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e Domain Set X

e Label Set YV

e Training Data S= ((z1,y1), -, (T, Ym))
e Learner’s Output h: X — Y (predictor)

e Data Generation: D over X generates z;, then f: X — Y labels it
(we’ll relax it later)

@ Measure of success:
Lp(h) = Ppup[h(z) # fle)] = D({z: h(z) # f2)})

e ERM: output h that minimizes Lp s over training data

e Overfitting: select H before seeing S

o Finite H (realizability + i.i.d.): m > 28U — 7, (he) <e
with probability at least 1 — ¢
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H is PAC learnable if 3my : (0,1)*> — N and an algorithm A with the
following property

Ve, 6 € (0,1),VD over X,Vf: X — {0,1} if the realizable assumption
holds then when we run A on m > mpg(e, d) i.i.d. samples generated by
D and labeled by f, A returns h € Hs.t. P[Lpsh) <e|>1-§
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Remarks

e Two approximation parameters: confidence § ("probably”),
accuracy € ("approximately”)
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Sample Complexity

my : (0,1)? — N is the sample complexzity of learning H

@ Depends on 6, ¢
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Sample Complexity

my : (0,1)? — N is the sample complexzity of learning H
@ Depends on 6, ¢
o We take the "minimal function”
o Finite H

ma(e,§) < Pog(\iﬂ/é)w
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Generalizing the Model

e We have assumed that labels are provided by (a given) f, too
strong
We now assume that D is a distribution over X x Y
Two components D, over unlabeled domain points, D((z, y)|z) over
the labels given a point
We do not know anything about D!
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Generalizing the Model

e We have assumed that labels are provided by (a given) f, too
strong
We now assume that D is a distribution over X x Y
Two components D, over unlabeled domain points, D((z, y)|z) over
the labels given a point
We do not know anything about D!

o We are interested in tasks beyond binary classification, Y can be a
real-valued set or a finite set
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Generalizing the Model

e True error (risk)

Lp(h) = Py y~plh(z) # 9] = D (2, y) : h(z) # y})
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Generalizing the Model

e True error (risk)

Lp(h) = Py y~plh(z) # 9] = D (2, y) : h(z) # y})

e Empirical risk

Loy M€ Dl h) # )

m
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o Ideally, we would like to predict an A that probably approximately
minimizes the true error
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o Ideally, we would like to predict an A that probably approximately
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e Bayes Optimal Predictor: Given a D over X x {0, 1}, the best label
predicting function is

1 Ply=1|a] > %
0 otherwise

fo(z) = {
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o Ideally, we would like to predict an A that probably approximately
minimizes the true error

e Bayes Optimal Predictor: Given a D over X x {0, 1}, the best label
predicting function is

1 Ply=1|a] > %
0 otherwise

fo(z) = {

We do not know D! If we make no assumptions about D we cannot find
a predictor which is as good as that
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Agnostic PAC

H is agnostic PAC learnable if 3my : (0,1)> — N and an algorithm A
with the following property

Ve, 0 € (0,1),VD over X x Y when we run A on m > mgl(e, d) ii.d.
samples generated by D, A returns h € H s.t.

P[Lp(h) < minyey Lp(K) +¢€/ >1-4
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Scope of Learning Problems

o Multiclass Classification: X represents the features of the domain
space, Y the different labels
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e Regression: We want to find a simple pattern in the data (e.g.
linear function) to predict a value. Different measure of success

LD(h) = ]E(:c,y)ND(h(x) - y)Q
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Scope of Learning Problems

o Multiclass Classification: X represents the features of the domain
space, Y the different labels

e Regression: We want to find a simple pattern in the data (e.g.
linear function) to predict a value. Different measure of success

LD(h) = ]E(:c,y)ND(h(x) - y)Q

o Different tasks require different loss functions
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Generalized Loss Functions

@ [: Hx Z— Ry, in prediction problems Z= X x Y
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Generalized Loss Functions

@ [: Hx Z— Ry, in prediction problems Z= X x Y
e Lp(h) =E,.p[i(h, z)]
o Lg(h) = %l w1 l(h, z)
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Generalized Loss Functions

@ [: Hx Z— Ry, in prediction problems Z= X x Y
Lp(h) = E.plU(h, 2)]
Ls(h) = L "™ i(h, 2)

m
@ 0 — 1 loss: z ranges over X x Y

0 h(x)=

1 otherwise

hﬂh@wD:{
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Generalized Loss Functions

@ [: Hx Z— Ry, in prediction problems Z= X x Y
Lp(h) = E.plU(h, 2)]
Ls(h) = L "™ i(h, 2)

m
@ 0 — 1 loss: z ranges over X x Y

0 h(x)=

1 otherwise

hﬂh@wD:{

@ Square loss: z ranges over X X Y

lsq(h7 (.'17, y)) = (h(x) - y)2
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Agnostic PAC for general loss functions

H is agnostic PAC learnable with respect to a set Z and a loss function
I: Hx Z— Ry, if 3my: (0,1)> = N and an algorithm A with the
following property

Ve, € (0,1),VD over X X Y when we run A on m > mpyl(e, d) i.i.d.
samples generated by D, A returns h € H s.t.

P[LD(h,) < minhleHLD(h') + 6] > 1— 0, where LD(h) = EzND[l(h, Z)]
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Uniform Convergence

Idea: Uniformly over all hypotheses in H we want the empirical risk to
be close to the true risk
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Uniform Convergence

Idea: Uniformly over all hypotheses in H we want the empirical risk to
be close to the true risk

e A training set S is called e-representative if

Vhe H,|Ls(h) — Lp(h)| < e

e Lemma: If S is €/2-representative then any output of ERMp(S)
satisfies: Lp(hg) < minyey Lp(h') + €
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Uniform Convergence

o Idea: In order to show that a class H is agnostic PAC learnable it
suffices to show that with probability 1 — § the training set will be
e-representative
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Uniform Convergence

o Idea: In order to show that a class H is agnostic PAC learnable it
suffices to show that with probability 1 — § the training set will be
e-representative

@ Uniform Convergence: We say that a hypothesis class H has the
uniform convergence property if 3mJ¢(0,1)2 — N s.t.
Ve, 0 € (0,1),VD if Sis a sample of m > mgc(e,é) i.i.d. points
drawn according to D, then with probability at least 1 — 4, S is
e—representative

o Corollary: If H has the uniform convergence property then it is
agnostically PAC learnable with sample complexity
mu(e,d) < mY©(e/2,8). Furthermore, ther ERM paradigm is a
successful agnostic PAC learner.
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Finite Classes are APAC learnable

@ We have to show that
D"({S:Vhe H,|Lg(h) — Lp(h)| <e€})>1-94

Grigoris Velegkas (ECE, NTUA) NTUA, 17/10/18



Finite Classes are APAC learnable

@ We have to show that
D™({S:Vhe H,|Ls(h) — Lp(h)| < e}) =21 -0
e Equivalently D™({S: 3h € H,|Lg(h) — Lp(h)| > €}) < ¢

Grigoris Velegkas (ECE, NTUA) NTUA, 17/10/18



Finite Classes are APAC learnable
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Finite Classes are APAC learnable

o We have to show that

D"({S:Vhe H,|Lg(h) — Lp(h)| <e€})>1-94

Equivalently D"™({S: 3h € H,|Ls(h) — Lp(h)| > €}) < ¢

{S:3he H /|Lg(h) — Lp(h)| > €} = Upep{S:|Lg(h) — Lp(h)| > €}
Union bound:

D™{S:3he H, |Ls(h) — Lp(h)| > €}) <> per D"({S:

|Ls(h) — Lp(h)| > €})
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Finite Classes are APAC learnable

@ We have to show that

D"({S:Vhe H,|Lg(h) — Lp(h)| <e€})>1-94

Equivalently D"™({S: 3h € H,|Ls(h) — Lp(h)| > €}) < ¢

{S: dh € H, ’Lg(h) — LD(h)| > 6} = UhGH{S: ’Ls(h,) - LD(h)| > 6}
Union bound:

D™{S:3he H, |Ls(h) — Lp(h)| > €}) <> per D"({S:

|Ls(h) — Lp(Rh)| > €})

o Idea: We will show that each summand is small
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Finite Classes are APAC learnable

o Recall that Lp(h) = E,_p[i(h, 2)], Ls(h) = £ 33" I(h, z)

m
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Finite Classes are APAC learnable

o Recall that Lp(h) = E,_p[i(h, 2)], Ls(h) = £ 33" I(h, z)

m
@ Since each z is sampled i.i.d. from D we have that

E..~pll(h, z)] = Lp(h),Vi € [m]
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Finite Classes are APAC learnable

o Recall that Lp(h) = E,_p[i(h, 2)], Ls(h) = £ 33" I(h, z)

@ Since each z is sampled i.i.d. from D we have that
ZND[l(h’ ZZ)] = LD(h)a\v/Z € [m]
e By linearity of expectation Lp(h) = Eg.pn[Lg(h)], hence
|Lg(h) — Lp(h)]| is the deviation of Lg(h) from its expectation
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Finite Classes are APAC learnable

o Hoeffding’s Inequality: 61, ...,0,, i.i.d., E[0;] = p,Pla <0, < b =1
Pl Yo i — pl > €] < 2exp(—2me?/(b— a)?)

m =1
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01, ...,0,, are also i.i.d.
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Finite Classes are APAC learnable

o Hoeffding’s Inequality: 61, ...,0,, i.i.d., E[0;] = p,Pla <0, < b =1
Pl Yo i — pl > €] < 2exp(—2me?/(b— a)?)

m =1
e 0; =1(h,z), since his fixed and 2, ..., z,, are i.i.d. it follows that

01, ...,0,, are also i.i.d.
1 m

o Lg(h) = -->" 0 Lp(h) = p, we assume that the range of /is
[0, 1], thus 6; € [0, 1]
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Finite Classes are APAC learnable

o Hoeffding’s Inequality: 61, ...,0,, i.i.d., E[0;] = p,Pla <0, < b =1
Pl Yo i — pl > €] < 2exp(—2me?/(b— a)?)

m =1
e 0; =1(h,z), since his fixed and 2, ..., z,, are i.i.d. it follows that

01, ...,0,, are also i.i.d.
1 m

o Lg(h)= " 10, Lp(h) = p, we assume that the range of [ is

—m =1

[0, 1], thus 6; € [0, 1]
o D"({S:|Ls(h) — Lp(h)| > e}) =P[5 X0y 05 — | > €] <
2 exp(—2me?)
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Finite Classes are APAC learnable

o Hoeffding’s Inequality: 61, ...,0,, i.i.d., E[0;] = p,Pla <0, < b =1
Pl o0 05— pul > € < 2exp(—2me*/(b— a)?)
e 0; =1(h,z), since his fixed and 2, ..., z,, are i.i.d. it follows that

01, ...,0,, are also i.i.d.

o Lg(h) =L 3™ 0, Lp(h) = p, we assume that the range of I is
[0, 1], thus 6; € [0, 1]

o D"({S:|Ls(h) — Lp(h)| > e}) =P[5 X0y 05 — | > €] <
2 exp(—2me?)

o D"({S:3he H,|Lg(h) — Lp(h)| > €}) <> jcp2exp(—2me?) =
2| H) exp(—2me?)
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Finite Classes are APAC learnable

o Hoeffding’s Inequality: 61, ...,0,, i.i.d., E[0;] = p,Pla <0, < b =1
Pl Yo i — pl > €] < 2exp(—2me?/(b— a)?)
e 0; =1(h,z), since his fixed and 2, ..., z,, are i.i.d. it follows that
01, ...,0,, are also i.i.d.
1 m

o Lg(h)= " 10, Lp(h) = p, we assume that the range of [ is

—m =1

[0, 1], thus 6; € [0, 1]

o D"({S:|Ls(h) — Lp(h)| > e}) =P[5 X0y 05 — | > €] <
2 exp(—2me?)

o D"({S:3he H,|Lg(h) — Lp(h)| > €}) <> jcp2exp(—2me?) =
2| H) exp(—2me?)

o m>98CHL) . pr({s:3he H,|Ls(h) — Lp(h)| > ¢}) <&
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