Chapter 5
No Free Lunch

FREE LUNCH' =




* There are many No-Free-Lunch theorems.

* The one we prove in this chapter only says
that there is no universal learner.

* |f the hypothesis class is not restricted then
there is ALWAYS a distribution that causes the
algorithm to overfit (not only ERM!)



* (No-Free-Lunch) Let A be any learning algorithm for the task of binary
classification with respect to the 0-1 loss over a domain X. Let m be any
number smaller than |X|/2, representing a training set size. Then, there
exists a distribution D over X x{0,1} such that:

* There exists a function f:X -{0,1} with L, (f) = 0. (i.e. task can be
learned)

* With probability of at least %over the choice of S ~ D™ we have that

Lp(A(S)) = %. (i.e at least 1/7 chance to have true error > 1/8)



* Lemma:
Zrv. in [0,1] with E[Z]=m. Then Va € (0,1)
m—(1—-—a)

P[Z>1—d] >
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* Proof:

Y=1-Z. Applying Markov we have
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e The above shows that

Espm[Lp(A(S))] == > P[Lp(A(S)) = 7] = -



It suffices to prove the below (by Markov)

V A 3D such that Es._pm[Lp(A(S))] = %

In other words every algorithm has a
distribution on which it fails % of the time in
expectation.

Intuition:




* Equivalently we want to show

1
grel[ag]( Es.pm [LDi(A(S))] > ”

 Denote Sji the training sequence of size m labeled by

the function f; corresponding to distribution D;.
There are m?™ possible training sets that can be

sampled at equal probability.
* Therefore expected loss for a fixed i is equal to

%Z LDi (A(Sji))

where k = m2™m
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* Let uq, Uy,..., U, be the examples not in the
training set (so p=m). The true loss is at least
half as much as the loss on the unknown

examples.
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* Bounding true loss from below and changing
summation order
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* For a fixed r, all functions f;,f; can be paired
according to their classification of u,.

1

[A(S]l:) (ur)#fi(ur)] T 1[A(S]l:,)(ur)¢fi’(ur)]
1

1 T _
~ FZi:l 1[A(S]l:)(ur)¢fi(ur)] - (1)

i

(10,(0),(0) — max Eg._p m[Lp, (A(S]))]



* Corollary:

Let X be an infinite domain set and let H be the
set of all functions from X to {0,1}. Then H is not
PAC learnable.

 Proof:

Assume that H is learnable, choosing €<1/8 and
6<1/7. By PAC definition 3 A,m=m(g,8) such that A
given training size 2m, with P>1-8, Lp_ (A(S))<e.

However, by No-Free-Lunch theorem since X>2m
(i.e learner knows at most half of universe) 3 D such

that P[L,(A(S)) = %] > % Contradiction.



* To prevent this we must avoid distributions
that can deceive us. (i.e increase our bias
about the underlying model).

* On the other hand, we need to keep our
hypothesis class rich enough to contain the
zero error f (or smallest in APAC setting).

 Bias vs Variance.



* |n particular, we can decompose the error of
an ERM hypothesis Lp(hs) = £4pp + est
° gappzri{leilr{1 Lp(h)
(bias, price of restricting our class, sample size
cant reduce this)
* &est=Lp(hs) —min Ly (h)
heH
(variance, needing more data to train our
model)

e The less we restrict the class the more data we
need (no restriction=all the data)



e Therefore we need to restrict our class
somewhat with educated guesses. Less

sacrifices => need more data to counteract
estimation error.

* Example:

* Basic Euclidean classification can generalize

better (81%) than more sophisticated Naive
Bayes (75%)



