
Moment and Chernoff bounds
Chapters 2.1,2.2,2.3 from ”Concentration Inequalities”

Vardis Kandiros

October 2, 2018

Vardis Kandiros Moment and Chernoff bounds October 2, 2018 1 / 19



What we study

We study concentration inequalities, which bound the probability that
a real-valued random variable Z differs from its expected value by
more than a certain amount.

More precisely, we seek upper bounds for tail probabilities of the form

P [Z −E [Z ] ≥ t] and P [Z −E [Z ] ≤ −t]

for t > 0.

We assume that E [Z ] exists.
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Markov’s Inequality

Let Y be a non negative random variable. We define 1{Y≥t} to be a
random variable that takes value 1 if Y ≥ t, else 0.

Y ≥ t1{Y≥t}

By taking expectations in both sides of the inequality,

E [Y ] ≥ tE
[
1{Y≥t}

]
= tP [Y ≥ t]⇒ P [Y ≥ t] ≤ E [Y ]

t

By taking Y = |Z −E [Z ]|, we get the tail inequality

P [|Z −E [Z ]| ≥ t] ≤ E [|Z −E [Z ]|]
t
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Markov’s Inequality

We can obtain sharper estimates by a small modification.

Let φ : R+ 7→ R+ be an increasing function.

Obviously

P [Y ≥ t] ≤ P [φ(Y ) ≥ φ(t)] ≤ E [φ(Y )]

φ(t)

If φ(t) = t2 and Y = |Z −E [Z ]|, we obtain Chebyshev’s Inequality.

P [|Z −E [Z ]| ≥ t] ≤ Var(Z )

t2

,if Var(Z ) exists.
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Moment Generating Functions

Usually we will be interested in tail inequalities about a sum of
random variables.

Thus, we want φ to be conveniently handled for sums of random
variables.

A good choice is φ(t) = eλt , where λ > 0.

Markov’s inequality then gives

P [Z ≥ t] ≤
E
[
eλZ
]

eλt

, if E
[
eλZ
]

exists.

The function M(λ) = E
[
eλZ
]

is called the Moment generating
function of random variable Z .
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Properties of Moment Generating Functions
[Bil08] Chapter 21,[Dim15] Chapter 13

Not all functions have a moment generating function, since the
integral E

[
eλZ
]

might be +∞.

If M(s) exists for some s > 0, then it exists for all λ ∈ [0, s].
If M(λ) exists for λ ∈ [−s, s], then M is infinitely many times
differentiable in [−s, s] and it’s n-th derivative is

M(n)(λ) = E
[
ZneλZ

]
Since

M ′′(λ) = E
[
Z 2eλZ

]
≥ 0

the function M is convex in it’s domain of definition.
If M(λ) exists for λ ∈ [−s, s], then E [Zn] <∞ for all n ∈ Z and

M(λ) =
∞∑
n=0

E [Zn]λn

n!
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The Cramer-Chernoff method

From now on, we will implicitly assume that for all our random
variables the generating function is defined in an interval of positive
length.
We have seen that

P [Z ≥ t] ≤ e−λtE
[
eλZ
]

(1)

so in order to obtain a good upper bound, we optimize the right hand
side with respect to λ.

This is equivalent to minimizing the quantity

−λt + ψZ (λ)

where ψZ (λ) = logE
[
eλZ
]
.

If we define ψ∗Z (t) = supλ>0(λt − ψZ (λ)), then ( 1) gives

P [Z ≥ t] ≤ e−ψ
∗
Z (t)

which is Chernoff’s inequality.
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The Cramer-Chernoff method

The minimum point is found by setting the derivative to 0.

t = ψ′Z (λ) (2)

We can show that ψZ is strictly convex, which means that ψ′Z is
strictly increasing and thus invertible.

This means that ( 2) has a unique solution λt .

We proceed by calculating λt for various distributions of Z .
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Examples

Example 1 - Gaussian

Suppose that Z ∼ N(0, σ2).

ψZ (λ) = λ2σ2

2

ψ′Z (λt) = t ⇒ λt =
t

σ2

P [Z ≥ t] ≤ e−
t2

2σ2

The constant cannot be
improved by more than 1/2.

Example 2 - Poisson

Let Y be a Poisson with
parameter v and Z = Y − v the
centered version.

E
[
eλZ
]

= e−λv
∞∑
n=0

eλnvn

n!

= e−λv−veve
λ

Thus

P [Z ≥ t] ≤ e−vh( t
v

)

where
h(x) = (1 + x) ln(1 + x)− x ,
x ≥ −1.

By exercise 2.8 h(x) ≥ x2

2(1+x/3) ,
which gives us the desired
exponential bound.

Vardis Kandiros Moment and Chernoff bounds October 2, 2018 9 / 19



Examples

Example 1 - Gaussian

Suppose that Z ∼ N(0, σ2).

ψZ (λ) = λ2σ2

2

ψ′Z (λt) = t ⇒ λt =
t

σ2

P [Z ≥ t] ≤ e−
t2

2σ2

The constant cannot be
improved by more than 1/2.

Example 2 - Poisson

Let Y be a Poisson with
parameter v and Z = Y − v the
centered version.

E
[
eλZ
]

= e−λv
∞∑
n=0

eλnvn

n!

= e−λv−veve
λ

Thus

P [Z ≥ t] ≤ e−vh( t
v

)

where
h(x) = (1 + x) ln(1 + x)− x ,
x ≥ −1.

By exercise 2.8 h(x) ≥ x2

2(1+x/3) ,
which gives us the desired
exponential bound.

Vardis Kandiros Moment and Chernoff bounds October 2, 2018 9 / 19



SubGaussian RV’s
[Rig15] Chapter 1

A lot of interesting distributions have tails decreasing faster than the
Normal distribution.
To formalize this, we say a r.v. X is Subgaussian with variance factor
v if lnE

[
eλX
]
≤ λ2v

2 . The collection of these r.v’s is G(v).

If X ∈ G(v) then P [X ≥ t] ≤ e−
t2

2v .

Characterisation Theorem

Let X be an r.v. with E [X ] = 0. If for some v > 0:

P [X ≥ t] ∨P [X ≤ −t] ≤ e−
t2

2v

then
E
[
X 2q

]
≤ q!(4v)q

Conversely, if E
[
X 2q

]
≤ q!Cq then X ∈ G(4C ).
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Exercise 2.1

Exercise 2.1

Let MZ be a median of a random variable Z with E
[
Z 2
]
<∞. This

means P [Z ≥MZ ] ≥ 1/2 and P [Z ≤MZ ] ≥ 1/2. Then
|MZ −E [Z ] | ≤

√
VarZ

Proof

Without loss of generality we can assume that MZ ≥ 0. If MZ ≤ 0,
then −MZ is a median of −Z and Var(Z ) = Var(−Z ). Also, we can
assume that E [Z ] = 0.
Let a =MZ . It suffices to prove E

[
Z 2
]
≥ a2. We have:

E
[
Z 2
]

= E
[
Z 2
1{Z≥a}

]
+ E

[
Z 2
1{Z<a}

]
≥ a2P [Z ≥ a] + E

[
Z 2
1{Z<a}

]
≥ a2

2
+ E

[
Z 2
1{Z<a}

]
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Exercise 2.1

Proof.

It suffices to show E
[
Z 2
1{Z<a}

]
≥ a2/2.

E [Z ] = 0⇒ E
[
Z1{Z<a}

]
= −E

[
Z1{Z≥a}

]
⇒ E

[
Z1{Z<a}

]2
=

E
[
Z1{Z≥a}

]2
But E

[
Z1{Z≥a}

]2 ≥ a2

4 . Hence,E
[
Z1{Z<a}

]2 ≥ a2

4

By the Cauchy-Shwarz inequality we get

E
[
Z1{Z<a}

]2
= E

[
Z1{Z<a}1{Z<a}

]2
≤ E

[
Z 2
1{Z<a}

]
E
[
1

2
{Z<a}

]
= E

[
Z 2
1{Z<a}

]
P [Z < a]

≤ E
[
Z 2
1{Z<a}

]
/2

which proves the claim.
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Exercise 2.3

Exercise 2.3

If E
[
Y 2
]
<∞, then P [Y −E [Y ] ≥ t] ≤ Var(Y )

Var(Y )+t2

Proof.

Assume without loss of generality that E [Y ] = 0. We consider functions
φu of the form φu(t) = (t + u)2, for u > 0. By Markov’s inequality

P [Y ≥ t] ≤ P [φu(Y ) ≥ φu(t)] ≤ E[φu(Y )]
φu(t) = Var(Y )+u2

(t+u)2 . By setting

u = Var(Y )
t we obtain

P [Y ≥ t] ≤
Var(Y ) +

(
Var(Y )

t

)2

(t + Var(Y )
t )2

=
Var(Y )

Var(Y ) + t2
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Exercise 2.4

Exercise 2.4

If Y is nonnegative and square integrable, and a ∈ (0, 1),

P [Y ≥ aE [Y ]] ≥ (1− a)2 E[Y ]2

E[Y 2]

Proof.

Without loss of generality, E [Y ] = 1. We have
P [Y ≥ a] = P [1− Y ≤ 1− a] = 1−P [1− Y > 1− a]. By applying the
Chebyshev-Cantelli inequality we get

P [1− Y > 1− a] ≤ Var(1− Y )

Var(1− Y ) + (1− a)2
=

Var(Y )

Var(Y ) + (1− a)2

. Consequently P [Y ≥ a] ≥ (1−a)2

Var(Y )+(1−a)2 ≥ (1−a)2

E[Y 2]
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Exercise 2.5

Exercise 2.5

If Y is nonnegative and t > 0, infq∈NE [Y q] t−q ≤ infλ>0 E
[
eλ(Y−t)

]

Proof.

Let A = infq∈NE [Y q] t−q. For every λ > 0, we have

E
[
eλ(Y−t)

]
= e−λt

∞∑
q=0

λq
E [Y q]

q!

≥ e−λt
∞∑
q=0

λq
Atq

q!

= A
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Exercise 2.7

Exercise 2.7

If Z ∼ N(0, σ2) then supt>0 P [Z ≥ t] e
t2

2σ2 = 1/2.

Proof.

Let f (t) = P [Z ≥ t] e
t2

2σ2 = 1√
2πσ2

e
t2

2σ2
∫∞
t e−

x2

2σ2 dx . We get:

f ′(t) = 1√
2πσ2

(
t
σ2 e

t2

2σ2
∫∞
t e−

x2

2σ2 dx − 1

)
. We now notice that∫∞

t e−
x2

2σ2 dx ≤
∫∞
t

x
t e
− x2

2σ2 dx = σ2

t e
− t2

2σ2 . Thus f ′(t) ≤ 0 and
f (t) ≤ f (0) = 1/2.
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Exercise 2.7

Exercise 2.7

If Z ∼ N(0, σ2) then supt>0 P [Z ≥ t] e
t2

2σ2 = 1/2.

Proof.

Let f (t) = P [Z ≥ t] e
t2

2σ2 = 1√
2πσ2

e
t2

2σ2
∫∞
t e−

x2

2σ2 dx . We get:

f ′(t) = 1√
2πσ2

(
t
σ2 e

t2

2σ2
∫∞
t e−

x2

2σ2 dx − 1
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Exercise 2.8

− ln(1− u)− u ≤ u2

2(1−u) for u ∈ (0, 1).

h(u) = (1 + u) ln(1 + u)− u ≥ u2

2(1+u/3) ,for u > 0.

Proof.

For the first one, by Taylor’s expansion we obtain

− ln(1− u)− u =
∞∑
n=2

un

n
= u2

∞∑
n=0

un

n + 2
≤ u2/2

∞∑
n=0

un = u2/2(1− u)

For the second,

h(u) =
∞∑
n=2

(−1)n
un

n(n − 1)
= u2

∞∑
n=0

(−1)n
un

(n + 1)(n + 2)

Now notice that (n + 1)(n + 2) ≤ 2 · 3n and the result follows.
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Exercise 2.9

Exercise 2.9

If X ≥ 0 with E
[
X 2
]
<∞ then for every λ > 0,

E
[
e−λ(X−E[X ])

]
≤ eλ

2E[X 2]/2

Proof.

We use the well known inequalities e−x ≤ 1− x + x2/2, if x > 0 and
1 + x ≤ ex .

E
[
e−λ(X−E[X ])

]
≤ eE[X ]E

[
1− λX + λ2X 2/2

]
= eE[X ](1− λE [X ] + λ2E

[
X 2
]
/2)

≤ eE[X ]e−λE[X ]+λ2E[X 2]/2

= eλ
2E[X 2]/2
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