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LP Duality
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max x1 + 6xg 00 Optimum point
21 <200 (1) N /Proﬁt:$1900
SCQSSOO (2) T e\
1+ 72 <400 (3) B e For x=(200,300)
L1,T2 Z 0 100F - - _ _ we get a pl’OfIt Of 1900
- e =600

x1
0 100 200 300 400

A magic trick called duality

Why x=(200, 300) of profit of 1900, is the optimum?
Multiply (1), (2) and (3) by 0, 5, and 1, respectively, and add them
You get un upper bound of x; + 6x,< 1900 on the max profit
So, x=(200, 300) is an optimal solution

How we get the multipliers (0, 5, 1) ?
They are the solution of another LP, called the dual of the original one
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LP Duality

. max xri + 6x9
r1 <200 (1) Multipliery;,

o < 300 (2) Multipliery, Assign a nonnegative multiplier

o to each constraint
T1 4+ 9 <400  (3) Multiplier y;

x1,x2 > 0

Multiple each constraint by the corresponding y; and add them
(y1 4+ y3)z1 + (Y2 +y3)z2 < 200y; + 300y2 4 400y3

Thus, we get un upper bound
Y1,Y2,Y3 > 0
x1 + 6x2 < 200y, + 300ys + 400ys  if y1+yz > 1

y2+ys > 6
For y=(5,3,6) we get an upper bound of 4300 which is to loose...

We want an upper bound as tight as possible
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LP Duality

. max xri + 6x9
r1 <200 (1) Multipliery;,
ro < 300 (2) Multipliery,
r1 4+ 19 <400 (3) Multiplier y;
r1,T2 > 0

We want an upper bound as tight as possible

Y1,Y2,Y3 Z 0
x1+ 6x9 < 200y + 300y + 400ys3 if y1+ys > 1
Y2 +y3 =6
Thatis, min 200y + 300y2 + 400y3
42 > 1
LTS = The dual LP !
Y2 +y3 =6
Y1,Y2,Y3 Z 0
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LP Duality

Primal Dual
. max xq + 6x9 min 200y; 4+ 300ys + 400y3
x1 < 200 Y1 Y1 +ys > 1
vy <300 Y2 Y2 +ys =6
x1+x9 <400 Y3 Y1, Y2, Y3 > 0
r1,T2 > 0

Any feasible value of the dual is an upper bound on the primal LP

Primal Dual

Primal feasible opt  opt Dual feasible » Objective

value

If there is a pair of feasible primal and dual solutions of EQUAL VALUES,
then they must be both be optimal; they certify each other’s optimality

Primal: x = (100, 300) Dual : y= (0, 5, 1)
both of value 1900

THIS IS ALWAYS TRUE !

—g
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LP Duality

Primal Dual
max 1 + 6x9 min 200y, + 300y + 400ys3
x1 < 200 Y1 Y1 +ys > 1
vy <300 Y2 Y2 +ys =6
x1+x0 <400 Y3 Y1, Y2, Y3 > 0
xr1,r2 >0

The optimal values of the a primal LP and its and dual coincide

Primal — Dual
Primal feasible opt opt Dual feasible

A
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LP Duality

We can easily write the dual of any LP

Primal Dual
Minimize|z = 3%, + 3%, Maximizeiz = 40w, + 50w,
subject to subject to
2w+ 3wp| £ 3
x2> dwy+ 2w, 5|3
l A
1
Xq,¥%2 0 Wy, Wa2 [

* Introduce a multiplier for each primal constraint

« Write a constraint in the dual for every variable of the primal:
the sum is required to be above/below the objective coefficient of the
corresponding primal variable

« Optimize the sum of the multipliers weighted by the right-hand sides

of the constraints of the primal
7



LP Duality

We can easily write the dual of any LP

Primal Dual

minimize  7xi + a9 + dx3 maximize  10y; + 6y2

subject to x; — x9 + 3xz3 > 10 subject to y1 + dy2 <7
b1 + 229 — x3 > 6 —y1 + 2y < 1
r1,x2,23 = 0 3y1 — Y2 < 9

Y1,y2 = 0

* Introduce a multiplier for each primal constraint
« Write a constraint in the dual for every variable of the primal:
the sum is required to be above/below the objective coefficient of the

corresponding primal variable
« Optimize the sum of the multipliers weighted by the right-hand sides

of the constraints of the primal
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LP Duality

m
Maximize z = 2 :Cj Xj Minimize v = E bi Vi,
j=1 i=1
n m
E alj.XJ S bl (i = 1, 2,.-.,m), E aijyi 2 Cj (j o 1’2,...
x; >0 (J=12,...,n). yi >0 (i=1,2,
Primal ! "
: rima :
Dual variables J Lti Min v
variables x;20 x,20 x3=20 -+ x,=20 relation
y120 dyy dy2 a3 Uyp = b,
Y220 azy azz az3 azy, = b,
| : :
Vm g 0 U A2 U3 Ay = bm
Dual Relation > = = =
Max z ¢ Cs C3 Cp
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LP Duality

We can easily write the dual of any LP

Primal Dual
max ¢! x min y' b
Ax <b y'A>c'
x > 0 y=0

* Introduce a multiplier for each primal constraint
« Write a constraint in the dual for every variable of the primal:
the sum is required to be above the objective coefficient of the

corresponding primal variable
« Optimize the sum of the multipliers weighted by the right-hand sides

of the constraints of the primal
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LP Duality theorems

Consider the next LP and its dual to state the theorem

n

m
min max
Z CjL; Z biyi
1=1

j=1
n m
Zaz‘jl“j > p,, 1<ism Zaijyz’ < ¢;, 1<=n
i=1 | i=1
x; >0, e yi 2 0, 1sism
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LP Duality theorems

Duality Theorem
The primal program has finite optimum iff its dual has finite optimum.

Moreover, if x* y* are optimal solutions for the primal and dual programs,
respectively, then their values coincide,

n m
l.e. E*_E:*
’ CJ'CC] — b?,yz
j=1 i=1

Week Duality Theorem
If x andy are feasible solutions for the primal and dual program, then

T

Z C;xj = Z biy;
i=1

j=1

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 05 — LP DUALITY 12



LP Duality theorems

Week Duality Theorem
If x andy are feasible solutions for the primal and dual program,

then D ¢z > by n
j=1

Proof.
Since y is dual feasible and x; =0 n

Zaija:j > bi, 1<i<m
> esny =3 (S oum) o =, e
7=1 =1 \2=1 € ; > O,

Slmllarly, since X is primal feasible and y;=0

max N b1,
Y Yawxj Yi > szyz ; i

=1 \j=1

The theorem follows by observing that Zazjyi < ¢;, 1<j<n
y: (y: aijyi) Lj = Y Y AijLj | Yi y; > 0, 1<i<m
j=1 \i=1 i=1 \j=1
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LP Duality theorems

« By the LP duality theorem, x and y are both optimal iff
> cjz; > by holds with equality
j=1 i=1

« Clearly it happens iff both

n n m m n m
DD (Z aijyi> i and ). (Z aiﬂf'j) vi = ) biys
j=1 j=1 \i=1 i=1 \j=1

.: - i—1

hold with equality

Complementary slackness Theorem
Let x and y be primal and dual feasible solutions, respectively.
Then, x and y are both optimal iff the following two conditions are satisfied:

Primal complementary slackness conditions

For each 1 < 35 <n: either x; =0 or Z:’;l aijy; = cj; and
Dual complementary slackness conditions

For each 1 <1 < m: either y; =0 or 2?21 a;;T; = b;.
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Min-Max relations and LP Duality

Maximum flow

G=(V,E)

Source node s

Sink node t

Trick: Add an arc (t,s) to G
of infinite capacity

(LP) maximize fts

subject to  fi; < ¢y, (1,§) € B
oo fi— Y, [0, i€V
j: (J)€EE j: (4,7)EE
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Min-Max relations and LP Duality

Maximum flow (LP) maximize  fiq
subject to  fi; < ¢y, (i,j) € B
o fi— Y. [5<0, i€V
j: (J)EE j: (4,5)€EE
C
A
_ PR 1 0 0 0 0 0)g 3
7 O 1 0 0 0 0 / 2
f” O 0 1 0 0 0 f 1
0 fs” 0O 0 0 1 0 0 be 1
max|[(0 0 0 0 0 1) f"” st |0 0 0 0 1 0 f“”sss
“ 1 0 -1 -1 0 o™ 0
Jo Jo
O 1 1 0 -1 0 P 0
S 1 -1 0 0 o0 1[0 Jo
- : o 0 0 1 1 -1 0
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Min-Max relations and LP Duality

Dual LP

min E Cijd;j

~ - Vsa
(’L,j)EE ysa AT y O
Ve 1 0000 1 0 -1 0)"°" 0
Yy 01000 0 1 -1 ol”] |o
.(3211:0000)%” St00100—1100y"’>0
min " =
Z’” 00010 - 0 0 17|70
a Z
000O0T1 0 -1 0 11" 0
Z z,
B 00000 UO0 O 1 -1 1
s z
Zt '
L - Zt
minimize Z Cijdij
(i,J)EE
subject to d;; —pi+p; >0, (i,j) € E d=y
ps —pr =1 z=p

p; > 0, eV 17




Min-Max relations and LP Duality

Maximum flow (LP) maximize  fis
subject to  fi; < ¢y, (i,j) € B
Z fii — Z fij <0, eV
j: (J)EE j: (i,7)EE

(Dual LP) minimize Z Cijdij

G=(V,E) (L)eE
Source node s subject to  d;; —p; +p; >0, (i,j) € E
Trick: Add an arc (L) o G P b=
I’I.C % an ar_c (t,s) to di; >0, (i.j) € E
of infinite capacity
(IP) minimize Z Cijdij
(i,j)eE
subject to dij —Dpi +Dj > 0, (Z,j) c kb
ps —pt =1
dij S {07 1}7 (Zvj) €L

18
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Min-Max relations and LP Duality

Minimum Cut (IP) minimize Y c;;dy
- (i.))EE

subject to di; —p; +p; >0, (i,5) € E

Ps — Pt > 1
dz’j S {07 1}7 (7’7]) S
s-t cut: X,V-X: seX, teV-X pi € 0,1}, eV

Claim 1. This is an IP formulation of the minimum cut problem
Proof.
« d* p*: an optimal solution to (IP)
 ps-pit 21 is satisfied only for ps* =1 and py*= 0.
let the cut (X,V-X) where X is the set of vertices with p;* =1
consider an arc (i,j) with ieX and jeV-X
- Since p;* =1and p;"=0, itis dj*= 1, thatis d;*= 1
for all remaining edges d;* can be set to either 0 or 1
* but in order to minimize the objective value it must be setto 0
thus, the objective value is equal to the capacity of the cut (X,V-X)
and (X,V-X) is a minimum s—t cut
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Min-Max relations and LP Duality

Maximum flow (LP) maximize  fis
, subject to  fi; < ¢y, (i,j) € B
Z fii — Z fij <0, eV
j: (J)EE j: (i,7)EE

(Dual LP) minimize Z Cijdij

(i,j)€EE

subject to  dij —pi+p; >0, (i,5) € E

ps—pt21
dij > 0, (1,j) € E

Claim 2. This dual LP has always an integral optimal solution (Proof?)

Hence,
» the maximum flow is equal to the minimum fractional cut (by the duality theorem)
 the latter equals to the capacity of an (integral) minimum cut (by Claims 1 and 2)

» the maximum flow is equal to minimum cut (Max-flow Min-cut theorem)
20



Min-Max relations and LP Duality

Max Matching (M c E)

Min Vertex Cover (C c V)

(IP) max > me (IR) min > Yo
eckE veV
st. Y ze<1 Yo eV st yo+uyu>1
e.vee
ze€{0,1}  VecE yo €10,1}
v
(LP relax.) — (Dual LP)
max > e min >y
eclk veV
st. ) xe<1 Yo eV St yo+yu=>1
e.vee yv > 0
xe > 0 Ve € E
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V{v,u} € E
YveV

Vi{v,u} € E
YVveV
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Min-Max relations and LP Duality

Max Matching (M c E) Min Vertex Cover (C c V)

max D> e min >y

eck veV
s.t. z;a:egl Yo eV st yo 4 yu > 1
e.vee
Te >0 Ve € E Yo 20
| | |
I ! I
IM*]  Opt primal = Opt dual |C*|
(integer) (fractional) (integer)

M7 < |C7]
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Vi{v,u} € E
VveV
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Set Cover via the Primal-Dual schema

Primal

m
minimize ijacj
j=1 n: # elements
subject to »  x; > 1, i=1,....n, m: # subsets
Jie; €5

x;: for each subset
y;: for each element

.Sl?jE{O,l} 7=1,...,m.
Dual
n
maximize Zyi
i=1
subject to Z Y < wj, 7=1,...,m,

i:eiESj

inO, izl,...,n.

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 05 — LP DUALITY 23



Set Cover via the Primal-Dual schema

« We start with the dual solution y=0; this is a feasible since w; 2 0 for all |
« We also have an infeasible primal solution | =<
« As long as there is some element g, not covered by |
* we look at all the sets S; that contain e;, and consider the amount by
which we can increase the dual variable y; and y is still feasible
« thisamountis ¢ = minjes, (wj — D kieres; yk)
* Wwe increase Yy, by ¢; this makes some dual constraint
associated with some set S, tight;
that is, after increasing y, we have for this set S, > w=we

k:ep, €Sy

« we add the set S, to our cover (by adding to I)

y<«0

I+ 0

while there exists e; ¢ (J;c; S; do
Increase the dual variable y; until there is some ¢ such that > e;e5, Yi = Wi
I+ Tu{l}

return /
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Set Cover via the Primal-Dual schema

Algorithm Primal-Dual is an f-approximation one for the set cover problem

Proof.
We add a set S;to our cover only when its dual inequality is tight,

thatis w; = Zi;eigsj Yi ,foranyj €1

Thus, ng‘ = Z Z Yi = Z%'HJGI:%ESE}\
=1

jel Jjel i:e; €855

n

{jelie;e S} <f weget D wi<f-) u

jel i=1

Since,

Let Z* » be the optimal value of the LP relaxation

Then, by the week duality theorem, Y .1 ¥i < Z} p

andas Zi, <OPT weget > w;j<f-) vi<f OPT
— =1

jel
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Set Cover via the Primal-Dual schema
Tightness

S consists of:
n—1 sets of cost 1, {e1,ex},...,{€e.1,en}, and
one set of cost 1+¢, {es,...,e.}, for a small >0

f=n, since e.appears in all n sets, f=n.

« Suppose the algorithm raises y.. in the first iteration

« When y. is raised to 1, all sets {e,e.}, i =1,...,n — 1 go tight

« They are all picked in the cover, thus covering the elements e, . . ., e.

* In the second iteration, y.is raised to € and the set {e, . . ., e.} goes tight
« We get a set cover of cost of n+g, whereas the optimum has cost 1+¢

« That is an approximation ratio of n=f
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Primal

minimize

subject to

Primal-Dual schema
Dual

m
E C;Tj maximize E bzyz
1=1

x; >0, j=1...,n y; > 0, 1=1,..

Complementary slackness Theorem

Let x and y be primal and dual feasible solutions, respectively.
Then, x and y are both optimal iff the following two conditions are satisfied:

Primal complementary slackness conditions

For each 1 < j < n: either x; =0 or Y.." | a;;y; = ¢;; and
Dual complementary slackness conditions

For each 1 <1 < m: either y; =0 or Z?Zl a;;T; = b;.

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 05 — LP DUALITY

m
Zaijszbi, 1=1,...,m subject to Zaijyi < ¢y, g=1...
i=1
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Primal-Dual schema

Primal Dual
minimize Z CjT; maximize Z biyi
j=1 1=1

n

m
subject to Zaijxj >b;,, 1=1,...,m subject to Zaijyi < ¢, 7=1,...
i=1

J=1

x; >0, j=1...,n y; > 0, 1=1,...

Primal—-dual schema:

Ensure one set of conditions and suitably relax the other

Capture both situations by relaxing both conditions
Primal complementary slackness conditions

Let o > 1.
For each 1 < j < n: either x; =0 or ¢;/a < 22711 ai;yi < cj.

Dual complementary slackness conditions
Let 6 > 1.
For each 1 <7 < m: either y; = 0 or b; < z?ﬂ aijr; < B3 -b

If primal conditions are ensured, we set a = 1
If dual conditions are ensured, we set 3 = 1

ALMA / ALGORITHMS / Fall 2016 / I. MILIS / 05 — LP DUALITY
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Primal-Dual schema

If x and y are primal and dual feasible solutions satisfying the conditions

n

stated above then Z ci; <o Z biy;.

j=1
Proof
mn
ZC » (S‘ alﬂﬁ) LTy = Q& Yaljxj Yi
Jj=1 J=1 1=
<ap Z biy;

The first and second inequalities follow from the primal and dual conditions
The equality follows by simply changing the order of summation.
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Primal-Dual schema

If x and y are primal and dual feasible solutions satisfying the conditions

n

stated above then Z ci; <o Z biy;.
1=1

j=1

Start with a primal infeasible solution and a dual feasible solution;
these are usually the trivial solutions x =0 and y = 0.
lteratively improve the feasibility of the primal solution, and the
optimality of the dual solution,
At the end a primal feasible solution is obtained and all conditions
stated above, with a suitable choice of a and B, are satisfied.
The primal solution is always integral
The improvements to the primal and the dual go hand-in-hand:

« the current primal solution is used to determine the

improvement to the dual, and vice versa.

The cost of the dual solution is used as a lower bound on OPT, and
by the fact above, the approximation guarantee of the algorithm is

ap.
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Set Cover revisited
Primal minimize Z c(S)rs

subject to Z rsg>1, eelU

rg > 0, Ses

Dual maximize g Ye

subject to Z Ye < c(S5), SeSs

Ye > 0, ecU
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Set Cover revisited

We choose a=1 and B=f

Primal complementary slackness: VvVSc S:zg#0= Z ye = c(S).

Set Sis tightif > .. .cg¥e = c(S) ¢: €
We increment the primal variables integrally;
S0, we can state the conditions as: Pick only tight sets in the cover

To maintain dual feasibility, we are not allowed to overpack any set

Dual complementary slackness: Ve :ye #0= Y x5 < f

We will find an integral (0/1) solution for x; 5 €S

so, each element with a nonzero dual value can be covered at most f times
Since each element is in at most f sets, this condition is trivially satisfied for
all elements.
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Set Cover revisited

Algorithm (the same as before)
1. Initialization: x <+ 0; y <+ 0

2. Until all elements are covered, do:
Pick an uncovered element, say e, and raise y. until some set goes
tight.
Pick all tight sets in the cover and update x.
Declare all the elements occurring in these sets as “covered”.

3. Output the set cover x.

The Algorithm achieve an approximation ratio of f
Proof.
« There will be no uncovered elements and no overpacked sets at the end
« The primal and dual solutions will both be feasible
« They satisfy the relaxed complementary slackness conditions
with a=1 and B=f
« The approximation ratio is f
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