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-
What we study

@ We study concentration inequalities, which bound the probability that
a real-valued random variable Z differs from its expected value by
more than a certain amount.

@ More precisely, we seek upper bounds for tail probabilities of the form
P[Z-E[Z]>t] and P[Z - E [Z] < —t]

for t > 0.
@ We assume that E [Z] exists.
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Markov's Inequality

Let Y be a non negative random variable. We define 1;y> to be a
random variable that takes value 1 if Y > t, else 0.

Y 2 tliyzy
By taking expectations in both sides of the inequality,

E[Y] 2 tE [1{y>4] :tP[YZl“]:>P[YZt]§E£Y]

By taking Y = |Z — E [Z]|, we get the tail inequality

E[|Z-E[Z]]

PIZ-B(Z] 24 <1
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Markov's Inequality

@ We can obtain sharper estimates by a small modification.
o Let ¢ : R™ = R be an increasing function.
@ Obviously

P[Y >t <P[o(Y) = ¢(t)] <
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Markov's Inequality

@ We can obtain sharper estimates by a small modification.
o Let ¢ : R™ = R be an increasing function.
@ Obviously

Py > < Plo(Y) > o(t)] < =AY

¢(t)
o If (t) = t?> and Y = |Z — E [Z]|, we obtain Chebyshev's Inequality.

Var(Z2)

PIZ-ElZ) 24 <

Jif Var(Z) exists.
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Moment Generating Functions

@ Usually we will be interested in tail inequalities about a sum of
random variables.
@ Thus, we want ¢ to be conveniently handled for sums of random

variables.
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Moment Generating Functions

@ Usually we will be interested in tail inequalities about a sum of
random variables.

@ Thus, we want ¢ to be conveniently handled for sums of random
variables.

@ A good choice is ¢(t) = e*t, where A > 0.
@ Markov's inequality then gives
[e*]

L IfE [e’\z] exists.
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Moment Generating Functions

@ Usually we will be interested in tail inequalities about a sum of
random variables.

@ Thus, we want ¢ to be conveniently handled for sums of random
variables.

@ A good choice is ¢(t) = e*t, where A > 0.
@ Markov's inequality then gives

E[e)\Z]
P[Z>t <~

L IfE [e’\z] exists.
e The function M()\) = E [e*4] is called the Moment generating
function of random variable Z.
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

@ Not all functions have a moment generating function, since the
integral E [e)‘z] might be 4-o0.
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

@ Not all functions have a moment generating function, since the

integral E [e)‘z] might be 4-o0.
o If M(s) exists for some s > 0, then it exists for all A € [0, s].
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

@ Not all functions have a moment generating function, since the
integral E [e)‘z] might be 4-o0.

o If M(s) exists for some s > 0, then it exists for all A € [0, s].

o If M()) exists for A € [—s, s], then M is infinitely many times
differentiable in [—s, s] and it's n-th derivative is

MID(3) = E 27|
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

@ Not all functions have a moment generating function, since the
integral E [e)‘z] might be 4-o0.

o If M(s) exists for some s > 0, then it exists for all A € [0, s].

o If M()) exists for A € [—s, s], then M is infinitely many times
differentiable in [—s, s] and it's n-th derivative is

MID(3) = E 27|

@ Since
M"(\) = E [22&2} >0

the function M is convex in it's domain of definition.
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

@ Not all functions have a moment generating function, since the
integral E [e)‘z] might be 4-o0.

o If M(s) exists for some s > 0, then it exists for all A € [0, s].

o If M()) exists for A € [—s, s], then M is infinitely many times
differentiable in [—s, s] and it's n-th derivative is

MID(3) = E 27|

@ Since
M"(\) = E [22&2} >0

the function M is convex in it's domain of definition.
o If M(X) exists for A € [—s,s], then E [Z"] < oo for all n € Z and

My =3 EEE
n=0 ’
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N
The Cramer-Chernoff method

@ From now on, we will implicitly assume that for all our random
variables the generating function is defined in an interval of positive
length.

© We have seen that

P[Z>t]<e ME [eAZ} (1)

so in order to obtain a good upper bound, we optimize the right hand
side with respect to A.
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N
The Cramer-Chernoff method

@ From now on, we will implicitly assume that for all our random
variables the generating function is defined in an interval of positive
length.

© We have seen that

P[Z>t]<e ME [eAZ} (1)

so in order to obtain a good upper bound, we optimize the right hand
side with respect to A.
@ This is equivalent to minimizing the quantity

=Mt +1z(N)

where ¢z()) = log E [e*].
o If we define ¥%(t) = supy~o(At —1z(N)), then (1) gives

P[Z>t] <e ¥z

which is Chernoff’s inequality.
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N
The Cramer-Chernoff method

@ The minimum point is found by setting the derivative to 0.

t=1z(N\) (2)

o We can show that vz is strictly convex, which means that ¢, is
strictly increasing and thus invertible.

@ This means that ( 2) has a unique solution ;.

@ We proceed by calculating A; for various distributions of Z.
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Examples

Example 1 - Gaussian
e Suppose that Z ~ N(0,0?).

sz( ) )\22

P[ZZt]gefzﬁ

@ The constant cannot be
improved by more than 1/2.
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Examples
Example 2 - Poisson
@ Let Y be a Poisson with
parameter v and Z =Y — v the
centered version.
Example 1 - Gaussian °
e Suppose that Z ~ N(0,0?). 0 Anyn
N | _ —Av
o vz(\) =¥ E[e}_e 2
n=0
e — e—)\v—veve)‘
t
L) =t= I = —
vz(h) T o2 @ Thus
p ~ 2 —vh(t)
[Z>t] <e 22 P[Z>t]<e "V
@ The constant cannot be where
improved by more than 1/2. h(x) = (1+x)In(14x) —x,
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N
SubGaussian RV's

[Rigl5] Chapter 1

@ A lot of interesting distributions have tails decreasing faster than the
Normal distribution.

o To formalize this, we say a r.v. X is Subgaussian with variance factor
. 2 . -
vif InE [e*X] < 23X, The collection of these r.v's is G(v).

2
o If X € G(v) then P[X >t] <e 2.
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N
SubGaussian RV's

[Rigl5] Chapter 1

@ A lot of interesting distributions have tails decreasing faster than the
Normal distribution.

o To formalize this, we say a r.v. X is Subgaussian with variance factor
. 2 . -
vif InE [e*X] < 23X, The collection of these r.v's is G(v).

2
o If X € G(v) then P[X >t] <e 2.

Characterisation Theorem
Let X be an r.v. with E [X] = 0. If for some v > 0:

2
PX>t]VP[X< -t]<e &
then
E [X%] < q!(4v)?
Conversely, if E [XQC’] < q!C9 then X € G(4C).
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Exercise 2.1

Exercise 2.1

Let MZ be a median of a random variable Z with E [22] < 0o. This
means P[Z > MZ] >1/2and P[Z < MZ] >1/2. Then
IMZ —E|[Z]| < VVarZ
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Exercise 2.1

Exercise 2.1

Let MZ be a median of a random variable Z with E [22] < 0o. This
means P[Z > MZ] >1/2and P[Z < MZ] >1/2. Then
IMZ —E|[Z]| < VVarZ

Proof

@ Without loss of generality we can assume that MZ > 0. If MZ <0,

then —MZ is a median of —Z and Var(Z) = Var(—Z). Also, we can
assume that E[Z] = 0.

4
Vardis Kandiros Moment and Chernoff bounds October 2, 2018 11/19



Exercise 2.1

Exercise 2.1

Let MZ be a median of a random variable Z with E [22] < 0o. This
means P[Z > MZ] >1/2and P[Z < MZ] >1/2. Then
IMZ —E|[Z]| < VVarZ

Proof

@ Without loss of generality we can assume that MZ > 0. If MZ <0,

then —MZ is a median of —Z and Var(Z) = Var(—Z). Also, we can
assume that E[Z] = 0.

o Let a= MZ. It suffices to prove E [Z?] > a?. We have:
E[Z?] = E [Z°1{754)] + E [Z°117<4]
>a’P[Z > a|+E [Z°17 4]

> 5 +E[Z1z4,)
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Exercise 2.1

Proof.
o It suffices to show E [Z?17,] > a%/2.
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Exercise 2.1

Proof.
o It suffices to show E [Z?17,] > a%/2.
e E[Z] =0 :>2E [Z112¢2) = —E [Z11z52] = E [Z1(225]" =
E [Z1{754]
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Exercise 2.1

Proof.
o It suffices to show E [Z?17,] > a%/2.
e E[Z] =0 :>2E [Z112¢2) = —E [Z11z52] = E [Z1(225]" =
E [Z1(z>4)]
e But E [Zﬂ{zza}] > ‘% Hence E [Z]l{z<a}] > "”T
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Exercise 2.1

Proof.
o It suffices to show E [Z?17,] > a%/2.
o E[Z]=0=E [Zl{z.s)] = —E [Z1(z52] = E [Z1(z.0] =
E [Z1(z:0)]"
o ButE [21{223}] > % Hence,E [Z]l{Z<a}] 2
@ By the Cauchy-Shwarz inequality we get

i
4

E[Z IL{Z<aﬂ =B [ZLiz<l{z<a)]’
[Z H{Z<a}] E [H%Z<a}}
E [Z°1(7.5] P[Z < 4]
E [Z%1(z<5] /2

which proves the claim.
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Exercise 2.3
Exercise 2.3
If B [Y2] < oo, then P[Y —E[Y] > 1] < (o200
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Exercise 2.3

Exercise 2.3

Var(Y
If E [Y?] < oo, then P[Y_E[Y]Ztlﬁﬁ()ﬁtz

Proof.

Assume without loss of generality that E [Y] = 0. We consider functions
¢y of the form ¢,(t) = (t + u)?, for u > 0. By Markov's inequality

PIY > t] <P[pu(Y) > ¢u(t)] < E[¢”(Y)] = Va(rt(Ig)JEUQ. By setting
u= Va%(y) we obtain
2
Var(Y
PlY >1{] < Var(y)+< X )) __ Var(Y)
= = (t+ Vart(Y) )2 Var(Y) + 2
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Exercise 2.4

Exercise 2.4

If Y is nonnegative and square integrable, and a € (0,1),

2
P[Y > aE[Y]] > (1 - a5k
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Exercise 2.4

Exercise 2.4

If Y is nonnegative and square integrable, and a € (0,1),

2
P[Y > aE[Y]] > (1 - a5k

Proof.

Without loss of generality, E[Y] = 1. We have
P[Y>a=P[1l1-Y<1—-a=1-P[1-Y >1-—a]. By applying the
Chebyshev-Cantelli inequality we get

Var(1-Y) B Var(Y)
(1-Y)+(1—-a)2 Var(Y)+(1-a)?

-Y>1-2a <
P[1 > a]_Var

)2 )2
. Consequently P[Y > a] > Var((\})f()lfa)g > (é[y"’%] O

v
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Exercise 2.5

Exercise 2.5
If Y is nonnegative and t > 0, infgen E [Y9]t79 <infy5oE [e/\(y_t)]
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Exercise 2.5

Exercise 2.5

If Y is nonnegative and t > 0, infgen E [Y9]t79 <infy5oE [e/\(y_t)]

Proof.

Let A= infgen E[Y9) t79. For every A > 0, we have

o] e (g E LYY
E[e,\(v t)]_e)\tqzo)\q .

oo
At9
> e M E A—
= I
q=0 T

=A

0

v
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Exercise 2.7

Exercise 2.7 J

2
If Z ~ N(0,0?) then sup,~o P[Z > t]ex? =1/2.
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Exercise 2.7

Exercise 2.7

2
If Z ~ N(0,0?) then sup,~o P[Z > t]ex? =1/2.

Proof.
t2 2
Let f(t) =P [Z > t]e? = ZW 72[ e 202dx We get:
2
f'(t) = \/2;7 < 630 [ e 2a2dx— 1> We now notice that
2 2
[Few?dx < [ Xe Ta2dx = —e 27 . Thus f'(t) < 0 and

F(t) < £(0) = 1/2. O

Vardis Kandiros Moment and Chernoff bounds October 2, 2018 16 /19



Exercise 2.8

—In(1—u)—u§2(1“7iu)foru€(0,l).

h(U)=(1+U)In(1+u)—u22(%1/3) for u > 0.
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Exercise 2.8

—In(1—u)—u§2(1“7iu)foru€(0,l).

h(U)=(1+U)In(1+u)—u22($1/3) for u > 0.

Proof.
For the first one, by Taylor's expansion we obtain

o0 n

9] n 0o
—In(1—u)—uzz%:u22$ < u2/2Zu”:u2/2(1—u)
n=0 n=0

n=2

For the second,

.- n_ u” e n u”
hlu) = ;(—1) n(n—1 " ;(_1) (n+1)(n+2)
Now notice that (n+ 1)(n+2) < 2-3" and the result follows. 0
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Exercise 2.9

Exercise 2.9
If X >0 with E [XZ] < 00 then for every A > 0,

E [e—)\(X—E[X])} < NE[X?]/2
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Exercise 2.9

Exercise 2.9

If X >0 with E [XZ] < 00 then for every A > 0,

E [e—)\(X—E[X])} < NE[X?]/2

Proof.
We use the well known inequalities e™ < 1 — x 4 x?/2, if x > 0 and
1+ x<ex.
E [e X BN < oBNIE [1 - X 4 A2X2/2]
= BXI(1 - AE [X] + \2E [X?] /2)
< EXIg—AE[X]+N?E[X?]/2

_ e,\21~3[x2] /2
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