then x, =1 else x, =0 (pick all vertices with Xu > % )

Algorithm Rounding achieves an approximation ratio of 2 for the WVC problem
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Deterministic rounding for WVC
Algorithm Rounding achieves an approximation ratio of 2 for WVC
Proof: (W)VC’ G=0.E)
Let C be the collection of sets picked min ) w()-x,

s.t. x,+x,2L,V(u,v)e £
x, €[01],YueV

1) Cisavalid VC

Assume that there1s an edge (u,v)e Estu,ve C
That 1s, Xy < 1/2 and x, < 1/2

Hence, Xu + Xy < 1, a contradiction,
as this violates the LP constraint for edge (u, v)

Hence, eitheru e Coru e C and C1sa valid VC

ALMA / ALGORITHMS / Fall 2016 / 1. MILIS / 04 — LP ROUNDING 22



Deterministic rounding for WVC

Algorithm Rounding achieves a 2-approximation ratio for WVC

Proof:
Let C be the collection of sets picked

uel’
11) s.t. x +x, 21, V(u,v)e E
OPT x, €[0,l,YueV

Recall that )_cu 2% for each ueC

W=Zw(u S_ Zw(u) Xu - 2<22w(u) Xu

ueC ueC ueC

<2 W) x,=2-W<2-OPT (W <OPT<W)

uel’
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Deterministic rounding for WVC

Integrality gap (W)VC, G=(V,E)

K.=(V, EXE), |V|=n, min > w(u)-x,

w(u)=1, foreachu € V

s.t. x,+x,2L,V(u,v)e £

OPT= n-1 (all vertices but one) %, €[0.1],vueV

— 1 L
Xu = E,Vu e V(due to symmetry) =W =g

_OPT n-1
W nl?2

— 2
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Deterministic rounding for WSC

(W)SC
Rounding min Y w(S)xg
SeF
s.t. sz >1,VueU
Solve the LP -relaxation in O(poly|I]) time ScFues

x, €[0,1],Vse S

If x5 > 1 then x;, =1 else x, =0 (pick all sets with x5 > 1 )

/

— fractional solution x5 of cost W

Algorithm Rounding achieves an approximation ratio
of f for the WSC problem
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Deterministic rounding for WSC

Algorithm Rounding achieves an approximation ratio of f for WSC

Proof: (W)SC
Let C be the collection of sets picked min ) w(S)x;
SeF
) C is a valid SC st Qg zlvucy

SeFueS

Assume that thereis ueU s.t.ug C xs €[0,1],Vse§

Foreachset S, € F,s.tue§;, wehave xs < 1/f

— 1 1 1
Thatis, xs|<=|{S:ueSt|==f,<—f =1
S;S / / /

A contradiction, as this violates the LP constraint for element «
Hence,u € C and Cisavalid SC
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Deterministic rounding for WSC

Algorithm Rounding achieves an f-approximation ratio for WSC

Proof: (VV)SC
Let C be the collection of sets picked :
min Z w(S)xg
1) <f ScF
OPT s.t. Y xg2LVueU
SeFueS
e[0,1],Vs e §

Recall that ;S > l for each SeC

W(S)-}S YEIDRIOET

SeC

<

g

B

C/)

VAN |v
mM

<FY WS)xs=f-W<f-OPT (W <OPT<W)

SeF
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Randomized rounding for WSC

Randomized Rounding
Solve the LP-relaxation in O(poly|l|) time
- Fractional solution x* of cost Z* | p
For each subset S; set x; =1 with probability x*; , independently

X; . random variable that is 1 if subset S; is taken and 0 otherwise

Pr[XJ =1] - X*j

Then the expected value of the solution is:
E ijXj :ijPr[ijl] :ija:;:Z}iP,
j=1 j=1 j=1
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Randomized rounding for WSC

|s such a solution a set cover ?
What is the probability that an element g; is not covered?

Prle; not covered| = H (1 —x7) l—x<e®
jie €S,
< J] e
J:€; €S
_ o ZdeiEs; T D jieses; Ty = 1
< el

constant and too high ...
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Randomized rounding for WSC

Produce a cover whp
Repeat c Inn times: For each subset S; set x; =1 with probability x*;
Return the union of the sets taken

Now,
Prle; not covered] = r (1— x;)dn"
Jie; €S
< r’ e—x;f(clnn)
Jie; €S
_ lelnn)d e es %5
1
< VS
S e

and for c> 2 we get a cover whp as

n

Pr[there exists an uncovered element| < Z Prle; not covered] <
i=1
ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 04 — LP ROUNDING
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Randomized rounding for WSC

Bound the cost of the solution
As we repeat c Inn we have Pr[X=1]<(cInn)x*, and

E [ijXj = ij PI'[Xj = 1]
7=1 7=1

m
< Z wj(clnn)x;
j=1

= (clnn) ijx;f = (¢lnn)Z; p
j=1

But we are interested in the cost of the solution

given that a cover is produced whp  (factF atis

E > wiX;| =E|Y wX;|F|Pr[F]+E |) w;X;| F| Pr[F]
j=1 j=1 j=1
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Randomized rounding for WSC

Bound the cost of the solution
From (*) we get

E [ijxj F| = Pr[F ( [Zw] } - [ijxj F} Pr[F])
j=1 j=1
< Pr[F Zw] E j;wjxjﬁ >0
(clnn)Z}iP
< 1
L Pr[F] > 1 -1,
< 2¢(Inn)Z;p

for n > 2 and ¢ > 2.

That is a randomized O(log n)-approximation algorithm !
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1>l
20 2
—*Ez_l =0,618
Approximating
<
MAX SAT »
T =0,632
e
MAX SAT
I: A CNF formula ¢
Q: Find an assignment satisfying the 3 0.75
maximum number of clauses 4
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Randomized algorithms for MAX SAT

Set each variable TRUE with probability p=...

X=# of satisfied clauses

X; : random variable that is 1 if clause Cj is satisfied and O otherwise

E[X] = Pr[Clause C; satisfied]

E[X]=

ALMA / ALGORITHMS / Fall 2016 / 1. MILIS / 04 — LP ROUNDING
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2.%)

J=1

= ZE[X]'] = ZPr[Clause C. satistied]

J=1

j=1
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Randomized algorithms R1 and R2

Algorithm R1: Set each variable TRUE with probability p='-
k:# of Iiterals in clause C;

E[X,]=Pr[Clause C; satisfied]=1-——=a, >— (fork—l)

E[X ]:Z r[Clause C; satistied] >
j=l1

Algorithm R2: Set each variable TRUE with probability p > 7%

J5-1

E[X,;]=Pr[Clause C; satistied]= — =0,618

= Pr[Clause C, satisfied] > 0,618m >0,6180PT
j=1
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Algorithm LP

0, FALSE |

for each variablex, : y, =
I, TRUE

— IP binary variables

0, FALSE
l, TRUE |

J

for each clause Cj Lz = {

P positive variables

fora clausec: { Cj = r; V T

N, negative variables

at least one vartablein P 1s1
for z, =

OR at least one variablein N, 1s 0
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Algorithm LP
(IP) manlzj

Zyi + Z(l—yi)ZZj,VCj

ier ieNj
z; €{0,1}, j=12,...,m (Vclause C,)
yv; €01}, 1=12,..,n (V vanablex,)

Relax y,,z; and solve LP
X, y; :optimal solution of cost Z;, > Z., = OPT

Rounding : Set each x, TRUE with probability y;, independently
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Algorithm LP

k k
. 1
Pr[clause C; not satisfied] = H (1—y) H u: X Ha"i < EZ .
i€ P;j iEN; i=1 i=1
a; >0, i=1,2,...,k

Pr[clause C'; not satisfied] = H (1—y;) y: < {ll (Z (1—y)+ Z y;‘)

IGPJ z'GNj

2 Ui+ (1-y) =2 .
i€ P; i€N; < 5
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Algorithm LP B

o1, 8@
Prlclause C; satisfied] > 1-— (1 — I—J) 8(2)
7 I
|
1
k 1 k I
z . ]
g(2)=1—(1—zj ﬁk‘l_(l_Zj 0 1 Z

g(z) concave function of z, g(0) =0, g(1) =By = 9(z) =2 Bz, z €[0,1]
Hence,

w1
i J lj
Prlclause C; satisfied] > 1— (1 — —J) > [1 _ (1 _ i) ] P .Z*.
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is a decreasing function of |,

v Algorithm LP
et

J
Assume that all clauses have at most Kk literals, i.e. ], <k

E[W]= iE[wj] = ipr[cj =1] Zﬂjizj >B.Z,, = ,OPT

o =1-0-1) o
Ratio Py = I E[W] oPT ZZP
1, 1 N . 1
(I_Z) <—,VkeZ ,thatis B, >1-—=0,632
e e
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Algorithm LP,y = 3/4

(LP) maXZZ
Zy,+2(1 y)=z,,VC,

ieP; ieN;

z; €{0,1}, j=1,2,..,m (Vclause C))
vy, €401}, 1=1,2,...,n (V variablex,)
§= (% V1) AL V) A V) A v 2)

%

LP returns yl* =1/2,Vi, Zj. =1,Vj, ZLP —4

3

But OPT=3 and hence Yy =—

4
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Algorithms R1 + LP

Run both and return the best (or run either R1 or LP uniformly at random)

Consider a clause C; containing k literals
R1: E[X |R1] >a, >a,z; (as z, <1)
LP: E/[X |LP] > B,z
El X, ]=max{E[ X |RI],E[X | LP]}

z%(E[Xj |RI]+E[X, | LP]} =% P,

o) J
a1+ﬂ1=a2+ﬂ2=%,k=1,2 3
| >-:>E[XJ]>4Z Yk
ak+ﬂk21+(l——)2§,Vk23
8 e 2 -
L 3 3 3
Hence, FIX|1=> E[X ==Yz =>Z,,>=OPT
= 445 4 4
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Achieving y without using Algo R1

Non-linear randomized rounding

g(y) afunction | -4 < 2(y) < 4Y‘1, for y €[0,1]

- Set X.to 1 with probability g(yik)
2 l
If C=xVvXx,Vv..vx
analyze g(y) k

k . koo =>.7)
PriC, =1]=1-] [0-g(y)=1-] |47 =1-4 -
i=1 i=1
SV P IR RN
4 J
< 3w+ 3« 3
EW]= ZPY[C =1]2 _ZZJ = —ZLP >—OPT This generalizes to any
J=1 J=1 4 4 form of clauses

43
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