### Moment and Chernoff bounds Chapters 2.1,2.2,2.3 from "Concentration Inequalities"

Vardis Kandiros

October 2, 2018

Vardis Kandiros

Moment and Chernoff bounds

October 2, 2018 1 / 19

→ ∃ →

### What we study

- We study concentration inequalities, which bound the probability that a real-valued random variable Z differs from its expected value by more than a certain amount.
- More precisely, we seek upper bounds for tail probabilities of the form

$$\mathbf{P}[Z - \mathbf{E}[Z] \ge t]$$
 and  $\mathbf{P}[Z - \mathbf{E}[Z] \le -t]$ 

for t > 0.

• We assume that  $\mathbf{E}[Z]$  exists.

### Markov's Inequality

- Let Y be a non negative random variable. We define 1<sub>{Y≥t}</sub> to be a random variable that takes value 1 if Y ≥ t, else 0.
- $Y \ge t \mathbb{1}_{\{Y \ge t\}}$
- By taking expectations in both sides of the inequality,

$$\mathbf{E}\left[Y\right] \ge t\mathbf{E}\left[\mathbb{1}_{\{Y \ge t\}}\right] = t\mathbf{P}\left[Y \ge t\right] \Rightarrow \mathbf{P}\left[Y \ge t\right] \le \frac{\mathbf{E}\left[Y\right]}{t}$$

• By taking  $Y = |Z - \mathbf{E}[Z]|$ , we get the tail inequality

$$\mathbf{P}\left[\left|Z-\mathbf{E}\left[Z
ight]
ight|\geq t
ight]\leq rac{\mathbf{E}\left[\left|Z-\mathbf{E}\left[Z
ight]
ight|
ight]}{t}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

### Markov's Inequality

- We can obtain sharper estimates by a small modification.
- Let  $\phi : \mathbf{R}^+ \mapsto \mathbf{R}^+$  be an increasing function.
- Obviously

$$\mathbf{P}\left[Y \ge t
ight] \le \mathbf{P}\left[\phi(Y) \ge \phi(t)
ight] \le rac{\mathbf{E}\left[\phi(Y)
ight]}{\phi(t)}$$

・ 何 ト ・ ヨ ト ・ ヨ ト

### Markov's Inequality

- We can obtain sharper estimates by a small modification.
- Let  $\phi : \mathbf{R}^+ \mapsto \mathbf{R}^+$  be an increasing function.

Obviously

$$\mathbf{P}\left[Y \ge t
ight] \le \mathbf{P}\left[\phi(Y) \ge \phi(t)
ight] \le rac{\mathbf{E}\left[\phi(Y)
ight]}{\phi(t)}$$

• If  $\phi(t) = t^2$  and  $Y = |Z - \mathbf{E}[Z]|$ , we obtain *Chebyshev's Inequality*.

$$\mathbf{P}\left[|Z - \mathbf{E}\left[Z
ight]| \ge t
ight] \le rac{Var(Z)}{t^2}$$

, if Var(Z) exists.

(人間) トイヨト イヨト

### Moment Generating Functions

- Usually we will be interested in tail inequalities about a sum of random variables.
- Thus, we want  $\phi$  to be conveniently handled for sums of random variables.

A B A A B A

### Moment Generating Functions

- Usually we will be interested in tail inequalities about a sum of random variables.
- Thus, we want  $\phi$  to be conveniently handled for sums of random variables.
- A good choice is  $\phi(t) = e^{\lambda t}$ , where  $\lambda > 0$ .
- Markov's inequality then gives

$$\mathbf{P}\left[Z \ge t\right] \le \frac{\mathbf{E}\left[\mathrm{e}^{\lambda Z}\right]}{\mathrm{e}^{\lambda t}}$$

, if  $\mathbf{E}\left[\mathrm{e}^{\lambda Z}
ight]$  exists.

(人間) シスヨン スヨン

### Moment Generating Functions

- Usually we will be interested in tail inequalities about a sum of random variables.
- Thus, we want  $\phi$  to be conveniently handled for sums of random variables.
- A good choice is  $\phi(t) = e^{\lambda t}$ , where  $\lambda > 0$ .
- Markov's inequality then gives

$$\mathbf{P}\left[Z \ge t\right] \le \frac{\mathbf{E}\left[\mathrm{e}^{\lambda Z}\right]}{\mathrm{e}^{\lambda t}}$$

, if  $\mathbf{E}\left[\mathrm{e}^{\lambda Z}
ight]$  exists.

• The function  $M(\lambda) = \mathbf{E} \left[ e^{\lambda Z} \right]$  is called the *Moment generating function* of random variable Z.

October 2, 2018 5 / 19

イロト 不得 トイラト イラト 一日

### Properties of Moment Generating Functions [Bil08] Chapter 21,[Dim15] Chapter 13

• Not all functions have a moment generating function, since the integral  $\mathbf{E} \left[ e^{\lambda Z} \right]$  might be  $+\infty$ .

イロト 不得下 イヨト イヨト 二日

### Properties of Moment Generating Functions [Bil08] Chapter 21,[Dim15] Chapter 13

- Not all functions have a moment generating function, since the integral  $\mathbf{E} \left[ e^{\lambda Z} \right]$  might be  $+\infty$ .
- If M(s) exists for some s > 0, then it exists for all  $\lambda \in [0, s]$ .

- 本間下 本臣下 本臣下 三臣

### Properties of Moment Generating Functions [Bil08] Chapter 21,[Dim15] Chapter 13

- Not all functions have a moment generating function, since the integral  $\mathbf{E} \left[ \mathrm{e}^{\lambda Z} \right]$  might be  $+\infty$ .
- If M(s) exists for some s > 0, then it exists for all  $\lambda \in [0, s]$ .
- If M(λ) exists for λ ∈ [-s, s], then M is infinitely many times differentiable in [-s, s] and it's n-th derivative is

$$M^{(n)}(\lambda) = \mathbf{E}\left[Z^n \mathrm{e}^{\lambda Z}\right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Properties of Moment Generating Functions

[Bil08] Chapter 21, [Dim15] Chapter 13

- Not all functions have a moment generating function, since the integral  $\mathbf{E} \left[ e^{\lambda Z} \right]$  might be  $+\infty$ .
- If M(s) exists for some s > 0, then it exists for all  $\lambda \in [0, s]$ .
- If  $M(\lambda)$  exists for  $\lambda \in [-s, s]$ , then M is infinitely many times differentiable in [-s, s] and it's *n*-th derivative is

$$M^{(n)}(\lambda) = \mathbf{E}\left[Z^n \mathrm{e}^{\lambda Z}\right]$$

Since

$$M''(\lambda) = \mathbf{E}\left[Z^2 \mathrm{e}^{\lambda Z}\right] \ge 0$$

the function M is convex in it's domain of definition.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Properties of Moment Generating Functions

[Bil08] Chapter 21, [Dim15] Chapter 13

- Not all functions have a moment generating function, since the integral  $\mathbf{E} \left[ e^{\lambda Z} \right]$  might be  $+\infty$ .
- If M(s) exists for some s > 0, then it exists for all  $\lambda \in [0, s]$ .
- If  $M(\lambda)$  exists for  $\lambda \in [-s, s]$ , then M is infinitely many times differentiable in [-s, s] and it's *n*-th derivative is

$$M^{(n)}(\lambda) = \mathbf{E}\left[Z^n \mathrm{e}^{\lambda Z}\right]$$

Since

$$M''(\lambda) = \mathbf{E}\left[Z^2 \mathrm{e}^{\lambda Z}\right] \ge 0$$

the function M is convex in it's domain of definition.

• If  $M(\lambda)$  exists for  $\lambda \in [-s,s]$ , then  ${f E}\left[Z^n
ight] < \infty$  for all  $n \in {f Z}$  and

$$M(\lambda) = \sum_{n=0}^{\infty} \frac{\mathbf{E}[Z^n] \,\lambda^n}{n!}$$

イロト 不得 トイラト イラト 一日

### The Cramer-Chernoff method

- From now on, we will implicitly assume that for all our random variables the generating function is defined in an interval of positive length.
- We have seen that

$$\mathbf{P}\left[Z \ge t\right] \le e^{-\lambda t} \mathbf{E}\left[e^{\lambda Z}\right] \tag{1}$$

so in order to obtain a good upper bound, we optimize the right hand side with respect to  $\lambda$ .

### The Cramer-Chernoff method

- From now on, we will implicitly assume that for all our random variables the generating function is defined in an interval of positive length.
- We have seen that

$$\mathbf{P}\left[Z \ge t\right] \le e^{-\lambda t} \mathbf{E}\left[e^{\lambda Z}\right] \tag{1}$$

so in order to obtain a good upper bound, we optimize the right hand side with respect to  $\lambda$ .

This is equivalent to minimizing the quantity

$$-\lambda t + \psi_Z(\lambda)$$

where  $\psi_{Z}(\lambda) = \log \mathbf{E} \left[ e^{\lambda Z} \right]$ .

• If we define  $\psi_Z^*(t) = \overline{\sup_{\lambda>0}}(\lambda t - \psi_Z(\lambda))$ , then (1) gives

$$\mathbf{P}\left[Z \ge t\right] \le \mathrm{e}^{-\psi_Z^*(t)}$$

which is Chernoff's inequality.

Vardis Kandiros

イロト イポト イヨト イヨト

The minimum point is found by setting the derivative to 0.

$$t = \psi'_Z(\lambda) \tag{2}$$

- We can show that  $\psi_Z$  is strictly convex, which means that  $\psi'_Z$  is strictly increasing and thus invertible.
- This means that (2) has a unique solution  $\lambda_t$ .
- We proceed by calculating  $\lambda_t$  for various distributions of Z.

### **Examples**

#### Example 1 - Gaussian

- Suppose that  $Z \sim N(0, \sigma^2)$ .
- $\psi_Z(\lambda) = \frac{\lambda^2 \sigma^2}{2}$

۲

$$\psi'_{Z}(\lambda_{t}) = t \Rightarrow \lambda_{t} = \frac{t}{\sigma^{2}}$$

$$\mathbf{P}[Z \ge t] \le e^{-\frac{t^{2}}{2\sigma^{2}}}$$

• The constant cannot be improved by more than 1/2.

Vardis Kandiros

イロト イポト イヨト イヨト

### Examples

#### Example 1 - Gaussian

- Suppose that  $Z \sim N(0, \sigma^2)$ .
- $\psi_Z(\lambda) = \frac{\lambda^2 \sigma^2}{2}$

٩

$$\psi'_{Z}(\lambda_{t}) = t \Rightarrow \lambda_{t} = \frac{t}{\sigma^{2}}$$

$$\mathbf{P}\left[Z \ge t\right] \le e^{-\frac{t^{2}}{2\sigma^{2}}}$$

• The constant cannot be improved by more than 1/2.

#### Example 2 - Poisson

• Let Y be a Poisson with parameter v and Z = Y - v the centered version.

•

$$\mathbf{E}\left[\mathrm{e}^{\lambda Z}\right] = \mathrm{e}^{-\lambda v} \sum_{n=0}^{\infty} \frac{\mathrm{e}^{\lambda n} v^{n}}{n!}$$
$$= \mathrm{e}^{-\lambda v - v} \mathrm{e}^{v \mathrm{e}^{\lambda}}$$

• Thus

 $\mathbf{P}[Z \ge t] \le e^{-vh(\frac{t}{v})}$ 

where  $h(x) = (1 + x) \ln(1 + x) - x$ 

Vardis Kandiros

Moment and Chernoff bounds

October 2, 2018 9 / 19

### SubGaussian RV's

[Rig15] Chapter 1

- A lot of interesting distributions have tails decreasing faster than the Normal distribution.
- To formalize this, we say a r.v. X is Subgaussian with variance factor v if  $\ln \mathbf{E} \left[ e^{\lambda X} \right] \leq \frac{\lambda^2 v}{2}$ . The collection of these r.v's is  $\mathcal{G}(v)$ .

• If 
$$X \in \mathcal{G}(v)$$
 then  $\mathbf{P}\left[X \ge t
ight] \le \mathrm{e}^{-rac{t^2}{2v}}$ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## SubGaussian RV's

[Rig15] Chapter 1

- A lot of interesting distributions have tails decreasing faster than the Normal distribution.
- To formalize this, we say a r.v. X is Subgaussian with variance factor v if  $\ln \mathbf{E} \left[ e^{\lambda X} \right] \leq \frac{\lambda^2 v}{2}$ . The collection of these r.v's is  $\mathcal{G}(v)$ .

• If 
$$X\in \mathcal{G}(v)$$
 then  $\mathbf{P}\left[X\geq t
ight]\leq \mathrm{e}^{-rac{t^2}{2v}}.$ 

Characterisation Theorem

Let X be an r.v. with  $\mathbf{E}[X] = 0$ . If for some v > 0:

$$\mathbf{P}\left[X \ge t\right] \lor \mathbf{P}\left[X \le -t\right] \le \mathrm{e}^{-rac{t^2}{2v}}$$

then

$$\mathbf{E}\left[X^{2q}\right] \leq q! (4v)^q$$

Conversely, if  $\mathbf{E}\left[X^{2q}\right] \leq q! C^q$  then  $X \in \mathcal{G}(4C)$ .

#### Exercise 2.1

Let MZ be a median of a random variable Z with  $\mathbf{E}[Z^2] < \infty$ . This means  $\mathbf{P}[Z \ge MZ] \ge 1/2$  and  $\mathbf{P}[Z \le MZ] \ge 1/2$ . Then  $|MZ - \mathbf{E}[Z]| \le \sqrt{VarZ}$ 

イロト イポト イヨト イヨト 二日

#### Exercise 2.1

Let MZ be a median of a random variable Z with  $\mathbf{E}[Z^2] < \infty$ . This means  $\mathbf{P}[Z \ge MZ] \ge 1/2$  and  $\mathbf{P}[Z \le MZ] \ge 1/2$ . Then  $|MZ - \mathbf{E}[Z]| \le \sqrt{VarZ}$ 

Proof

• Without loss of generality we can assume that  $MZ \ge 0$ . If  $MZ \le 0$ , then -MZ is a median of -Z and Var(Z) = Var(-Z). Also, we can assume that  $\mathbf{E}[Z] = 0$ .

#### Exercise 2.1

Let MZ be a median of a random variable Z with  $\mathbf{E}[Z^2] < \infty$ . This means  $\mathbf{P}[Z \ge MZ] \ge 1/2$  and  $\mathbf{P}[Z \le MZ] \ge 1/2$ . Then  $|MZ - \mathbf{E}[Z]| \le \sqrt{VarZ}$ 

Proof

- Without loss of generality we can assume that  $MZ \ge 0$ . If  $MZ \le 0$ , then -MZ is a median of -Z and Var(Z) = Var(-Z). Also, we can assume that  $\mathbf{E}[Z] = 0$ .
- Let a = MZ. It suffices to prove  $\mathbf{E}[Z^2] \ge a^2$ . We have:

$$\mathbf{E} \left[ Z^2 \right] = \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z \ge a\}} \right] + \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right]$$
$$\geq a^2 \mathbf{P} \left[ Z \ge a \right] + \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right]$$
$$\geq \frac{a^2}{2} + \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right]$$

Moment and Chernoff bounds

Proof.

• It suffices to show  $\mathbf{E}\left[Z^2 \mathbbm{1}_{\{Z < a\}}\right] \ge a^2/2.$ 

#### Proof.

- It suffices to show  $\mathbf{E}\left[Z^2\mathbb{1}_{\{Z<a\}}\right] \geq a^2/2.$
- $\mathbf{E}[Z] = 0 \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}] = -\mathbf{E}[Z\mathbbm{1}_{\{Z \ge a\}}] \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}]^2 = \mathbf{E}[Z\mathbbm{1}_{\{Z \ge a\}}]^2$

Proof.

- It suffices to show  $\mathbf{E}\left[Z^2\mathbb{1}_{\{Z < a\}}\right] \ge a^2/2.$
- $\mathbf{E}[Z] = 0 \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}] = -\mathbf{E}[Z\mathbbm{1}_{\{Z \ge a\}}] \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}]^2 = \mathbf{E}[Z\mathbbm{1}_{\{Z \ge a\}}]^2$
- But  $\mathbf{E}\left[Z\mathbbm{1}_{\{Z \ge a\}}\right]^2 \ge \frac{a^2}{4}$ . Hence, $\mathbf{E}\left[Z\mathbbm{1}_{\{Z < a\}}\right]^2 \ge \frac{a^2}{4}$

Proof.

- It suffices to show  $\mathbf{E}\left[Z^2\mathbb{1}_{\{Z < a\}}\right] \ge a^2/2.$
- $\mathbf{E}[Z] = 0 \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}] = -\mathbf{E}[Z\mathbbm{1}_{\{Z \geq a\}}] \Rightarrow \mathbf{E}[Z\mathbbm{1}_{\{Z < a\}}]^2 = \mathbf{E}[Z\mathbbm{1}_{\{Z \geq a\}}]^2$
- But  $\mathbf{E}\left[Z\mathbbm{1}_{\{Z \ge a\}}\right]^2 \ge \frac{a^2}{4}$ . Hence, $\mathbf{E}\left[Z\mathbbm{1}_{\{Z < a\}}\right]^2 \ge \frac{a^2}{4}$
- By the Cauchy-Shwarz inequality we get

$$\mathbf{E} \left[ Z \mathbb{1}_{\{Z < a\}} \right]^2 = \mathbf{E} \left[ Z \mathbb{1}_{\{Z < a\}} \mathbb{1}_{\{Z < a\}} \right]^2$$
  
$$\leq \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right] \mathbf{E} \left[ \mathbb{1}_{\{Z < a\}}^2 \right]$$
  
$$= \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right] \mathbf{P} \left[ Z < a \right]$$
  
$$\leq \mathbf{E} \left[ Z^2 \mathbb{1}_{\{Z < a\}} \right] / 2$$

which proves the claim.

Vardis Kandiros

Exercise 2.3 If  $\mathbf{E} \left[ Y^2 \right] < \infty$ , then  $\mathbf{P} \left[ Y - \mathbf{E} \left[ Y \right] \ge t \right] \le \frac{Var(Y)}{Var(Y) + t^2}$ 

Vardis Kandiros

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

#### Exercise 2.3

If 
$$\mathbf{E}\left[Y^2\right] < \infty$$
, then  $\mathbf{P}\left[Y - \mathbf{E}\left[Y\right] \ge t\right] \le \frac{Var(Y)}{Var(Y) + t^2}$ 

#### Proof.

Assume without loss of generality that  $\mathbf{E}[Y] = 0$ . We consider functions  $\phi_u$  of the form  $\phi_u(t) = (t+u)^2$ , for u > 0. By Markov's inequality  $\mathbf{P}[Y \ge t] \le \mathbf{P}[\phi_u(Y) \ge \phi_u(t)] \le \frac{\mathbf{E}[\phi_u(Y)]}{\phi_u(t)} = \frac{Var(Y)+u^2}{(t+u)^2}$ . By setting  $u = \frac{Var(Y)}{t}$  we obtain

$$\mathbf{P}\left[Y \ge t\right] \le \frac{Var(Y) + \left(\frac{Var(Y)}{t}\right)^2}{(t + \frac{Var(Y)}{t})^2} = \frac{Var(Y)}{Var(Y) + t^2}$$

### Exercise 2.4 If Y is nonnegative and square integrable, and $a \in (0, 1)$ , $\mathbf{P} \left[ Y \ge a \mathbf{E} \left[ Y \right] \right] \ge (1 - a)^2 \frac{\mathbf{E} [Y]^2}{\mathbf{E} [Y^2]}$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

#### Exercise 2.4

If Y is nonnegative and square integrable, and  $a \in (0, 1)$ ,  $\mathbf{P}\left[Y \ge a\mathbf{E}\left[Y\right]\right] \ge (1-a)^2 \frac{\mathbf{E}[Y]^2}{\mathbf{E}[Y^2]}$ 

#### Proof.

Without loss of generality,  $\mathbf{E}[Y] = 1$ . We have  $\mathbf{P}[Y \ge a] = \mathbf{P}[1 - Y \le 1 - a] = 1 - \mathbf{P}[1 - Y > 1 - a]$ . By applying the Chebyshev-Cantelli inequality we get

$$\mathbf{P}\left[1-Y>1-a\right] \leq \frac{Var(1-Y)}{Var(1-Y)+(1-a)^2} = \frac{Var(Y)}{Var(Y)+(1-a)^2}$$

. Consequently  $\mathbf{P}\left[Y\geq a\right]\geq \frac{(1-a)^2}{Var(Y)+(1-a)^2}\geq \frac{(1-a)^2}{\mathbf{E}[Y^2]}$ 

3

イロト イポト イヨト イヨト

#### Exercise 2.5

# If Y is nonnegative and t > 0, $\inf_{q \in \mathbf{N}} \mathbf{E} \left[ Y^q \right] t^{-q} \leq \inf_{\lambda > 0} \mathbf{E} \left[ e^{\lambda(Y-t)} \right]$

| 'ard |  |  |  |
|------|--|--|--|
|      |  |  |  |

イロト イポト イヨト イヨト 二日

#### Exercise 2.5

If Y is nonnegative and t > 0,  $\inf_{q \in \mathbf{N}} \mathbf{E}\left[Y^q\right] t^{-q} \leq \inf_{\lambda > 0} \mathbf{E}\left[\mathrm{e}^{\lambda(Y-t)}\right]$ 

Proof.

Let  $A = \inf_{q \in \mathbb{N}} \mathbf{E} [Y^q] t^{-q}$ . For every  $\lambda > 0$ , we have

$$\mathbf{E}\left[e^{\lambda(Y-t)}\right] = e^{-\lambda t} \sum_{q=0}^{\infty} \lambda^{q} \frac{\mathbf{E}\left[Y^{q}\right]}{q!}$$
$$\geq e^{-\lambda t} \sum_{q=0}^{\infty} \lambda^{q} \frac{At^{q}}{q!}$$
$$= A$$

Vardis Kandiros



If 
$$Z \sim N(0, \sigma^2)$$
 then  $\sup_{t>0} \mathbf{P}\left[Z \ge t\right] \mathrm{e}^{rac{t^2}{2\sigma^2}} = 1/2.$ 

- 2

イロト イヨト イヨト イヨト

#### Exercise 2.7

If 
$$Z \sim \mathsf{N}(0,\sigma^2)$$
 then  $\sup_{t>0} \mathbf{P}\left[Z \geq t
ight] \mathrm{e}^{rac{t^2}{2\sigma^2}} = 1/2.$ 

#### Proof.

Let 
$$f(t) = \mathbf{P}[Z \ge t] e^{\frac{t^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{t^2}{2\sigma^2}} \int_t^\infty e^{-\frac{x^2}{2\sigma^2}} dx$$
. We get:  
 $f'(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \left( \frac{t}{\sigma^2} e^{\frac{t^2}{2\sigma^2}} \int_t^\infty e^{-\frac{x^2}{2\sigma^2}} dx - 1 \right)$ . We now notice that  
 $\int_t^\infty e^{-\frac{x^2}{2\sigma^2}} dx \le \int_t^\infty \frac{x}{t} e^{-\frac{x^2}{2\sigma^2}} dx = \frac{\sigma^2}{t} e^{-\frac{t^2}{2\sigma^2}}$ . Thus  $f'(t) \le 0$  and  
 $f(t) \le f(0) = 1/2$ .

Vardis Kandiros

- 2

イロト イヨト イヨト イヨト

$$-\ln(1-u) - u \le \frac{u^2}{2(1-u)}$$
 for  $u \in (0,1)$ .  
 $h(u) = (1+u)\ln(1+u) - u \ge \frac{u^2}{2(1+u/3)}$  ,for  $u > 0$ .

$$-\ln(1-u) - u \le \frac{u^2}{2(1-u)}$$
 for  $u \in (0,1)$ .  
 $h(u) = (1+u)\ln(1+u) - u \ge \frac{u^2}{2(1+u/3)}$  ,for  $u > 0$ .

#### Proof.

For the first one, by Taylor's expansion we obtain

$$-\ln(1-u) - u = \sum_{n=2}^{\infty} \frac{u^n}{n} = u^2 \sum_{n=0}^{\infty} \frac{u^n}{n+2} \le u^2/2 \sum_{n=0}^{\infty} u^n = \frac{u^2}{2(1-u)}$$

For the second,

$$h(u) = \sum_{n=2}^{\infty} (-1)^n \frac{u^n}{n(n-1)} = u^2 \sum_{n=0}^{\infty} (-1)^n \frac{u^n}{(n+1)(n+2)}$$

Now notice that  $(n+1)(n+2) \leq 2 \cdot 3^n$  and the result follows.

Exercise 2.9 If  $X \ge 0$  with  $\mathbf{E} [X^2] < \infty$  then for every  $\lambda > 0$ ,  $\mathbf{E} \left[ e^{-\lambda (X - \mathbf{E}[X])} \right] \le e^{\lambda^2 \mathbf{E} [X^2]/2}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Exercise 2.9 If  $X \ge 0$  with  $\mathbf{E} [X^2] < \infty$  then for every  $\lambda > 0$ ,

$$\mathbf{E}\left[\mathrm{e}^{-\lambda(X-\mathbf{E}[X])}\right] \leq \mathrm{e}^{\lambda^{2}\mathbf{E}\left[X^{2}\right]/2}$$

#### Proof.

We use the well known inequalities  $e^{-x} \le 1 - x + x^2/2$ , if x > 0 and  $1 + x \le e^x$ .

$$\begin{split} \mathbf{E} \left[ e^{-\lambda(X - \mathbf{E}[X])} \right] &\leq e^{\mathbf{E}[X]} \mathbf{E} \left[ 1 - \lambda X + \lambda^2 X^2 / 2 \right] \\ &= e^{\mathbf{E}[X]} (1 - \lambda \mathbf{E} \left[ X \right] + \lambda^2 \mathbf{E} \left[ X^2 \right] / 2) \\ &\leq e^{\mathbf{E}[X]} e^{-\lambda \mathbf{E}[X] + \lambda^2 \mathbf{E} \left[ X^2 \right] / 2} \\ &= e^{\lambda^2 \mathbf{E} \left[ X^2 \right] / 2} \end{split}$$

### References

### Patrick Billingsley. Probability and measure. John Wiley & Sons, 2008.

#### Cheliotis Dimitris.

A second course in probability, 2015. URL: https://repository.kallipos.gr/handle/11419/2825.

Philippe Rigollet.

Lecture notes in high dimensional statistics, 2015. URL: https://ocw.mit.edu/courses/mathematics/ 18-s997-high-dimensional-statistics-spring-2015/ lecture-notes/MIT18\_S997S15\_Chapter1.pdf.

・ 何 ト ・ ヨ ト ・ ヨ ト