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Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the objective
function: x1 + 6x2 = c for different values of the profit c.
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Optimum point
Profit = $1900

$1 each, and x2 boxes of Nuit, at a more substantial profit of $6 apiece; x1 and x2 are unknown
values that we wish to determine. But this is not all; there are also some constraints on x1 and
x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
Nuit. Also, the current workforce can produce a total of at most 400 boxes of chocolate per day.
What are the optimal levels of production?

We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the profit—is
maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move
the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.
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For  x=(200,300) 
we get a profit of 1900

A magic trick called duality 
Why  x=(200, 300) of profit of 1900, is the optimum?

Multiply (1), (2) and  (3) by  0, 5, and 1, respectively, and add them 
You get  un upper bound  of  x1 + 6x2 ≤ 1900 on the max profit
So, x=(200, 300) is an optimal solution

How we get  the multipliers (0, 5, 1) ? 
They are the solution of another LP, called the dual of the original one 

(1)

(2)

(3)
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Multiple each constraint by the corresponding yi and add them

Thus, we get un upper bound 
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(1)     Multiplier y1

(2)     Multiplier y2

(3) Multiplier y3

Assign a nonnegative multiplier 
to each constraint

Figure 7.9 By design, dual feasible values ≥ primal feasible values. The duality theorem
tells us that moreover their optima coincide.

Primal
Primal feasible

This duality gap is zero

opt Dual feasible Objective
value

opt
Dual

To start with, these yi’s must be nonnegative, for otherwise they are unqualified to multiply
inequalities (multiplying an inequality by a negative number would flip the ≤ to ≥). After the
multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

We want the left-hand side to look like our objective function x1 + 6x2 so that the right-hand
side is an upper bound on the optimum solution. For this we need y1 + y3 to be 1 and y2 + y3 to
be 6. Come to think of it, it would be fine if y1 +y3 were larger than 1—the resulting certificate
would be all the more convincing. Thus, we get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3 if

⎧
⎨

⎩

y1, y2, y3 ≥ 0
y1 + y3 ≥ 1
y2 + y3 ≥ 6

⎫
⎬

⎭ .

We can easily find y’s that satisfy the inequalities on the right by simply making them large
enough, for example (y1, y2, y3) = (5, 3, 6). But these particular multipliers would tell us that
the optimum solution of the LP is at most 200 · 5 + 300 · 3 + 400 · 6 = 4300, a bound that is far
too loose to be of interest. What we want is a bound that is as tight as possible, so we should
minimize 200y1 + 300y2 + 400y3 subject to the preceding inequalities. And this is a new linear
program!

Therefore, finding the set of multipliers that gives the best upper bound on our original
LP is tantamount to solving a new LP:

min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

By design, any feasible value of this dual LP is an upper bound on the original primal LP. So
if we somehow find a pair of primal and dual feasible values that are equal, then they must
both be optimal. Here is just such a pair:

Primal : (x1, x2) = (100, 300); Dual : (y1, y2, y3) = (0, 5, 1).

They both have value 1900, and therefore they certify each other’s optimality (Figure 7.9).
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For y=(5,3,6) we get an upper bound of 4300 which is to loose…
We want an upper bound as tight as possible 
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x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
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We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2
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A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the profit—is
maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move
the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.
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both be optimal. Here is just such a pair:
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Any  feasible value of the dual is an upper bound on the primal LP

If there is a pair of feasible primal and dual solutions of EQUAL VALUES,
then they must be both be optimal; they certify each other’s optimality 
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Primal: x = (100, 300)                         Dual : y= (0, 5, 1) 
both of value 1900 

THIS IS ALWAYS TRUE !
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Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the objective
function: x1 + 6x2 = c for different values of the profit c.
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values that we wish to determine. But this is not all; there are also some constraints on x1 and
x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
Nuit. Also, the current workforce can produce a total of at most 400 boxes of chocolate per day.
What are the optimal levels of production?

We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2
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x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.

We want to find the point in this polygon at which the objective function—the profit—is
maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move
the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.
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Figure 7.9 By design, dual feasible values ≥ primal feasible values. The duality theorem
tells us that moreover their optima coincide.
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To start with, these yi’s must be nonnegative, for otherwise they are unqualified to multiply
inequalities (multiplying an inequality by a negative number would flip the ≤ to ≥). After the
multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

We want the left-hand side to look like our objective function x1 + 6x2 so that the right-hand
side is an upper bound on the optimum solution. For this we need y1 + y3 to be 1 and y2 + y3 to
be 6. Come to think of it, it would be fine if y1 +y3 were larger than 1—the resulting certificate
would be all the more convincing. Thus, we get an upper bound

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3 if

⎧
⎨

⎩

y1, y2, y3 ≥ 0
y1 + y3 ≥ 1
y2 + y3 ≥ 6

⎫
⎬

⎭ .

We can easily find y’s that satisfy the inequalities on the right by simply making them large
enough, for example (y1, y2, y3) = (5, 3, 6). But these particular multipliers would tell us that
the optimum solution of the LP is at most 200 · 5 + 300 · 3 + 400 · 6 = 4300, a bound that is far
too loose to be of interest. What we want is a bound that is as tight as possible, so we should
minimize 200y1 + 300y2 + 400y3 subject to the preceding inequalities. And this is a new linear
program!

Therefore, finding the set of multipliers that gives the best upper bound on our original
LP is tantamount to solving a new LP:

min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

By design, any feasible value of this dual LP is an upper bound on the original primal LP. So
if we somehow find a pair of primal and dual feasible values that are equal, then they must
both be optimal. Here is just such a pair:

Primal : (x1, x2) = (100, 300); Dual : (y1, y2, y3) = (0, 5, 1).

They both have value 1900, and therefore they certify each other’s optimality (Figure 7.9).
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We can easily write the dual of any LP 

• Introduce a multiplier for each primal constraint
• Write a constraint in the dual for every variable of the primal:                               

the sum is required to be above/below the objective coefficient of the 
corresponding primal variable

• Optimize the sum of the multipliers weighted by the right-hand  sides 
of the constraints of the primal  
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12 Introduction to LP-Duality

A large fraction of the theory of approximation algorithms, as we know it to-
day, is built around linear programming (LP). In Section 12.1 we will review
some key concepts from this theory. In Section 12.2 we will show how the
LP-duality theorem gives rise to min-max relations which have far-reaching
algorithmic significance. Finally, in Section 12.3 we introduce the two funda-
mental algorithm design techniques of rounding and the primal–dual schema,
as well as the method of dual fitting, which yield all the algorithms of Part
II of this book.

12.1 The LP-duality theorem

Linear programming is the problem of optimizing (i.e., minimizing or maxi-
mizing) a linear function subject to linear inequality constraints. The function
being optimized is called the objective function. Perhaps the most interesting
fact about this problem from our perspective is that it is well-characterized
(see definition in Section 1.2). Let us illustrate this through a simple example.

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10
5x1 + 2x2 − x3 ≥ 6
x1, x2, x3 ≥ 0

Notice that in this example all constraints are of the kind “≥” and all
variables are constrained to be nonnegative. This is the standard form of a
minimization linear program; a simple transformation enables one to write
any minimization linear program in this manner. The reason for choosing
this form will become clear shortly.

Any solution, i.e., a setting for the variables in this linear program, that
satisfies all the constraints is said to be a feasible solution. Let z∗ denote the
optimum value of this linear program. Let us consider the question, “Is z∗ at
most α?” where α is a given rational number. For instance, let us ask whether
z∗ ≤ 30. A Yes certificate for this question is simply a feasible solution whose

94 12 Introduction to LP-Duality

objective function value is at most 30. For example, x = (2, 1, 3) constitutes
such a certificate since it satisfies the two constraints of the problem, and the
objective function value for this solution is 7 · 2 + 1 + 5 · 3 = 30. Thus, any
Yes certificate to this question provides an upper bound on z∗.

How do we provide a No certificate for such a question? In other words,
how do we place a good lower bound on z∗? In our example, one such bound
is given by the first constraint: since the xi’s are restricted to be nonnegative,
term-by-term comparison of coefficients shows that 7x1 + x2 + 5x3 ≥ x1 −
x2 + 3x3. Since the right-hand side of the first constraint is 10, the objective
function is at least 10 for any feasible solution. A better lower bound can be
obtained by taking the sum of the two constraints: for any feasible solution
x,

7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 16.

The idea behind this process of placing a lower bound is that we are finding
suitable nonnegative multipliers for the constraints so that when we take their
sum, the coefficient of each xi in the sum is dominated by the coefficient in
the objective function. Now, the right-hand side of this sum is a lower bound
on z∗ since any feasible solution has a nonnegative setting for each xi. Notice
the importance of ensuring that the multipliers are nonnegative: they do not
reverse the direction of the constraint inequality.

Clearly, the rest of the game lies in choosing the multipliers in such a
way that the right-hand side of the sum is as large as possible. Interestingly
enough, the problem of finding the best such lower bound can be formulated
as a linear program:

maximize 10y1 + 6y2

subject to y1 + 5y2 ≤ 7
−y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

y1, y2 ≥ 0

Here y1 and y2 were chosen to be the nonnegative multipliers for the first
and the second constraint, respectively. Let us call the first linear program
the primal program and the second the dual program. There is a systematic
way of obtaining the dual of any linear program; one is a minimization prob-
lem and the other is a maximization problem. Further, the dual of the dual
is the primal program itself (Exercise 12.1). By construction, every feasible
solution to the dual program gives a lower bound on the optimum value of
the primal. Observe that the reverse also holds. Every feasible solution to
the primal program gives an upper bound on the optimal value of the dual.
Therefore, if we can find feasible solutions for the dual and the primal with
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Figure 4.1 Primal and dual relationships.

To illustrate some of these relationships, let us consider an example formulated in Chapter 1. Recall the
portfolio-selection problem, where the decision variables are the amounts to invest in each security type:

Maximize z = 0.043xA + 0.027xB + 0.025xC + 0.022xD + 0.045xE,

subject to:

Cash xA + xB + xC + xD + xE  10,
Governments xB + xC + xD � 4,
Quality 0.6xA + 0.6xB� 0.4xC� 0.4xD + 3.6xE  0,
Maturity 4xA + 10xB � xC � 2xD � 3xE  0,

xA � 0, xB � 0, xC � 0, xD � 0, xE � 0.

The dual of this problem can be found easily by converting it to the standard primal formulation given in (3).
This is accomplished by multiplying the second constraint by �1, thus changing the ‘‘greater than or equal
to’’ constraint to a ‘‘less than or equal to’’ constraint. The resulting primal problem becomes:

Maximize z = 0.043xA + 0.027xB + 0.025xC + 0.022xD + 0.045xE,

subject to: xA + xB + xC + xD + xE  10,
� xB � xC � xD  �4,

0.6xA + 0.6xB � 0.4xC � 0.4xD + 3.6xE  0,
4xA + 10xB � xC � 2xD � 3xE  0,

xA � 0, xB � 0, xC � 0, xD � 0, xE � 0.

According to expression (4), the corresponding dual problem is:

Minimize v = 10y1 � 4y2,

subject to:
y1 + 0.6y3 + 4y4 � 0.043,
y1 � y2 + 0.6y3 + 10y4 � 0.027,
y1 � y2 � 0.4y3 � y4 � 0.025,
y1 � y2 � 0.4y3 � 2y4 � 0.022,
y1 + 3.6y3 � 3y4 � 0.045,
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These results are analogous to what we have seen in Chapter 3. If some shadow price is positive, then
the corresponding constraint must hold with equality; that is,

if ŷ1 > 0, then 12 x̂1 + 2x̂2 + x̂3 = 24;
if ŷ2 > 0, then x̂1 + 2x̂2 + 4x̂3 = 60.

Further, if a constraint of the primal is not binding, then its corresponding shadow price must be zero. In
our simple example there do not happen to be any nonbinding constraints, other than the implicit nonnega-
tivity constraints. However, the reduced costs have the interpretation of shadow prices on the nonnegativity
constraints, and we see that the reduced costs of x1 and x3 are appropriately zero.

In this chapter we develop these ideas further by presenting the general theory of duality in linear
programming.

4.2 DEFINITION OF THE DUAL PROBLEM

The duality principles we have illustrated in the previous sections can be stated formally in general terms.
Let the primal problem be:

Primal

Maximize z =
n

X

j=1
c j x j ,

subject to:
n

X

j=1
ai j x j  bi (i = 1, 2, . . . , m), (3)

x j � 0 ( j = 1, 2, . . . , n).

Associated with this primal problem there is a corresponding dual problem given by:

Dual

Minimize v =
m

X

i=1
bi yi ,

subject to:
m

X

i=1
ai j yi � c j ( j = 1, 2, . . . , n), (4)

yi � 0 (i = 1, 2, . . . , m).

These primal and dual relationships can be conveniently summarized as in Fig. 4.1.
Without the variables y1, y2, . . . , ym, this tableau is essentially the tableau form utilized in Chapters 2

and 3 for a linear program. The firstm rows of the tableau correspond to the constraints of the primal problem,
while the last row corresponds to the objective function of the primal problem. If the variables x1, x2, . . . xn,
are ignored, the columns of the tableau have a similar interpretation for the dual problem. The first n columns
of the tableau correspond to the constraints of the dual problem, while the last column corresponds to the
objective function of the dual problem. Note that there is one dual variable for each explicit constraint in the
primal, and one primal variable for each explicit constraint in the dual. Moreover, the dual constraints are the
familiar optimality condition of ‘‘pricing out’’ a column. They state that, at optimality, no activity should
appear to be profitable from the standpoint of its reduced cost; that is,

c j = c j �
m

X

i=1
ai j yi  0.
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are ignored, the columns of the tableau have a similar interpretation for the dual problem. The first n columns
of the tableau correspond to the constraints of the dual problem, while the last column corresponds to the
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We can easily write the dual of any LP 

Primal  Dual

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP:

max cTx

Ax ≤ b

x ≥ 0

Dual LP:

min yT b

yT A ≥ cT

y ≥ 0

Figure 7.11 In the most general case of linear programming, we have a set I of inequalities
and a set E of equalities (a total of m = |I| + |E| constraints) over n variables, of which a
subset N are constrained to be nonnegative. The dual has m = |I| + |E| variables, of which
only those corresponding to I have nonnegativity constraints.

Primal LP:

max c1x1 + · · · + cnxn

ai1x1 + · · · + ainxn ≤ bi for i ∈ I

ai1x1 + · · · + ainxn = bi for i ∈ E

xj ≥ 0 for j ∈ N

Dual LP:

min b1y1 + · · · + bmym

a1jy1 + · · · + amjym ≥ cj for j ∈ N

a1jy1 + · · · + amjym = cj for j ̸∈ N

yi ≥ 0 for i ∈ I

Amazingly, this is not just a lucky example, but a general phenomenon. To start with, the
preceding construction—creating a multiplier for each primal constraint; writing a constraint
in the dual for every variable of the primal, in which the sum is required to be above the
objective coefficient of the corresponding primal variable; and optimizing the sum of the mul-
tipliers weighted by the primal right-hand sides—can be carried out for any LP, as shown in
Figure 7.10, and in even greater generality in Figure 7.11. The second figure has one notewor-
thy addition: if the primal has an equality constraint, then the corresponding multiplier (or
dual variable) need not be nonnegative, because the validity of equations is preserved when
multiplied by negative numbers. So, the multipliers of equations are unrestricted variables.
Notice also the simple symmetry between the two LPs, in that the matrix A = (aij) defines
one primal constraint with each of its rows, and one dual constraint with each of its columns.

By construction, any feasible solution of the dual is an upper bound on any feasible solution
of the primal. But moreover, their optima coincide!

Duality theorem If a linear program has a bounded optimum, then so does its dual, and the
two optimum values coincide.

209
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• Introduce a multiplier for each primal constraint
• Write a constraint in the dual for every variable of the primal:                               

the sum is required to be above the objective coefficient of the 
corresponding primal variable

• Optimize the sum of the multipliers weighted by the right-hand  sides 
of the constraints of the primal  
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Consider the next LP and its dual to state the theorem  

12.1 The LP-duality theorem 95

matching objective function values, then both solutions must be optimal. In
our example, x = (7/4, 0, 11/4) and y = (2, 1) both achieve objective func-
tion values of 26, and thus both are optimal solutions (see figure below).
The reader may wonder whether our example was ingeniously constructed to
make this happen. Surprisingly enough, this is not an exception, but the rule!
This is the central theorem of linear programming: the LP-duality theorem.

✲

✛ ✲✛ ✲

260 ∞

dual solutions primal solutions

dual opt = primal opt

In order to state this theorem formally, let us consider the following min-
imization problem, written in standard form, as the primal program; equiv-
alently, we could have started with a maximization problem as the primal
program.

minimize
n
∑

j=1

cjxj (12.1)

subject to
n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are given rational numbers.
Introducing variables yi for the ith inequality, we get the dual program:

maximize
m
∑

i=1

biyi (12.2)

subject to
m
∑

i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . , m

Theorem 12.1 (LP-duality theorem) The primal program has finite
optimum iff its dual has finite optimum. Moreover, if x∗ = (x∗

1, . . . , x
∗
n) and

min

1£j£n

1£i£m

1£i£m
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Duality Theorem
The primal program has finite optimum iff its dual has finite optimum. 
Moreover, if x∗ y∗ are optimal solutions for the primal and dual programs, 
respectively, then their values coincide, 

i.e., 

Week  Duality Theorem
If  x and y are feasible solutions for the primal and dual program, then 

96 12 Introduction to LP-Duality

y∗ = (y∗
1 , . . . , y∗

m) are optimal solutions for the primal and dual programs,
respectively, then

n
∑

j=1

cjx
∗
j =

m
∑

i=1

biy
∗
i .

Notice that the LP-duality theorem is really a min–max relation, since
one program is a minimization problem and the other is a maximization
problem. A corollary of this theorem is that the linear programming problem
is well-characterized. Feasible solutions to the primal (dual) provide Yes (No)
certificates to the question, “Is the optimum value less than or equal to α?”
Thus, as a corollary of this theorem we get that linear programming is in
NP ∩ co-NP.

Going back to our example, by construction, any feasible solution to the
dual program gives a lower bound on the optimal value of the primal. In
fact, it also gives a lower bound on the objective function value achieved by
any feasible solution to the primal. This is the easy half of the LP-duality
theorem, sometimes called the weak duality theorem. We give a formal proof
of this theorem, since some steps in the proof will lead to the next important
fact. The design of several exact algorithms have their basis in the LP-duality
theorem. In contrast, in approximation algorithms, typically the weak duality
theorem suffices.

Theorem 12.2 (Weak duality theorem) If x = (x1, . . . , xn) and y =
(y1, . . . , ym) are feasible solutions for the primal and dual program, respec-
tively, then

n
∑

j=1

cjxj ≥
m
∑

i=1

biyi. (12.3)

Proof: Since y is dual feasible and xj ’s are nonnegative,

n
∑

j=1

cjxj ≥
n
∑

j=1

(
m
∑

i=1

aijyi

)

xj . (12.4)

Similarly, since x is primal feasible and yi’s are nonnegative,

m
∑

i=1

⎛

⎝

n
∑

j=1

aijxj

⎞

⎠ yi ≥
m
∑

i=1

biyi. (12.5)

The theorem follows by observing that
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Week  Duality Theorem
If  x and y are feasible solutions for the primal and dual program, 

then 

Proof.
Since y is dual feasible and xj≧0

Similarly, since x is primal feasible and yi≧0

The theorem follows by observing that 
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n
∑

j=1

(
m
∑

i=1

aijyi

)

xj =
m
∑

i=1

⎛

⎝

n
∑

j=1

aijxj

⎞

⎠ yi.

✷

By the LP-duality theorem, x and y are both optimal solutions iff (12.3)
holds with equality. Clearly, this happens iff both (12.4) and (12.5) hold with
equality. Hence, we get the following result about the structure of optimal
solutions:

Theorem 12.3 (Complementary slackness conditions) Let x and y
be primal and dual feasible solutions, respectively. Then, x and y are both
optimal iff all of the following conditions are satisfied:

Primal complementary slackness conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aijyi = cj; and

Dual complementary slackness conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aijxj = bi.

The complementary slackness conditions play a vital role in the design
of efficient algorithms, both exact and approximation; see Chapter 15 for
details. (For a better appreciation of their importance, we recommend that
the reader study algorithms for the weighted matching problem, see Section
12.5.)

12.2 Min–max relations and LP-duality

In order to appreciate the role of LP-duality theory in approximation algo-
rithms, it is important to first understand its role in exact algorithms. To
do so, we will review some of these ideas in the context of the max-flow
min-cut theorem. In particular, we will show how this and other min–max
relations follow from the LP-duality theorem. Some of the ideas on cuts and
flows developed here will also be used in the study of multicommodity flow
in Chapters 18, 20, and 21.

The problem of computing a maximum flow in a network is: given a
directed1 graph, G = (V, E) with two distinguished nodes, source s and sink
t, and positive arc capacities, c : E → R+, find the maximum amount of flow
that can be sent from s to t subject to

1. capacity constraint: for each arc e, the flow sent through e is bounded by
its capacity, and

1 The maximum flow problem in undirected graphs reduces to that in directed
graphs: replace each edge (u, v) by two directed edges, (u → v) and (v → u),
each of the same capacity as (u, v).

12.1 The LP-duality theorem 95

matching objective function values, then both solutions must be optimal. In
our example, x = (7/4, 0, 11/4) and y = (2, 1) both achieve objective func-
tion values of 26, and thus both are optimal solutions (see figure below).
The reader may wonder whether our example was ingeniously constructed to
make this happen. Surprisingly enough, this is not an exception, but the rule!
This is the central theorem of linear programming: the LP-duality theorem.

✲
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Theorem 12.1 (LP-duality theorem) The primal program has finite
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∗
n) and
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1£i£m

12.1 The LP-duality theorem 95

matching objective function values, then both solutions must be optimal. In
our example, x = (7/4, 0, 11/4) and y = (2, 1) both achieve objective func-
tion values of 26, and thus both are optimal solutions (see figure below).
The reader may wonder whether our example was ingeniously constructed to
make this happen. Surprisingly enough, this is not an exception, but the rule!
This is the central theorem of linear programming: the LP-duality theorem.

✲

✛ ✲✛ ✲

260 ∞

dual solutions primal solutions

dual opt = primal opt

In order to state this theorem formally, let us consider the following min-
imization problem, written in standard form, as the primal program; equiv-
alently, we could have started with a maximization problem as the primal
program.

minimize
n
∑

j=1

cjxj (12.1)

subject to
n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are given rational numbers.
Introducing variables yi for the ith inequality, we get the dual program:

maximize
m
∑

i=1

biyi (12.2)

subject to
m
∑

i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . , m

Theorem 12.1 (LP-duality theorem) The primal program has finite
optimum iff its dual has finite optimum. Moreover, if x∗ = (x∗

1, . . . , x
∗
n) and

max

1£j£n



14

LP Duality theorems 

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 05 – LP DUALITY

• By the LP duality theorem, x and y are both optimal iff

holds with equality

• Clearly it happens iff both 

and

hold with equality

Complementary slackness Theorem
Let x and y be primal and dual feasible solutions, respectively. 
Then, x and y are both optimal iff the following two conditions are satisfied: 
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✷

By the LP-duality theorem, x and y are both optimal solutions iff (12.3)
holds with equality. Clearly, this happens iff both (12.4) and (12.5) hold with
equality. Hence, we get the following result about the structure of optimal
solutions:

Theorem 12.3 (Complementary slackness conditions) Let x and y
be primal and dual feasible solutions, respectively. Then, x and y are both
optimal iff all of the following conditions are satisfied:

Primal complementary slackness conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aijyi = cj; and

Dual complementary slackness conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aijxj = bi.

The complementary slackness conditions play a vital role in the design
of efficient algorithms, both exact and approximation; see Chapter 15 for
details. (For a better appreciation of their importance, we recommend that
the reader study algorithms for the weighted matching problem, see Section
12.5.)

12.2 Min–max relations and LP-duality

In order to appreciate the role of LP-duality theory in approximation algo-
rithms, it is important to first understand its role in exact algorithms. To
do so, we will review some of these ideas in the context of the max-flow
min-cut theorem. In particular, we will show how this and other min–max
relations follow from the LP-duality theorem. Some of the ideas on cuts and
flows developed here will also be used in the study of multicommodity flow
in Chapters 18, 20, and 21.

The problem of computing a maximum flow in a network is: given a
directed1 graph, G = (V, E) with two distinguished nodes, source s and sink
t, and positive arc capacities, c : E → R+, find the maximum amount of flow
that can be sent from s to t subject to

1. capacity constraint: for each arc e, the flow sent through e is bounded by
its capacity, and

1 The maximum flow problem in undirected graphs reduces to that in directed
graphs: replace each edge (u, v) by two directed edges, (u → v) and (v → u),
each of the same capacity as (u, v).
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Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.
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en route. Figure 7.4(b) shows a possible flow from s to t, which ships 7 units in all. Is this the
best that can be done?

7.2.2 Maximizing flow
The networks we are dealing with consist of a directed graph G = (V,E); two special nodes
s, t ∈ V , which are, respectively, a source and sink of G; and capacities ce > 0 on the edges.

We would like to send as much oil as possible from s to t without exceeding the capacities
of any of the edges. A particular shipping scheme is called a flow and consists of a variable fe

for each edge e of the network, satisfying the following two properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2. For all nodes u except s and t, the amount of flow entering u equals the amount leaving
u: ∑

(w,u)∈E

fwu =
∑

(u,z)∈E

fuz.

In other words, flow is conserved.

The size of a flow is the total quantity sent from s to t and, by the conservation principle,
is equal to the quantity leaving s:

size(f) =
∑

(s,u)∈E

fsu.

In short, our goal is to assign values to {fe : e ∈ E} that will satisfy a set of linear
constraints and maximize a linear objective function. But this is a linear program! The
maximum-flow problem reduces to linear programming.

For example, for the network of Figure 7.4 the LP has 11 variables, one per edge. It seeks
to maximize fsa + fsb + fsc subject to a total of 27 constraints: 11 for nonnegativity (such as
fsa ≥ 0), 11 for capacity (such as fsa ≤ 3), and 5 for flow conservation (one for each node of
the graph other than s and t, such as fsc + fdc = fce). Simplex would take no time at all to
correctly solve the problem and to confirm that, in our example, a flow of 7 is in fact optimal.
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2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X, X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
now require flow conservation at s and t as well. If fij denotes the amount of
flow sent through arc (i, j) ∈ E, we can formulate the maximum flow problem
as follows:

maximize fts

subject to fij ≤ cij , (i, j) ∈ E
∑

j: (j,i)∈E

fji −
∑

j: (i,j)∈E

fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

The second set of inequalities say that for each node i, the total flow into i
is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.

To obtain the dual program we introduce variables dij and pi correspond-
ing to the two types of inequalities in the primal. We will view these variables
as distance labels on arcs and potentials on nodes, respectively. The dual pro-
gram is:

minimize
∑

(i,j)∈E

cijdij (12.6)

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ≥ 0, (i, j) ∈ E

G=(V,E)
Source node s
Sink node t
Trick: Add an arc (t,s) to G 
of infinite capacity
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min-cut theorem proves that it is always possible to find a flow and an s–t
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Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
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2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X, X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
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is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.
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2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X, X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
now require flow conservation at s and t as well. If fij denotes the amount of
flow sent through arc (i, j) ∈ E, we can formulate the maximum flow problem
as follows:

maximize fts

subject to fij ≤ cij , (i, j) ∈ E
∑

j: (j,i)∈E

fji −
∑

j: (i,j)∈E

fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

The second set of inequalities say that for each node i, the total flow into i
is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.

To obtain the dual program we introduce variables dij and pi correspond-
ing to the two types of inequalities in the primal. We will view these variables
as distance labels on arcs and potentials on nodes, respectively. The dual pro-
gram is:

minimize
∑

(i,j)∈E

cijdij (12.6)

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ≥ 0, (i, j) ∈ E12.2 Min–max relations and LP-duality 99

pi ≥ 0, i ∈ V (12.7)

For developing an intuitive understanding of the dual program, it will be
best to first transform it into an integer program that seeks 0/1 solutions to
the variables:

minimize
∑

(i,j)∈E

cijdij

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ∈ {0, 1}, (i, j) ∈ E

pi ∈ {0, 1}, i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program. The only way
to satisfy the inequality p∗

s − p∗
t ≥ 1 with a 0/1 substitution is to set p∗

s = 1
and p∗

t = 0. This solution naturally defines an s–t cut (X, X), where X is the
set of potential 1 nodes, and X the set of potential 0 nodes. Consider an arc
(i, j) with i ∈ X and j ∈ X. Since p∗

i = 1 and p∗
j = 0, by the first constraint,

d∗
ij ≥ 1. But since we have a 0/1 solution, d∗

ij = 1. The distance label for
each of the remaining arcs can be set to either 0 or 1 without violating the
first constraint; however, in order to minimize the objective function value,
it must be set to 0. The objective function value must thus be equal to the
capacity of the cut (X, X), and (X, X) must be a minimum s–t cut.

Thus, the previous integer program is a formulation of the minimum s–t
cut problem! What about the dual program? The dual program can be viewed
as a relaxation of the integer program where the integrality constraint on the
variables is dropped. This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E
and 1 ≥ pi ≥ 0 for i ∈ V . Next, we notice that the upper bound constraints
on the variables are redundant; their omission cannot give a better solution.
Dropping these constraints gives the dual program in the form given above.
We will say that this program is the LP-relaxation of the integer program.

Consider an s–t cut C. Set C has the property that any path from s to t
in G contains at least one edge of C. Using this observation, we can interpret
any feasible solution to the dual program as a fractional s–t cut: the distance
labels it assigns to arcs satisfy the property that on any path from s to t
the distance labels add up to at least 1. To see this, consider an s–t path
(s = v0, v1, . . . , vk = t). Now, the sum of the potential differences on the
endpoints of arcs on this path is

k−1
∑

i=0

(pi − pi+1) = ps − pt.

d=y
z=p
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Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.
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en route. Figure 7.4(b) shows a possible flow from s to t, which ships 7 units in all. Is this the
best that can be done?

7.2.2 Maximizing flow
The networks we are dealing with consist of a directed graph G = (V,E); two special nodes
s, t ∈ V , which are, respectively, a source and sink of G; and capacities ce > 0 on the edges.

We would like to send as much oil as possible from s to t without exceeding the capacities
of any of the edges. A particular shipping scheme is called a flow and consists of a variable fe

for each edge e of the network, satisfying the following two properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2. For all nodes u except s and t, the amount of flow entering u equals the amount leaving
u: ∑

(w,u)∈E

fwu =
∑

(u,z)∈E

fuz.

In other words, flow is conserved.

The size of a flow is the total quantity sent from s to t and, by the conservation principle,
is equal to the quantity leaving s:

size(f) =
∑

(s,u)∈E

fsu.

In short, our goal is to assign values to {fe : e ∈ E} that will satisfy a set of linear
constraints and maximize a linear objective function. But this is a linear program! The
maximum-flow problem reduces to linear programming.

For example, for the network of Figure 7.4 the LP has 11 variables, one per edge. It seeks
to maximize fsa + fsb + fsc subject to a total of 27 constraints: 11 for nonnegativity (such as
fsa ≥ 0), 11 for capacity (such as fsa ≤ 3), and 5 for flow conservation (one for each node of
the graph other than s and t, such as fsc + fdc = fce). Simplex would take no time at all to
correctly solve the problem and to confirm that, in our example, a flow of 7 is in fact optimal.
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2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X, X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
now require flow conservation at s and t as well. If fij denotes the amount of
flow sent through arc (i, j) ∈ E, we can formulate the maximum flow problem
as follows:

maximize fts

subject to fij ≤ cij , (i, j) ∈ E
∑

j: (j,i)∈E

fji −
∑

j: (i,j)∈E

fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

The second set of inequalities say that for each node i, the total flow into i
is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.

To obtain the dual program we introduce variables dij and pi correspond-
ing to the two types of inequalities in the primal. We will view these variables
as distance labels on arcs and potentials on nodes, respectively. The dual pro-
gram is:

minimize
∑

(i,j)∈E

cijdij (12.6)

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ≥ 0, (i, j) ∈ E
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pi ≥ 0, i ∈ V (12.7)

For developing an intuitive understanding of the dual program, it will be
best to first transform it into an integer program that seeks 0/1 solutions to
the variables:

minimize
∑

(i,j)∈E

cijdij

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ∈ {0, 1}, (i, j) ∈ E

pi ∈ {0, 1}, i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program. The only way
to satisfy the inequality p∗

s − p∗
t ≥ 1 with a 0/1 substitution is to set p∗

s = 1
and p∗

t = 0. This solution naturally defines an s–t cut (X, X), where X is the
set of potential 1 nodes, and X the set of potential 0 nodes. Consider an arc
(i, j) with i ∈ X and j ∈ X. Since p∗

i = 1 and p∗
j = 0, by the first constraint,

d∗
ij ≥ 1. But since we have a 0/1 solution, d∗

ij = 1. The distance label for
each of the remaining arcs can be set to either 0 or 1 without violating the
first constraint; however, in order to minimize the objective function value,
it must be set to 0. The objective function value must thus be equal to the
capacity of the cut (X, X), and (X, X) must be a minimum s–t cut.

Thus, the previous integer program is a formulation of the minimum s–t
cut problem! What about the dual program? The dual program can be viewed
as a relaxation of the integer program where the integrality constraint on the
variables is dropped. This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E
and 1 ≥ pi ≥ 0 for i ∈ V . Next, we notice that the upper bound constraints
on the variables are redundant; their omission cannot give a better solution.
Dropping these constraints gives the dual program in the form given above.
We will say that this program is the LP-relaxation of the integer program.

Consider an s–t cut C. Set C has the property that any path from s to t
in G contains at least one edge of C. Using this observation, we can interpret
any feasible solution to the dual program as a fractional s–t cut: the distance
labels it assigns to arcs satisfy the property that on any path from s to t
the distance labels add up to at least 1. To see this, consider an s–t path
(s = v0, v1, . . . , vk = t). Now, the sum of the potential differences on the
endpoints of arcs on this path is

k−1
∑

i=0

(pi − pi+1) = ps − pt.
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G=(V,E)
Source node s
Sink node t
Trick: Add an arc (t,s) to G 
of infinite capacity
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Thus, the previous integer program is a formulation of the minimum s–t
cut problem! What about the dual program? The dual program can be viewed
as a relaxation of the integer program where the integrality constraint on the
variables is dropped. This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E
and 1 ≥ pi ≥ 0 for i ∈ V . Next, we notice that the upper bound constraints
on the variables are redundant; their omission cannot give a better solution.
Dropping these constraints gives the dual program in the form given above.
We will say that this program is the LP-relaxation of the integer program.

Consider an s–t cut C. Set C has the property that any path from s to t
in G contains at least one edge of C. Using this observation, we can interpret
any feasible solution to the dual program as a fractional s–t cut: the distance
labels it assigns to arcs satisfy the property that on any path from s to t
the distance labels add up to at least 1. To see this, consider an s–t path
(s = v0, v1, . . . , vk = t). Now, the sum of the potential differences on the
endpoints of arcs on this path is

k−1
∑

i=0

(pi − pi+1) = ps − pt.

Claim 1. This is an IP formulation of the minimum cut problem
Proof.
• d*, p*:  an optimal solution to (IP)  
• ps*−pt* ≥ 1 is satisfied only for ps* =1 and pt*= 0. 
• let  the cut (X,V-X) where X is the set of vertices with pi* =1
• consider an arc (i,j) with i∈X and j∈V-X

• Since  pi* =1 and pj*= 0, it is  dij*≥ 1, that is dij*= 1 
• for all remaining edges dij* can be set to either 0 or 1 

• but  in order to minimize the objective value it must be set to 0
• thus, the objective value is equal to the capacity of the cut (X,V-X)

and (X,V-X) is  a minimum s–t cut
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There is just one complication. What if we had initially chosen a different path, the one in
Figure 7.5(e)? This gives only one unit of flow and yet seems to block all other paths. Simplex
gets around this problem by also allowing paths to cancel existing flow. In this particular
case, it would subsequently choose the path of Figure 7.5(f). Edge (b, a) of this path isn’t in
the original network and has the effect of canceling flow previously assigned to edge (a, b).

To summarize, in each iteration simplex looks for an s − t path whose edges (u, v) can be
of two types:

1. (u, v) is in the original network, and is not yet at full capacity.

2. The reverse edge (v, u) is in the original network, and there is some flow along it.

If the current flow is f , then in the first case, edge (u, v) can handle up to cuv − fuv additional
units of flow, and in the second case, upto fvu additional units (canceling all or part of the
existing flow on (v, u)). These flow-increasing opportunities can be captured in a residual
network Gf = (V,Ef ), which has exactly the two types of edges listed, with residual capacities
cf : {

cuv − fuv if (u, v) ∈ E and fuv < cuv

fvu if (v, u) ∈ E and fvu > 0

Thus we can equivalently think of simplex as choosing an s − t path in the residual network.
By simulating the behavior of simplex, we get a direct algorithm for solving max-flow. It

proceeds in iterations, each time explicitly constructing Gf , finding a suitable s − t path in
Gf by using, say, a linear-time breadth-first search, and halting if there is no longer any such
path along which flow can be increased.

Figure 7.6 illustrates the algorithm on our oil example.

7.2.4 A certificate of optimality
Now for a truly remarkable fact: not only does simplex correctly compute a maximum flow,
but it also generates a short proof of the optimality of this flow!

Let’s see an example of what this means. Partition the nodes of the oil network (Figure 7.4)
into two groups, L = {s, a, b} and R = {c, d, e, t}:

s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

L R

Any oil transmitted must pass from L to R. Therefore, no flow can possibly exceed the total
capacity of the edges from L to R, which is 7. But this means that the flow we found earlier,
of size 7, must be optimal!

s-t cut: X,V-X: sÎX, tÎV-X
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Figure 7.4 (a) A network with edge capacities. (b) A flow in the network.
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en route. Figure 7.4(b) shows a possible flow from s to t, which ships 7 units in all. Is this the
best that can be done?

7.2.2 Maximizing flow
The networks we are dealing with consist of a directed graph G = (V,E); two special nodes
s, t ∈ V , which are, respectively, a source and sink of G; and capacities ce > 0 on the edges.

We would like to send as much oil as possible from s to t without exceeding the capacities
of any of the edges. A particular shipping scheme is called a flow and consists of a variable fe

for each edge e of the network, satisfying the following two properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2. For all nodes u except s and t, the amount of flow entering u equals the amount leaving
u: ∑

(w,u)∈E

fwu =
∑

(u,z)∈E

fuz.

In other words, flow is conserved.

The size of a flow is the total quantity sent from s to t and, by the conservation principle,
is equal to the quantity leaving s:

size(f) =
∑

(s,u)∈E

fsu.

In short, our goal is to assign values to {fe : e ∈ E} that will satisfy a set of linear
constraints and maximize a linear objective function. But this is a linear program! The
maximum-flow problem reduces to linear programming.

For example, for the network of Figure 7.4 the LP has 11 variables, one per edge. It seeks
to maximize fsa + fsb + fsc subject to a total of 27 constraints: 11 for nonnegativity (such as
fsa ≥ 0), 11 for capacity (such as fsa ≤ 3), and 5 for flow conservation (one for each node of
the graph other than s and t, such as fsc + fdc = fce). Simplex would take no time at all to
correctly solve the problem and to confirm that, in our example, a flow of 7 is in fact optimal.
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2. flow conservation: at each node v, other than s and t, the total flow into
v should equal the total flow out of v.

An s–t cut is defined by a partition of the nodes into two sets X and X
so that s ∈ X and t ∈ X, and consists of the set of arcs going from X to X.
The capacity of this cut, c(X, X), is defined to be the sum of capacities of
these arcs. Because of the capacity constraints on flow, the capacity of any
s–t cut is an upper bound on any feasible flow. Thus, if the capacity of an
s–t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a
minimum s–t cut and the flow must be a maximum flow in G. The max-flow
min-cut theorem proves that it is always possible to find a flow and an s–t
cut so that equality holds.

Let us formulate the maximum flow problem as a linear program. First,
introduce a fictitious arc of infinite capacity from t to s, thus converting the
flow to a circulation; the objective now is to maximize the flow on this arc,
denoted by fts. The advantage of making this modification is that we can
now require flow conservation at s and t as well. If fij denotes the amount of
flow sent through arc (i, j) ∈ E, we can formulate the maximum flow problem
as follows:

maximize fts

subject to fij ≤ cij , (i, j) ∈ E
∑

j: (j,i)∈E

fji −
∑

j: (i,j)∈E

fij ≤ 0, i ∈ V

fij ≥ 0, (i, j) ∈ E

The second set of inequalities say that for each node i, the total flow into i
is at most the total flow out of i. Notice that if this inequality holds at each
node, then in fact it must be satisfied with equality at each node, thereby
implying flow conservation at each node (this is so because a deficit in flow
balance at one node implies a surplus at some other node). With this trick,
we get a linear program in standard form.

To obtain the dual program we introduce variables dij and pi correspond-
ing to the two types of inequalities in the primal. We will view these variables
as distance labels on arcs and potentials on nodes, respectively. The dual pro-
gram is:

minimize
∑

(i,j)∈E

cijdij (12.6)

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ≥ 0, (i, j) ∈ E
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(Dual LP) 
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pi ≥ 0, i ∈ V (12.7)

For developing an intuitive understanding of the dual program, it will be
best to first transform it into an integer program that seeks 0/1 solutions to
the variables:

minimize
∑

(i,j)∈E

cijdij

subject to dij − pi + pj ≥ 0, (i, j) ∈ E

ps − pt ≥ 1
dij ∈ {0, 1}, (i, j) ∈ E

pi ∈ {0, 1}, i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program. The only way
to satisfy the inequality p∗

s − p∗
t ≥ 1 with a 0/1 substitution is to set p∗

s = 1
and p∗

t = 0. This solution naturally defines an s–t cut (X, X), where X is the
set of potential 1 nodes, and X the set of potential 0 nodes. Consider an arc
(i, j) with i ∈ X and j ∈ X. Since p∗

i = 1 and p∗
j = 0, by the first constraint,

d∗
ij ≥ 1. But since we have a 0/1 solution, d∗

ij = 1. The distance label for
each of the remaining arcs can be set to either 0 or 1 without violating the
first constraint; however, in order to minimize the objective function value,
it must be set to 0. The objective function value must thus be equal to the
capacity of the cut (X, X), and (X, X) must be a minimum s–t cut.

Thus, the previous integer program is a formulation of the minimum s–t
cut problem! What about the dual program? The dual program can be viewed
as a relaxation of the integer program where the integrality constraint on the
variables is dropped. This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E
and 1 ≥ pi ≥ 0 for i ∈ V . Next, we notice that the upper bound constraints
on the variables are redundant; their omission cannot give a better solution.
Dropping these constraints gives the dual program in the form given above.
We will say that this program is the LP-relaxation of the integer program.

Consider an s–t cut C. Set C has the property that any path from s to t
in G contains at least one edge of C. Using this observation, we can interpret
any feasible solution to the dual program as a fractional s–t cut: the distance
labels it assigns to arcs satisfy the property that on any path from s to t
the distance labels add up to at least 1. To see this, consider an s–t path
(s = v0, v1, . . . , vk = t). Now, the sum of the potential differences on the
endpoints of arcs on this path is

k−1
∑

i=0

(pi − pi+1) = ps − pt.

Claim 2.  This dual LP has always an integral optimal solution   (Proof?) 

Hence, 
• the maximum flow  is equal to the minimum fractional cut (by the duality theorem) 
• the latter equals to the capacity of an (integral) minimum cut (by Claims 1 and 2)
• the maximum flow is equal to minimum cut (Max-flow Min-cut theorem)
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(integer)
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(integer)
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162 The primal-dual method

y ← 0
I ← ∅
while there exists ei /∈

⋃
j∈I Sj do

Increase the dual variable yi until there is some ℓ such that
∑

j:ej∈Sℓ
yj = wℓ

I ← I ∪ {ℓ}
return I

Algorithm 7.1: Primal-dual algorithm for the set cover problem.

integer program:

minimize
m∑

j=1

wjxj (7.1)

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n, (7.2)

xj ∈ {0, 1} j = 1, . . . ,m. (7.3)

If we relax the integer program to a linear program by replacing the constraints xj ∈ {0, 1}
with xj ≥ 0, and take the dual, we obtain

maximize
n∑

i=1

yi

subject to
∑

i:ei∈Sj

yi ≤ wj , j = 1, . . . ,m,

yi ≥ 0, i = 1, . . . , n.

We then gave the following algorithm, which we repeat in Algorithm 7.1. We begin with
the dual solution y = 0; this is a feasible solution since wj ≥ 0 for all j. We also have an
infeasible primal solution I = ∅. As long as there is some element ei not covered by I, we
look at all the sets Sj that contain ei, and consider the amount by which we can increase
the dual variable yi associated with ei and still maintain dual feasibility. This amount is

ϵ = minj:ei∈Sj

(
wj −

∑
k:ek∈Sj

yk
)
(note that possibly this is zero). We then increase yi by ϵ.

This will cause some dual constraint associated with some set Sℓ to become tight; that is, after
increasing yi we will have for this set Sℓ

∑

k:ek∈Sℓ

yk = wℓ.

We add the set Sℓ to our cover (by adding ℓ to I) and continue until all elements are covered.
In Section 1.5, we argued that this algorithm is an f -approximation algorithm for the set

cover problem, where f = maxi | {j : ei ∈ Sj} |. We repeat the analysis here, since there are
several features of the analysis that are used frequently in analyzing primal-dual approximation
algorithms.

Theorem 7.1: Algorithm 7.1 is an f -approximation algorithm for the set cover problem.

Proof. For the cover I constructed by the algorithm, we would like to show that
∑

j∈I wj ≤
f · OPT. Let Z∗

LP be the optimal value of the linear programming relaxation of (7.1). It is
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We then gave the following algorithm, which we repeat in Algorithm 7.1. We begin with
the dual solution y = 0; this is a feasible solution since wj ≥ 0 for all j. We also have an
infeasible primal solution I = ∅. As long as there is some element ei not covered by I, we
look at all the sets Sj that contain ei, and consider the amount by which we can increase
the dual variable yi associated with ei and still maintain dual feasibility. This amount is

ϵ = minj:ei∈Sj

(
wj −

∑
k:ek∈Sj

yk
)
(note that possibly this is zero). We then increase yi by ϵ.

This will cause some dual constraint associated with some set Sℓ to become tight; that is, after
increasing yi we will have for this set Sℓ

∑

k:ek∈Sℓ

yk = wℓ.

We add the set Sℓ to our cover (by adding ℓ to I) and continue until all elements are covered.
In Section 1.5, we argued that this algorithm is an f -approximation algorithm for the set

cover problem, where f = maxi | {j : ei ∈ Sj} |. We repeat the analysis here, since there are
several features of the analysis that are used frequently in analyzing primal-dual approximation
algorithms.

Theorem 7.1: Algorithm 7.1 is an f -approximation algorithm for the set cover problem.

Proof. For the cover I constructed by the algorithm, we would like to show that
∑

j∈I wj ≤
f · OPT. Let Z∗

LP be the optimal value of the linear programming relaxation of (7.1). It is
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Proof. 
We add a set Sj to our cover only when its dual inequality is tight, 
that is                               , for any j ∈ I 

Thus, 

Since,                                          we get 

Let Z*LP  be the optimal value of the LP relaxation

Then, by the week duality theorem, 

and as     we get 

7.1 The set cover problem: a review 163

sufficient to show that
∑

j∈I wj ≤ f ·
∑n

i=1 yi for the final dual solution y, since by weak duality
we know that for any dual feasible solution y,

∑n
i=1 yi ≤ Z∗

LP , and since the LP is a relaxation,
Z∗
LP ≤ OPT.
Because we only added a set Sj to our cover when its corresponding dual inequality was

tight, we know that for any j ∈ I, wj =
∑

i:ei∈Sj
yi. Thus we have that

∑

j∈I
wj =

∑

j∈I

∑

i:ei∈Sj

yi

=
n∑

i=1

yi · | {j ∈ I : ei ∈ Sj} |

where the second equality comes from rewriting the double sum. We then observe that since
| {j ∈ I : ei ∈ Sj} | ≤ f , we get that

∑

j∈I
wj ≤ f ·

n∑

i=1

yi ≤ f ·OPT .

We’ll be using several features of the algorithm and the analysis repeatedly in this chapter.
In particular: we maintain a feasible dual solution, and increase dual variables until a dual
constraint becomes tight. This indicates an object that we need to add to our primal solution
(a set, in this case). When we analyze the cost of the primal solution, each object in the solution
was given by a tight dual inequality. Thus we can rewrite the cost of the primal solution in
terms of the dual variables. We then compare this cost with the dual objective function and
show that the primal cost is within a certain factor of the dual objective, which shows that we
are close to the value of an optimal solution.

In this case, we increase dual variables until wj =
∑

i:ei∈Sj
yi for some set Sj , which we then

add to our primal solution. When we have a feasible primal solution I, we can rewrite its cost
in terms of the dual variables by using the tight dual inequalities, so that

∑

j∈I
wj =

∑

j∈I

∑

i:ei∈Sj

yi.

By exchanging the double summation, we have that

∑

j∈I
wj =

n∑

i=1

yi · | {j ∈ I : ei ∈ Sj} |.

Then by bounding the value of | {j ∈ I : ei ∈ Sj} | by f , we get that the cost is at most f times
the dual objective function, proving a performance guarantee on the algorithm. Because we
will use this form of analysis frequently in this chapter, we will call it the standard primal-dual
analysis.

This method of analysis is strongly related to the complementary slackness conditions dis-
cussed at the end of Section 1.4. Let I be the set cover returned by the primal-dual algorithm,
and consider an integer primal solution x∗ for the integer programming formulation (7.1) of the
set cover problem in which we set x∗j = 1 for each set j ∈ I. Then we know that whenever
x∗j > 0, the corresponding dual inequality is tight, so this part of the complementary slackness
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Algorithm 15.2 (Set cover – factor f)

1. Initialization: x← 0; y ← 0
2. Until all elements are covered, do:

Pick an uncovered element, say e, and raise ye until some set goes
tight.

Pick all tight sets in the cover and update x.
Declare all the elements occurring in these sets as “covered”.

3. Output the set cover x.

Theorem 15.3 Algorithm 15.2 achieves an approximation factor of f .

Proof: Clearly there will be no uncovered elements and no overpacked sets
at the end of the algorithm. Thus, the primal and dual solutions will both be
feasible. Since they satisfy the relaxed complementary slackness conditions
with α = f , by Proposition 15.1 the approximation factor is f . ✷

Example 15.4 A tight example for this algorithm is provided by the fol-
lowing set system:

n-1e

n+1

n

1 2

1 1 1

e

e e

e

1+ε

. . .

Here, S consists of n− 1 sets of cost 1, {e1, en}, . . . , {en−1, en}, and one set
of cost 1 + ε, {e1, . . . , en+1}, for a small ε > 0. Since en appears in all n sets,
this set system has f = n.

Suppose the algorithm raises yen in the first iteration. When yen is raised
to 1, all sets {ei, en}, i = 1, . . . , n − 1 go tight. They are all picked in the
cover, thus covering the elements e1, . . . , en. In the second iteration, yen+1 is
raised to ε and the set {e1, . . . , en+1} goes tight. The resulting set cover has
a cost of n + ε, whereas the optimum cover has cost 1 + ε. ✷

S consists of:
n−1 sets of cost 1, {e1,en},...,{en−1,en}, and  
one set of cost 1+ε, {e1,...,en+1},  for a small ε>0

f=n, since en appears in all n sets, f = n. 

• Suppose the algorithm raises yen   in the first iteration
• When yen  is raised to 1, all sets {ei,en}, i = 1,...,n − 1 go tight
• They are all picked in the cover, thus covering the elements e1 , . . . , en

• In the second iteration, yen+1 is raised to ε and the set {e1, . . . , en+1} goes tight
• We get a set cover of cost of n+ε, whereas the optimum has cost 1+ε
• That is an approximation ratio of n=f 
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12.1 The LP-duality theorem 95

matching objective function values, then both solutions must be optimal. In
our example, x = (7/4, 0, 11/4) and y = (2, 1) both achieve objective func-
tion values of 26, and thus both are optimal solutions (see figure below).
The reader may wonder whether our example was ingeniously constructed to
make this happen. Surprisingly enough, this is not an exception, but the rule!
This is the central theorem of linear programming: the LP-duality theorem.

✲

✛ ✲✛ ✲

260 ∞

dual solutions primal solutions

dual opt = primal opt

In order to state this theorem formally, let us consider the following min-
imization problem, written in standard form, as the primal program; equiv-
alently, we could have started with a maximization problem as the primal
program.

minimize
n
∑

j=1

cjxj (12.1)

subject to
n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are given rational numbers.
Introducing variables yi for the ith inequality, we get the dual program:

maximize
m
∑

i=1

biyi (12.2)

subject to
m
∑

i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . , m

Theorem 12.1 (LP-duality theorem) The primal program has finite
optimum iff its dual has finite optimum. Moreover, if x∗ = (x∗

1, . . . , x
∗
n) and
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n) andComplementary slackness Theorem

Let x and y be primal and dual feasible solutions, respectively. 
Then, x and y are both optimal iff the following two conditions are satisfied: 

12.2 Min–max relations and LP-duality 97

n
∑

j=1

(
m
∑

i=1

aijyi

)

xj =
m
∑

i=1

⎛

⎝

n
∑

j=1

aijxj

⎞

⎠ yi.

✷

By the LP-duality theorem, x and y are both optimal solutions iff (12.3)
holds with equality. Clearly, this happens iff both (12.4) and (12.5) hold with
equality. Hence, we get the following result about the structure of optimal
solutions:

Theorem 12.3 (Complementary slackness conditions) Let x and y
be primal and dual feasible solutions, respectively. Then, x and y are both
optimal iff all of the following conditions are satisfied:

Primal complementary slackness conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aijyi = cj; and

Dual complementary slackness conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aijxj = bi.

The complementary slackness conditions play a vital role in the design
of efficient algorithms, both exact and approximation; see Chapter 15 for
details. (For a better appreciation of their importance, we recommend that
the reader study algorithms for the weighted matching problem, see Section
12.5.)

12.2 Min–max relations and LP-duality

In order to appreciate the role of LP-duality theory in approximation algo-
rithms, it is important to first understand its role in exact algorithms. To
do so, we will review some of these ideas in the context of the max-flow
min-cut theorem. In particular, we will show how this and other min–max
relations follow from the LP-duality theorem. Some of the ideas on cuts and
flows developed here will also be used in the study of multicommodity flow
in Chapters 18, 20, and 21.

The problem of computing a maximum flow in a network is: given a
directed1 graph, G = (V, E) with two distinguished nodes, source s and sink
t, and positive arc capacities, c : E → R+, find the maximum amount of flow
that can be sent from s to t subject to

1. capacity constraint: for each arc e, the flow sent through e is bounded by
its capacity, and

1 The maximum flow problem in undirected graphs reduces to that in directed
graphs: replace each edge (u, v) by two directed edges, (u → v) and (v → u),
each of the same capacity as (u, v).
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Primal–dual schema: 
Ensure one set of conditions and suitably relax the other
Capture both situations by relaxing both conditions

If primal conditions are ensured, we set α = 1
If dual conditions are ensured, we set β = 1
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subject to
n
∑

j=1

aijxj ≥ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n

where aij , bi, and cj are specified in the input. The dual program is:

maximize
m
∑

i=1

biyi

subject to
m
∑

i=1

aijyi ≤ cj , j = 1, . . . , n

yi ≥ 0, i = 1, . . . , m

Most known approximation algorithms using the primal–dual schema run
by ensuring one set of conditions and suitably relaxing the other. In the fol-
lowing description we capture both situations by relaxing both conditions.
Eventually, if primal conditions are ensured, we set α = 1, and if dual condi-
tions are ensured, we set β = 1.

Primal complementary slackness conditions
Let α ≥ 1.
For each 1 ≤ j ≤ n: either xj = 0 or cj/α ≤

∑m
i=1 aijyi ≤ cj .

Dual complementary slackness conditions
Let β ≥ 1.
For each 1 ≤ i ≤ m: either yi = 0 or bi ≤

∑n
j=1 aijxj ≤ β · bi,

Proposition 15.1 If x and y are primal and dual feasible solutions satisfy-
ing the conditions stated above then

n
∑

j=1

cjxj ≤ α · β ·
m
∑

i=1

biyi.

Proof:

n
∑

j=1

cjxj ≤ α
n
∑

j=1

(
m
∑

i=1

aijyi

)

xj = α
m
∑

i=1

⎛

⎝

n
∑

j=1

aijxj

⎞

⎠ yi

≤ αβ
m
∑

i=1

biyi . (15.1)

The first and second inequalities follow from the primal and dual conditions,
respectively. The equality follows by simply changing the order of summation.
✷



29

Primal-Dual schema  

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 05 – LP DUALITY

If x and y are primal and dual feasible solutions satisfying the conditions

stated above then 

Proof.
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The first and second inequalities follow from the primal and dual conditions 
The equality follows by simply changing the order of summation. 
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• Start with a primal infeasible solution and a dual feasible solution; 
these are usually the trivial solutions x = 0 and y = 0. 

• Iteratively improve the feasibility of the primal solution, and the 
optimality of the dual solution, 

• At the end a primal feasible solution is obtained and all conditions 
stated above, with a suitable choice of α and β, are satisfied. 

• The primal solution is always integral 
• The improvements to the primal and the dual go hand-in-hand: 

• the current primal solution is used to determine the 
improvement to the dual, and vice versa. 

• The cost of the dual solution is used as a lower bound on OPT, and 
by the fact above, the approximation guarantee of the algorithm is 
αβ. 
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13.1 Dual-fitting-based analysis for the greedy set cover algorithm 109

xS ∈ {0, 1}, S ∈ S

The LP-relaxation of this integer program is obtained by letting the do-
main of variables xS be 1 ≥ xS ≥ 0. Since the upper bound on xS is re-
dundant, we get the following LP. A solution to this LP can be viewed as a
fractional set cover.

minimize
∑

S∈S
c(S)xS (13.2)

subject to
∑

S: e∈S

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

Example 13.1 Let us give a simple example to show that a fractional set
cover may be cheaper than the optimal integral set cover. Let U = {e, f, g}
and the specified sets be S1 = {e, f}, S2 = {f, g}, S3 = {e, g}, each of unit
cost. An integral cover must pick two of the sets for a cost of 2. On the other
hand, picking each set to the extent of 1/2 gives a fractional cover of cost
3/2. ✷

Introducing a variable ye corresponding to each element e ∈ U , we obtain
the dual program.

maximize
∑

e∈U

ye (13.3)

subject to
∑

e: e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

Intuitively, why is LP (13.3) the dual of LP (13.2)? In our experience,
this is not the right question to be asked. As stated in Section 12.1, there
is a purely mechanical procedure for obtaining the dual of a linear program.
Once the dual is obtained, one can devise intuitive, and possibly physically
meaningful, ways of thinking about it. Using this mechanical procedure, one
can obtain the dual of a complex linear program in a fairly straightforward
manner. Indeed, the LP-duality-based approach derives its wide applicability
from this fact.

An intuitive way of thinking about LP (13.3) is that it is packing “stuff”
into elements, trying to maximize the total amount packed, subject to the
constraint that no set is overpacked. A set is said to be overpacked if the
total amount packed into its elements exceeds the cost of the set. Whenever
the coefficients in the constraint matrix, objective function, and right-hand
side are all nonnegative, the minimization LP is called a covering LP and
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We choose α=1 and β=f

Primal complementary slackness:
Set S is tight if   
We increment the primal variables integrally; 

so, we can state the conditions as: Pick only tight sets in the cover

To maintain dual feasibility, we are not allowed to overpack any set

Dual complementary slackness:
We will find an integral (0/1) solution for x;
so, each element with a nonzero dual value can be covered at most f times

Since each element is in at most f sets, this condition is trivially satisfied for 
all elements. 

15.2 Primal–dual schema applied to set cover 127

The algorithm starts with a primal infeasible solution and a dual feasible
solution; these are usually the trivial solutions x = 0 and y = 0. It iteratively
improves the feasibility of the primal solution, and the optimality of the dual
solution, ensuring that in the end a primal feasible solution is obtained and
all conditions stated above, with a suitable choice of α and β, are satisfied.
The primal solution is always extended integrally, thus ensuring that the final
solution is integral. The improvements to the primal and the dual go hand-
in-hand: the current primal solution is used to determine the improvement
to the dual, and vice versa. Finally, the cost of the dual solution is used as a
lower bound on OPT, and by Proposition 15.1, the approximation guarantee
of the algorithm is αβ.

15.2 Primal–dual schema applied to set cover

Let us obtain a factor f algorithm for the set cover problem using the primal–
dual schema. For this algorithm, we will choose α = 1 and β = f . We will work
with the primal and dual pair of LP’s given in (13.2) and (13.3), respectively.
The complementary slackness conditions are:

Primal conditions

∀S ∈ S : xS ̸= 0⇒
∑

e: e∈S

ye = c(S).

Set S will be said to be tight if
∑

e: e∈S ye = c(S). Since we will increment
the primal variables integrally, we can state the conditions as: Pick only tight
sets in the cover.
Clearly, in order to maintain dual feasibility, we are not allowed to overpack
any set.

Dual conditions

∀e : ye ̸= 0⇒
∑

S: e∈S

xS ≤ f

Since we will find a 0/1 solution for x, these conditions are equivalent to:
Each element having a nonzero dual value can be covered at most f times.
Since each element is in at most f sets, this condition is trivially satisfied for
all elements.

The two sets of conditions naturally suggest the following algorithm:

15.2 Primal–dual schema applied to set cover 127

The algorithm starts with a primal infeasible solution and a dual feasible
solution; these are usually the trivial solutions x = 0 and y = 0. It iteratively
improves the feasibility of the primal solution, and the optimality of the dual
solution, ensuring that in the end a primal feasible solution is obtained and
all conditions stated above, with a suitable choice of α and β, are satisfied.
The primal solution is always extended integrally, thus ensuring that the final
solution is integral. The improvements to the primal and the dual go hand-
in-hand: the current primal solution is used to determine the improvement
to the dual, and vice versa. Finally, the cost of the dual solution is used as a
lower bound on OPT, and by Proposition 15.1, the approximation guarantee
of the algorithm is αβ.

15.2 Primal–dual schema applied to set cover

Let us obtain a factor f algorithm for the set cover problem using the primal–
dual schema. For this algorithm, we will choose α = 1 and β = f . We will work
with the primal and dual pair of LP’s given in (13.2) and (13.3), respectively.
The complementary slackness conditions are:

Primal conditions

∀S ∈ S : xS ̸= 0⇒
∑

e: e∈S

ye = c(S).

Set S will be said to be tight if
∑

e: e∈S ye = c(S). Since we will increment
the primal variables integrally, we can state the conditions as: Pick only tight
sets in the cover.
Clearly, in order to maintain dual feasibility, we are not allowed to overpack
any set.

Dual conditions

∀e : ye ̸= 0⇒
∑

S: e∈S

xS ≤ f

Since we will find a 0/1 solution for x, these conditions are equivalent to:
Each element having a nonzero dual value can be covered at most f times.
Since each element is in at most f sets, this condition is trivially satisfied for
all elements.

The two sets of conditions naturally suggest the following algorithm:

15.2 Primal–dual schema applied to set cover 127

The algorithm starts with a primal infeasible solution and a dual feasible
solution; these are usually the trivial solutions x = 0 and y = 0. It iteratively
improves the feasibility of the primal solution, and the optimality of the dual
solution, ensuring that in the end a primal feasible solution is obtained and
all conditions stated above, with a suitable choice of α and β, are satisfied.
The primal solution is always extended integrally, thus ensuring that the final
solution is integral. The improvements to the primal and the dual go hand-
in-hand: the current primal solution is used to determine the improvement
to the dual, and vice versa. Finally, the cost of the dual solution is used as a
lower bound on OPT, and by Proposition 15.1, the approximation guarantee
of the algorithm is αβ.

15.2 Primal–dual schema applied to set cover

Let us obtain a factor f algorithm for the set cover problem using the primal–
dual schema. For this algorithm, we will choose α = 1 and β = f . We will work
with the primal and dual pair of LP’s given in (13.2) and (13.3), respectively.
The complementary slackness conditions are:

Primal conditions

∀S ∈ S : xS ̸= 0⇒
∑

e: e∈S

ye = c(S).

Set S will be said to be tight if
∑

e: e∈S ye = c(S). Since we will increment
the primal variables integrally, we can state the conditions as: Pick only tight
sets in the cover.
Clearly, in order to maintain dual feasibility, we are not allowed to overpack
any set.

Dual conditions

∀e : ye ̸= 0⇒
∑

S: e∈S

xS ≤ f

Since we will find a 0/1 solution for x, these conditions are equivalent to:
Each element having a nonzero dual value can be covered at most f times.
Since each element is in at most f sets, this condition is trivially satisfied for
all elements.

The two sets of conditions naturally suggest the following algorithm:



33

Set Cover revisited  

ALMA  /  ALGORITHMS / Fall 2016 / I. MILIS / 05 – LP DUALITY

128 15 Set Cover via the Primal–Dual Schema

Algorithm 15.2 (Set cover – factor f)

1. Initialization: x← 0; y ← 0
2. Until all elements are covered, do:

Pick an uncovered element, say e, and raise ye until some set goes
tight.

Pick all tight sets in the cover and update x.
Declare all the elements occurring in these sets as “covered”.

3. Output the set cover x.

Theorem 15.3 Algorithm 15.2 achieves an approximation factor of f .

Proof: Clearly there will be no uncovered elements and no overpacked sets
at the end of the algorithm. Thus, the primal and dual solutions will both be
feasible. Since they satisfy the relaxed complementary slackness conditions
with α = f , by Proposition 15.1 the approximation factor is f . ✷

Example 15.4 A tight example for this algorithm is provided by the fol-
lowing set system:

n-1e

n+1

n

1 2

1 1 1

e

e e

e

1+ε

. . .

Here, S consists of n− 1 sets of cost 1, {e1, en}, . . . , {en−1, en}, and one set
of cost 1 + ε, {e1, . . . , en+1}, for a small ε > 0. Since en appears in all n sets,
this set system has f = n.

Suppose the algorithm raises yen in the first iteration. When yen is raised
to 1, all sets {ei, en}, i = 1, . . . , n − 1 go tight. They are all picked in the
cover, thus covering the elements e1, . . . , en. In the second iteration, yen+1 is
raised to ε and the set {e1, . . . , en+1} goes tight. The resulting set cover has
a cost of n + ε, whereas the optimum cover has cost 1 + ε. ✷

Algorithm (the same as before)

The Algorithm achieve an approximation ratio of f
Proof.
• There will be no uncovered elements and no overpacked sets at the end 
• The primal and dual solutions will both be feasible
• They satisfy the relaxed complementary slackness conditions  

with α=1 and β=f
• The approximation ratio is f


