ALMA ALGORITHMS

Fall 2016
Ioannis Milis

Approximation Algorithms LP Duality

LP Duality

$$
\begin{align*}
& \max x_{1}+6 x_{2} \\
& x_{1} \leq 200 \tag{1}\\
& x_{2} \leq 300 \tag{2}\\
& x_{1}+x_{2} \leq 400 \tag{3}\\
& x_{1}, x_{2} \geq 0
\end{align*}
$$

For $\mathbf{x}=(200,300)$
we get a profit of 1900

A magic trick called duality

Why $\mathbf{x}=(200,300)$ of profit of 1900 , is the optimum?
Multiply (1), (2) and (3) by 0,5 , and 1 , respectively, and add them
You get un upper bound of $x_{1}+6 x_{2} \leq 1900$ on the max profit
So, $\mathbf{x}=(200,300)$ is an optimal solution
How we get the multipliers $(0,5,1)$?
They are the solution of another LP, called the dual of the original one

LP Duality

$$
\begin{aligned}
\max & x_{1}+6 x_{2} & & \\
x_{1} & \leq 200 & \text { (1) } & \text { Multiplier } \mathrm{y}_{1} \\
x_{2} & \leq 300 & \text { (2) } & \text { Multiplier } \mathrm{y}_{2} \\
x_{1}+x_{2} & \leq 400 & \text { (3) } & \text { Multiplier } \mathrm{y}_{3} \\
x_{1}, x_{2} & \geq 0 & &
\end{aligned}
$$

Assign a nonnegative multiplier
to each constraint

Multiple each constraint by the corresponding y_{i} and add them

$$
\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}
$$

Thus, we get un upper bound

$$
x_{1}+6 x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3} \quad \text { if } \quad\left\{\begin{array}{l}
y_{1}, y_{2}, y_{3} \geq 0 \\
y_{1}+y_{3} \geq 1 \\
y_{2}+y_{3} \geq 6
\end{array}\right\}
$$

For $\mathrm{y}=(5,3,6)$ we get an upper bound of 4300 which is to loose...
We want an upper bound as tight as possible

LP Duality

$$
\begin{aligned}
\max & x_{1}+6 x_{2} & & \\
x_{1} & \leq 200 & \text { (1) } & \text { Multiplier } y_{1} \\
x_{2} & \leq 300 & \text { (2) } & \text { Multiplier } y_{2} \\
x_{1}+x_{2} & \leq 400 & \text { (3) } & \text { Multiplier } y_{3} \\
x_{1}, x_{2} & \geq 0 & &
\end{aligned}
$$

We want an upper bound as tight as possible

$$
x_{1}+6 x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3} \quad \text { if } \quad\left\{\begin{array}{l}
y_{1}, y_{2}, y_{3} \geq 0 \\
y_{1}+y_{3} \geq 1 \\
y_{2}+y_{3} \geq 6
\end{array}\right\}
$$

That is, $\quad \min 200 y_{1}+300 y_{2}+400 y_{3}$

$$
\begin{aligned}
y_{1}+y_{3} & \geq 1 \\
y_{2}+y_{3} & \geq 6 \\
y_{1}, y_{2}, y_{3} & \geq 0
\end{aligned}
$$

The dual LP!

LP Duality

Primal

$$
\begin{aligned}
& \max x_{1}+6 x_{2} \\
& x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& \mathrm{y}_{1} \\
& x_{1}+x_{2} \leq 400 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

Dual

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Any feasible value of the dual is an upper bound on the primal LP

If there is a pair of feasible primal and dual solutions of EQUAL VALUES, then they must be both be optimal; they certify each other's optimality

$$
\begin{gathered}
\text { Primal: } \mathbf{x}=(100,300) \text { Dual : } \mathbf{y}=(0,5,1) \\
\text { both of value } 1900 \\
\text { THIS IS ALWAYS TRUE ! }
\end{gathered}
$$

LP Duality

Primal

$$
\begin{aligned}
& \max x_{1}+6 x_{2} \\
& x_{1} \leq 200 \\
& x_{2} \leq 300 \\
& \mathrm{y}_{1} \\
& x_{1}+x_{2} \leq 400 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Dual

$$
\begin{aligned}
& \min 200 y_{1}+300 y_{2}+400 y_{3} \\
& y_{1}+y_{3} \geq 1 \\
& y_{2}+y_{3} \geq 6 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

The optimal values of the a primal LP and its and dual coincide

$\stackrel{\text { Primal feasible }}{\stackrel{\text { Primal }}{\text { opt }}}$| opt |
| :--- |
| Dual |
| opt |\quad Dual feasible

LP Duality

We can easily write the dual of any LP

- Introduce a multiplier for each primal constraint
- Write a constraint in the dual for every variable of the primal: the sum is required to be above/below the objective coefficient of the corresponding primal variable
- Optimize the sum of the multipliers weighted by the right-hand sides of the constraints of the primal

LP Duality

We can easily write the dual of any LP

Primal

$$
\begin{array}{ll}
\operatorname{minimize} & 7 x_{1}+x_{2}+5 x_{3} \\
\text { subject to } & x_{1}-x_{2}+3 x_{3} \geq 10 \\
& 5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Dual

$$
\begin{aligned}
& \text { maximize } \\
& \text { subject to } \\
& \\
& \\
& \\
& \\
& \\
& \\
& -y_{1}+5 y_{1}+6 y_{2} \\
& 3 y_{1}-y_{2} \leq 1 \\
& \\
& \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

- Introduce a multiplier for each primal constraint
- Write a constraint in the dual for every variable of the primal: the sum is required to be above/below the objective coefficient of the corresponding primal variable
- Optimize the sum of the multipliers weighted by the right-hand sides of the constraints of the primal

LP Duality

$$
\begin{aligned}
& \operatorname{Maximize} z=\sum_{j=1}^{n} c_{j} x_{j}, \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad(i=1,2, \ldots, m), \quad \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad(j=1,2, \ldots, n), \\
& x_{j} \geq 0 \quad(j=1,2, \ldots, n) . \\
& \text { Minimize } v=\sum_{i=1}^{m} b_{i} y_{i}, \\
& y_{i} \geq 0 \quad(i=1,2, \ldots, m) .
\end{aligned}
$$

	$x_{1} \geqq$	$x_{2} \geqq 0$	$x_{3} \geqq 0$		$x_{n} \geqq 0$	Primal relation	$\operatorname{Min} v$
$y_{1} \geqq 0$	a_{11}	a_{12}	a_{13}	\cdots	$a_{1 n}$	\leqq	b_{1}
$y_{2} \geqq 0$	a_{21}	a_{22}	a_{23}	\cdots	$a_{2 n}$	\leqq	b_{2}
	:				\vdots	!	\vdots
$y_{m} \geqq 0$	$a_{m 1}$	$a_{m 2}$	$a_{m 3}$		$a_{m n}$	\leqq	b_{m}
Dual Relation	\geqq	\geqq	\geqq		\geqq		
Max z	c_{1}	c_{2}	c_{3}	\cdots	c_{n}		

LP Duality

We can easily write the dual of any LP

Primal

$$
\begin{gathered}
\max \mathbf{c}^{T} \mathbf{x} \\
\mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq 0
\end{gathered}
$$

$$
\begin{gathered}
\min \mathbf{y}^{T} \mathbf{b} \\
\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T} \\
\mathbf{y} \geq 0
\end{gathered}
$$

- Introduce a multiplier for each primal constraint
- Write a constraint in the dual for every variable of the primal: the sum is required to be above the objective coefficient of the corresponding primal variable
- Optimize the sum of the multipliers weighted by the right-hand sides of the constraints of the primal

LP Duality theorems

Consider the next LP and its dual to state the theorem

$$
\begin{array}{ll}
\min & \max \\
\sum_{j=1}^{n} c_{j} x_{j} & \sum_{i=1}^{m} b_{i} y_{i} \\
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad, 1 \leq \mathrm{i} \leq \mathrm{m} & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}, \quad 1 \leq \mathrm{j} \leq \mathrm{n} \\
x_{j} \geq 0, & y_{i} \geq 0,
\end{array}
$$

LP Duality theorems

Duality Theorem

The primal program has finite optimum iff its dual has finite optimum.
Moreover, if $\mathbf{x} * \mathbf{y} *$ are optimal solutions for the primal and dual programs, respectively, then their values coincide,
i.e., $\sum_{j=1}^{n} c_{j} x_{j}^{*}=\sum_{i=1}^{m} b_{i} y_{i}^{*}$

Week Duality Theorem

If \mathbf{x} and \mathbf{y} are feasible solutions for the primal and dual program, then

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{i=1}^{m} b_{i} y_{i}
$$

LP Duality theorems

Week Duality Theorem

If \mathbf{x} and \mathbf{y} are feasible solutions for the primal and dual program,
then $\quad \sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{i=1}^{m} b_{i} y_{i}$

Proof.

$$
\begin{aligned}
& \min \sum_{j=1}^{n} c_{j} x_{j} \\
& \\
& \quad \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, \quad 1 \leq \mathrm{i} \leq \mathrm{m} \\
& \quad x_{j} \geq 0, \quad 1 \leq \mathrm{j} \leq \mathrm{n}
\end{aligned}
$$

Since y is dual feasible and $x_{j} \geqq 0$
$\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}$
Similarly, since \mathbf{x} is primal feasible and $y_{i} \geqq 0$
$\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \geq \sum_{i=1}^{m} b_{i} y_{i}$
$\max \sum_{i=1}^{m} b_{i} y_{i}$
The theorem follows by observing that

$$
\sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i}
$$

$$
\sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}, 1 \leq \mathrm{j} \leq \mathrm{n}
$$

$$
y_{i} \geq 0, \quad 1 \leq i \leq m
$$

LP Duality theorems

- By the LP duality theorem, \mathbf{x} and \mathbf{y} are both optimal iff

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{i=1}^{m} b_{i} y_{i} \text { holds with equality }
$$

- Clearly it happens iff both

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \text { and } \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \geq \sum_{i=1}^{m} b_{i} y_{i}
$$

hold with equality

Complementary slackness Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively.
Then, x and y are both optimal iff the following two conditions are satisfied:
Primal complementary slackness conditions
For each $1 \leq j \leq n$: either $x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$; and
Dual complementary slackness conditions
For each $1 \leq i \leq m$: either $y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$.

Min-Max relations and LP Duality

Maximum flow

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
Source node s
Sink node t
Trick: Add an arc (t, s) to G
of infinite capacity

(LP) maximize $f_{t s}$
subject to $\quad f_{i j} \leq c_{i j}, \quad(i, j) \in E$

$$
\begin{array}{ll}
\sum_{j:(j, i) \in E} f_{j i}-\sum_{j:(i, j) \in E} f_{i j} \leq 0, \quad i \in V \\
f_{i j} \geq 0, & (i, j) \in E
\end{array}
$$

Min-Max relations and LP Duality

Maximum flow
(LP) maximize $f_{t s}$

subject to $f_{i j} \leq c_{i j}$,
$(i, j) \in E$
$\sum_{j:(j, i) \in E} f_{j i}-\sum_{j:(i, j) \in E} f_{i j} \leq 0, \quad i \in V$ $f_{i j} \geq 0$,
$(i, j) \in E$
$\max f_{t s}=$
$\max \left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right)$

1) $\left.\left(\begin{array}{c}f \\ f_{s a} \\ f_{s b} \\ f_{a b} \\ f_{a t} \\ f_{b t} \\ f_{t s}\end{array}\right)\right]$
s.t. $\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & -1\end{array}\right)\left(\begin{array}{l}f_{s a} \\ f_{s b} \\ f_{a b} \\ f_{a t} \\ f_{b t} \\ f_{t s}\end{array}\right) \leq\left(\begin{array}{l}3 \\ 2 \\ 1 \\ 1 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$

Min-Max relations and LP Duality

Dual LP

$\min \sum_{(i, j) \in E} c_{i j} d_{i j}$
$\left.\min \left[\begin{array}{llllllllll}(i, j) \in E & & & & & & & \\ \\ & & & & & & & & \\ \\ & & & 1 & 1 & 3 & 0 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{c}y_{s a} \\ y_{s b} \\ y_{a b} \\ y_{a t} \\ y_{b t} \\ z_{a} \\ z_{b} \\ z_{s} \\ z_{t}\end{array}\right)\right]$
s.t. $\left.\left(\begin{array}{ccccccccc}1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{l}y_{s a} \\ y_{s b} \\ y_{a b} \\ y_{a t} \\ y_{b t} \\ z_{a} \\ z_{b} \\ z_{s} \\ z_{t}\end{array}\right) \geq \begin{array}{c}\mathbf{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)$
minimize $\sum_{(i, j) \in E} c_{i j} d_{i j}$
subject to

$$
\begin{array}{lr}
d_{i j}-p_{i}+p_{j} \geq 0, & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \geq 0, & (i, j) \in E \\
p_{i} \geq 0, & i \in V
\end{array}
$$

$d=y$
$z=p$

Min-Max relations and LP Duality

(LP) maximize $f_{t s}$

$$
\begin{array}{ll}
\text { subject to } & f_{i j} \leq c_{i j}, \\
& (i, j) \in E \\
\sum_{j:} f_{j i, i) \in E}-\sum_{j:(i, j) \in E} f_{i j} \leq 0, & i \in V \\
f_{i j} \geq 0, & (i, j) \in E
\end{array}
$$

(Dual LP) minimize $\sum_{(i, j) \in E} c_{i j} d_{i j}$
$\mathrm{G}=(\mathrm{V}, \mathrm{E})$
subject to $\quad d_{i j}-p_{i}+p_{j} \geq 0, \quad(i, j) \in E$
Sink node t
Trick: Add an arc (t, s) to G of infinite capacity

subject to	$d_{i j}-p_{i}+p_{j} \geq 0$,	$(i, j) \in E$
	$p_{s}-p_{t} \geq 1$	
	$d_{i j} \geq 0$,	$(i, j) \in E$
	$p_{i} \geq 0$,	$i \in V$
to G		
(IP) minimize	$\sum_{(i, j) \in E} c_{i j} d_{i j}$	
subject to	$d_{i j}-p_{i}+p_{j} \geq 0$,	$(i, j) \in E$
	$p_{s}-p_{t} \geq 1$	
	$d_{i j} \in\{0,1\}$,	$(i, j) \in E$
	$p_{i} \in\{0,1\}$,	$i \in V$

Min-Max relations and LP Duality

s-t cut: $X, V-X: s \in X, t \in V-X$
(IP) minimize

$\sum_{(i, j) \in E} c_{i j} d_{i j}$

$$
\begin{array}{lll}
\text { subject to } & d_{i j}-p_{i}+p_{j} \geq 0, & (i, j) \in E \\
& p_{s}-p_{t} \geq 1 & \\
& d_{i j} \in\{0,1\}, & (i, j) \in E \\
& p_{i} \in\{0,1\}, & i \in V
\end{array}
$$

Claim 1. This is an IP formulation of the minimum cut problem
Proof.

- $\mathrm{d}^{*}, \mathrm{p}^{*}$: an optimal solution to (IP)
- $p_{s}{ }^{*}-p_{t}{ }^{*} \geq 1$ is satisfied only for $p_{s}{ }^{*}=1$ and $p_{t}{ }^{*}=0$.
- let the cut $(X, V-X)$ where X is the set of vertices with $p_{i}{ }^{*}=1$
- consider an arc (i, j) with $i \in X$ and $j \in V-X$
- Since $p_{i}{ }^{*}=1$ and $p_{j}{ }^{*}=0$, it is $d_{i j}{ }^{*} \geq 1$, that is $d_{i j}{ }^{*}=1$
- for all remaining edges $d_{i j}{ }^{*}$ can be set to either 0 or 1
- but in order to minimize the objective value it must be set to 0
- thus, the objective value is equal to the capacity of the cut $(\mathrm{X}, \mathrm{V}-\mathrm{X})$ and $(X, V-X)$ is a minimum $s-t$ cut

Min-Max relations and LP Duality

Claim 2. This dual LP has always an integral optimal solution (Proof?)
Hence,

- the maximum flow is equal to the minimum fractional cut (by the duality theorem)
- the latter equals to the capacity of an (integral) minimum cut (by Claims 1 and 2)
- the maximum flow is equal to minimum cut (Max-flow Min-cut theorem)

Min-Max relations and LP Duality

Max Matching $(\mathrm{M} \subseteq \mathrm{E})$

(IP) max
(LP relax.)
$\max \quad \sum_{e \in E} x_{e}$

$$
\begin{array}{ll}
\text { s.t. } \sum_{e: v \in e} x_{e} \leq 1 & \forall v \in V \\
x_{e} \geq 0 & \forall e \in E
\end{array}
$$

Min Vertex Cover $(\mathrm{C} \subseteq \mathrm{V})$

$(\mathrm{IP}) \min \quad \sum_{v \in V} y_{v}$
s.t. $y_{v}+y_{u} \geq 1$ $y_{v} \in\{0,1\} \quad \forall v \in V$
(Dual LP)
min

$$
\sum_{v \in V} y_{v}
$$

$$
\begin{aligned}
\text { s.t. } y_{v}+y_{u} \geq 1 & \forall\{v, u\} \in E \\
y_{v} \geq 0 & \forall v \in V
\end{aligned}
$$

Min-Max relations and LP Duality

Max Matching $(\mathrm{M} \subseteq \mathrm{E})$

Min Vertex Cover ($\mathrm{C} \subseteq \mathrm{V}$)

min $\sum_{v \in V} y_{v}$
s.t. $y_{v}+y_{u} \geq 1 \quad \forall\{v, u\} \in E$ $y_{v} \geq 0 \quad \forall v \in V$

$$
\left|\mathrm{M}^{*}\right| \leq\left|\mathrm{C}^{*}\right|
$$

Set Cover via the Primal-Dual schema

Primal

$\operatorname{minimize} \sum_{j=1}^{m} w_{j} x_{j}$
subject to $\sum_{j: e_{i} \in S_{j}} x_{j} \geq 1, \quad i=1, \ldots, n$,

$$
x_{j} \in\{0,1\} \quad j=1, \ldots, m
$$

n : \# elements
m: \# subsets
x_{j} : for each subset
y_{i} : for each element

Dual

$$
\begin{aligned}
\operatorname{maximize} & \sum_{i=1}^{n} y_{i} \\
\text { subject to } & \sum_{i: e_{i} \in S_{j}} y_{i} \leq w_{j}, \\
& j=1, \ldots, m \\
y_{i} \geq 0, & i=1, \ldots, n
\end{aligned}
$$

Set Cover via the Primal-Dual schema

- We start with the dual solution $\mathbf{y}=0$; this is a feasible since $w_{j} \geq 0$ for all j
- We also have an infeasible primal solution $\mathrm{I}=\varnothing$
- As long as there is some element e_{i} not covered by I
- we look at all the sets S_{j} that contain e_{i}, and consider the amount by which we can increase the dual variable y_{i} and \boldsymbol{y} is still feasible
- this amount is $\epsilon=\min _{j: e_{i} \in S_{j}}\left(w_{j}-\sum_{k: e_{k} \in S_{j}} y_{k}\right)$
- we increase y_{i} by ε; this makes some dual constraint associated with some set S_{1} tight; that is, after increasing y_{i} we have for this set $\mathrm{S}_{\mathrm{I}} \sum_{k: e_{k} \in S_{\ell}} y_{k}=w_{\ell}$.
- we add the set S , to our cover (by adding to I)

```
y\leftarrow0
I\leftarrow\emptyset
while there exists }\mp@subsup{e}{i}{}\not\in\mp@subsup{\bigcup}{j\inI}{}\mp@subsup{S}{j}{}\mathrm{ do
    Increase the dual variable }\mp@subsup{y}{i}{}\mathrm{ until there is some }\ell\mathrm{ such that }\mp@subsup{\sum}{j:\mp@subsup{e}{j}{}\in\mp@subsup{S}{\ell}{}}{}\mp@subsup{y}{j}{}=\mp@subsup{w}{\ell}{
    I\leftarrowI\cup{\ell}
return I
```


Set Cover via the Primal-Dual schema

Algorithm Primal-Dual is an f-approximation one for the set cover problem
Proof.
We add a set S_{j} to our cover only when its dual inequality is tight, that is $\quad w_{j}=\sum_{i: e_{i} \in S_{j}} y_{i}$, for any $j \in I$
Thus, $\quad \sum_{j \in I} w_{j}=\sum_{j \in I} \sum_{i: e_{i} \in S_{j}} y_{i}=\sum_{i=1}^{n} y_{i} \cdot\left|\left\{j \in I: e_{i} \in S_{j}\right\}\right|$
Since, $\left|\left\{j \in I: e_{i} \in S_{j}\right\}\right| \leq f \quad$ we get $\quad \sum_{j \in I} w_{j} \leq f \cdot \sum_{i=1}^{n} y_{i}$
Let Z^{*} LP be the optimal value of the LP relaxation
Then, by the week duality theorem, $\sum_{i=1}^{n} y_{i} \leq Z_{L P}^{*}$
and as $Z_{L P_{-}}^{*} \leq$ OPT we get $\sum_{j \in I} w_{j} \leq f \cdot \sum_{i=1}^{n} y_{i} \leq f \cdot$ OPT

Set Cover via the Primal-Dual schema

Tightness

S consists of:
$\mathrm{n}-1$ sets of cost $1,\left\{\mathrm{e}_{1}, \mathrm{e}_{n}\right\}, \ldots,\left\{\mathrm{e}_{n-1}, \mathrm{e}_{n}\right\}$, and one set of cost $1+\varepsilon,\left\{e_{1}, \ldots, e_{n+1}\right\}$, for a small $\varepsilon>0$
$f=n$, since e_{n} appears in all n sets, $f=n$.

- Suppose the algorithm raises $y_{\text {en }}$ in the first iteration
- When $\mathrm{y}_{\text {en }}$ is raised to 1 , all sets $\left\{\mathrm{e}, \mathrm{e}_{\mathrm{n}}\right\}, \mathrm{i}=1, \ldots, \mathrm{n}-1$ go tight
- They are all picked in the cover, thus covering the elements $\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}$
- In the second iteration, $y_{\text {entr1 }}$ is raised to ε and the set $\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n+1}\right\}$ goes tight
- We get a set cover of cost of $n+\varepsilon$, whereas the optimum has cost $1+\varepsilon$
- That is an approximation ratio of $n=f$

Primal-Dual schema

Primal

minimize
$\sum_{j=1}^{n} c_{j} x_{j}$
$\begin{array}{lll}\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, & i=1, \ldots, m \\ & x_{j} \geq 0, & j=1, \ldots, n\end{array}$

Dual

$\operatorname{maximize} \quad \sum_{i=1}^{m} b_{i} y_{i}$
$\begin{array}{ll}\text { subject to } & \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}, \\ & j=1, \ldots, n \\ & y_{i} \geq 0,\end{array} \quad i=1, \ldots, m$

Complementary slackness Theorem

Let \mathbf{x} and \mathbf{y} be primal and dual feasible solutions, respectively.
Then, x and y are both optimal iff the following two conditions are satisfied:
Primal complementary slackness conditions
For each $1 \leq j \leq n$: either $x_{j}=0$ or $\sum_{i=1}^{m} a_{i j} y_{i}=c_{j}$; and
Dual complementary slackness conditions
For each $1 \leq i \leq m:$ either $y_{i}=0$ or $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}$.

Primal-Dual schema

Primal

minimize

$$
\sum_{j=1}^{n} c_{j} x_{j}
$$

$\begin{array}{lll}\text { subject to } & \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}, & i=1, \ldots, m \\ & x_{j} \geq 0, & j=1, \ldots, n\end{array}$

Dual

Primal-dual schema:
Ensure one set of conditions and suitably relax the other
Capture both situations by relaxing both conditions
Primal complementary slackness conditions
Let $\alpha \geq 1$.
For each $1 \leq j \leq n$: either $x_{j}=0$ or $c_{j} / \alpha \leq \sum_{i=1}^{m} a_{i j} y_{i} \leq c_{j}$.
Dual complementary slackness conditions
Let $\beta \geq 1$.
For each $1 \leq i \leq m$: either $y_{i}=0$ or $b_{i} \leq \sum_{j=1}^{n} a_{i j} x_{j} \leq \beta \cdot b_{i}$
If primal conditions are ensured, we set $\alpha=1$
If dual conditions are ensured, we set $\beta=1$

Primal-Dual schema

If \mathbf{x} and \mathbf{y} are primal and dual feasible solutions satisfying the conditions
stated above then $\sum_{j=1}^{n} c_{j} x_{j} \leq \alpha \cdot \beta \cdot \sum_{i=1}^{m} b_{i} y_{i}$.
Proof.

$$
\begin{aligned}
\sum_{j=1}^{n} c_{j} x_{j} & \leq \alpha \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\alpha \sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \\
& \leq \alpha \beta \sum_{i=1}^{m} b_{i} y_{i} .
\end{aligned}
$$

The first and second inequalities follow from the primal and dual conditions The equality follows by simply changing the order of summation.

Primal-Dual schema

If \mathbf{x} and \mathbf{y} are primal and dual feasible solutions satisfying the conditions
stated above then

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \alpha \cdot \beta \cdot \sum_{i=1}^{m} b_{i} y_{i}
$$

- Start with a primal infeasible solution and a dual feasible solution; these are usually the trivial solutions $x=0$ and $y=0$.
- Iteratively improve the feasibility of the primal solution, and the optimality of the dual solution,
- At the end a primal feasible solution is obtained and all conditions stated above, with a suitable choice of α and β, are satisfied.
- The primal solution is always integral
- The improvements to the primal and the dual go hand-in-hand:
- the current primal solution is used to determine the improvement to the dual, and vice versa.
- The cost of the dual solution is used as a lower bound on OPT, and by the fact above, the approximation guarantee of the algorithm is $\alpha \beta$.

Set Cover revisited

Primal minimize $\quad \sum_{S \in \mathcal{S}} c(S) x_{S}$

$$
\begin{array}{lll}
\text { subject to } & \sum_{S: e \in S} x_{S} \geq 1, & e \in U \\
& x_{S} \geq 0, & S \in \mathcal{S}
\end{array}
$$

Dual maximize $\sum_{e \in U} y_{e}$
subject to $\quad \sum_{e: e \in S} y_{e} \leq c(S), \quad S \in \mathcal{S}$

$$
y_{e} \geq 0, \quad e \in U
$$

Set Cover revisited

We choose $\alpha=1$ and $\beta=f$
Primal complementary slackness: $\quad \forall S \in \mathcal{S}: x_{S} \neq 0 \Rightarrow \sum_{e: e \in S} y_{e}=c(S)$.
Set S is tight if $\quad \sum_{e: e \in S} y_{e}=c(S)$.
We increment the primal variables integrally;
so, we can state the conditions as: Pick only tight sets in the cover

To maintain dual feasibility, we are not allowed to overpack any set
Dual complementary slackness: $\forall e: y_{e} \neq 0 \Rightarrow \sum_{S: e \in S} x_{S} \leq f$
We will find an integral ($0 / 1$) solution for \mathbf{x};
so, each element with a nonzero dual value can be covered at most f times Since each element is in at most f sets, this condition is trivially satisfied for all elements.

Set Cover revisited

Algorithm (the same as before)

1. Initialization: $\boldsymbol{x} \leftarrow \mathbf{0} ; \boldsymbol{y} \leftarrow \mathbf{0}$
2. Until all elements are covered, do:

Pick an uncovered element, say e, and raise y_{e} until some set goes tight.
Pick all tight sets in the cover and update \boldsymbol{x}.
Declare all the elements occurring in these sets as "covered".
3. Output the set cover \boldsymbol{x}.

The Algorithm achieve an approximation ratio of f
Proof.

- There will be no uncovered elements and no overpacked sets at the end
- The primal and dual solutions will both be feasible
- They satisfy the relaxed complementary slackness conditions with $\alpha=1$ and $\beta=f$
- The approximation ratio is f

