
Chapter 5 
No Free Lunch 



• There are many No-Free-Lunch theorems. 

 

• The one we prove in this chapter only says 
that there is no universal learner. 

 

• If the hypothesis class is not restricted then 
there is ALWAYS a distribution that causes the 
algorithm to overfit (not only ERM!) 



 

 

 

• (No-Free-Lunch) Let A be any learning algorithm for the task of binary 
classification with respect to the 0−1 loss over a domain X. Let m be any 
number smaller than |X|/2, representing a training set size. Then, there 
exists a distribution D over X ×{0,1} such that: 

 

• There exists a function f:X →{0,1} with 𝐿𝐷(𝑓) = 0. (i.e. task can be 
learned) 

• With probability of at least  
1

7
 over the choice of 𝑆 ∼ 𝐷𝑚 we have that 

𝐿𝐷(𝐴(𝑆)) ≥
1

8
. (i.e at least 1/7 chance to have true error > 1/8) 

 

 

 



• Lemma: 

    Z r.v. in [0,1] with E[Z]=m. Then ∀𝑎 ∈ (0,1) 

𝑷 𝑍 > 1 − 𝑎 ≥
𝑚 − 1 − 𝑎

𝑎
 

• Proof: 

    Y=1-Z. Applying Markov we have 

𝑷 𝑍 > 1 − 𝑎 = 1 − 𝑷 Υ ≥ 𝑎 ≥ 1 −
1 −𝑚

𝑎
 

• The above shows that 

 𝐸𝑆∼𝐷𝑚[𝐿𝐷 𝐴 𝑆 ] ≥
1

4
→ 𝑷[𝐿𝐷(𝐴(𝑆)) ≥

1

8
] ≥
1

7
 



• It suffices to prove the below (by Markov) 

• ∀ 𝐴 ∃𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐸𝑆∼𝐷𝑚[𝐿𝐷 𝐴 𝑆 ] ≥
1

4
 

 

• In other words every algorithm has a 
distribution on which it fails ¼ of the time in 
expectation. 

• Intuition: 

 



• Equivalently we want to show  

max
𝑖∈[𝑇]
𝐸𝑆~𝐷𝑖𝑚[𝐿𝐷𝑖 𝐴 𝑆 ] ≥

1

4
 

• Denote 𝑆𝑗
𝑖  the training sequence of size m labeled by 

the function 𝑓𝑖 corresponding to distribution 𝐷𝑖. 
There are 𝑚2𝑚 possible training sets that can be 
sampled at equal probability. 

• Therefore expected loss for a fixed i is equal to  

1

𝑘
 𝐿𝐷𝑖 𝐴 𝑆𝑗

𝑖  

𝑘

𝑗=1

 

     where k = 𝑚2𝑚  

 



 

• max
𝑖∈[𝑇]

1

𝑘
 𝐿𝐷𝑖(𝐴 𝑆𝑗

𝑖 ) 𝑘
𝑗=1 ≥

1

𝑇
 

1

𝑘
 𝐿𝐷𝑖 𝐴 𝑆𝑗

𝑖  𝑘
𝑗=1

𝑇
𝑖=1 =

1

𝑘
 

1

𝑇
 𝐿𝐷𝑖 𝐴 𝑆𝑗

𝑖  𝑇
𝑖=1

𝑘
𝑗=1 ≥

min
𝑗∈ 𝑘

1

𝑇
 𝐿𝐷𝑖 𝐴 𝑆𝑗

𝑖𝑇
𝑖=1    (I) 

 



• Let 𝑢1, 𝑢2,…, 𝑢𝑛 be the examples not in the 
training set (so p≥m). The true loss is at least 
half as much as the loss on the unknown 
examples. 

 

• 𝐿𝐷𝑖 ℎ =  
1

2𝑚
 𝟏 ℎ 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟𝑥∈𝐶 ≥

 
1

2𝑚
 𝟏 ℎ 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟
𝑝
𝑟=1 ≥

 
1

2𝑝
 𝟏 ℎ 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟
𝑝
𝑟=1  



• Bounding true loss from below and changing 
summation order 

 

•
1

𝑇
 𝐿𝐷𝑖(𝐴 𝑆𝑗

𝑖 )𝑇
𝑖=1 ≥

1

𝑇
 

1

2𝑝
 𝟏

𝐴 𝑆𝑗
𝑖 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟

𝑝
𝑟=1

𝑇
𝑖=1 =

1

2𝑝
 

1

𝑇
 𝟏

𝐴 𝑆𝑗
𝑖 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟

𝑇
𝑖=1

𝑝
𝑟=1 ≥ 

    
1

2
∗ min
𝑟∈[𝑝]

1

𝑇
 𝟏

𝐴 𝑆𝑗
𝑖 𝑢𝑟 ≠𝑓𝑖 𝑢𝑟

𝑇
𝑖=1     (II) 

 



• For a fixed r, all functions 𝑓𝑖 ,𝑓𝑖′  can be paired 
according to their classification of 𝑢𝑟  

• 𝟏
[𝐴 𝑆𝑗
𝑖 (𝑢𝑟)≠𝑓𝑖(𝑢𝑟)]

+ 𝟏
[𝐴 𝑆𝑗
𝑖′ (𝑢𝑟)≠𝑓𝑖′(𝑢𝑟)]

 = 1 

   → 
1

𝑇
  𝟏

[𝐴 𝑆𝑗
𝑖 (𝑢𝑟)≠𝑓𝑖(𝑢𝑟)]

𝑇
𝑖=1 =

1

2
            (III) 

 

(I),(II),(III) → max
𝑖∈[𝑇]
𝐸𝑆~𝐷𝑖𝑚[𝐿𝐷𝑖 𝐴 𝑆𝑗

𝑖 ] ≥
1

4
 

 



• Corollary: 

Let X be an infinite domain set and let H be the           
set of all functions from X to {0,1}. Then H is not 
PAC learnable. 

• Proof: 

Assume that H is learnable, choosing ε<1/8 and 
δ<1/7. By PAC definition ∃ A,m=m(ε,δ) such that A 
given training size ≥m, with P>1-δ, 𝐿𝐷𝑖(A(S))≤ε. 

However, by No-Free-Lunch theorem since X>2m 
(i.e learner knows at most half of universe) ∃ D such 

that 𝑷[𝐿𝐷(𝐴(𝑆)) ≥
1

8
] ≥
1

7
. Contradiction. 



• To prevent this we must avoid distributions 
that can deceive us. (i.e increase our bias 
about the underlying model). 

• On the other hand, we need to keep our 
hypothesis class rich enough to contain the 
zero error f (or smallest in APAC setting). 

 

• Bias vs Variance. 

 



• In particular, we can decompose the error of 
an ERM hypothesis 𝐿𝐷 ℎ𝑠 = 𝜀𝑎𝑝𝑝 + 𝜀𝑒𝑠𝑡 

• 𝜀𝑎𝑝𝑝=min
ℎ∈𝐻
𝐿𝐷 ℎ   

(bias, price of restricting our class, sample size 
cant reduce this) 

• 𝜀𝑒𝑠𝑡=𝐿𝐷 ℎ𝑠 −min
ℎ∈𝐻

𝐿𝐷 ℎ  

(variance, needing more data to train our 
model) 

• The less we restrict the class the more data we 
need (no restriction=all the data) 



• Therefore we need to restrict our class 
somewhat with educated guesses. Less 
sacrifices => need more data to counteract 
estimation error. 

 

• Example:  

• Basic Euclidean classification can generalize 
better (81%) than more sophisticated Naïve 
Bayes (75%) 


