Exercises

A selection of exercises from chapter 3 of Understanding Machine Learning: From Theory to Algorithms

Argyris Mouzakis

09/11/2018

Overview

1 Reminder

2 Exercises

1 Reminder

2 Exercises

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$
- Empirical Risk (given $\left.S=\left(z_{1}, z_{2}, \ldots, z_{m}\right)\right): L_{S}(h)=\frac{\sum_{i=1}^{m} \ell\left(h, z_{i}\right)}{m}$

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$
- Empirical Risk (given $S=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$) : $L_{S}(h)=\frac{\sum_{i=1}^{m} \ell\left(h, z_{i}\right)}{m}$

■ Our use of that will be limited.

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$
- Empirical Risk (given $S=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$) : $L_{S}(h)=\frac{\sum_{i=1}^{m} \ell\left(h, z_{i}\right)}{m}$

■ Our use of that will be limited.

Simpler Setting

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$
- Empirical Risk (given $S=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$) : $L_{S}(h)=\frac{\sum_{i=1}^{m} \ell\left(h, z_{i}\right)}{m}$

■ Our use of that will be limited.

Simpler Setting

Restrict Z to \mathcal{X} or $\mathcal{X} \times\{0,1\}$ (is there is a labelling function f or not ?).

Risk Functions Reminder

General Setting

Given a loss function $\ell: \mathcal{H} \times Z \rightarrow \mathbb{R}_{+}$and a distribution \mathcal{D} over Z we defined :

- True Risk: $L_{\mathcal{D}}(h)=\underset{z \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y)]$
- Empirical Risk (given $S=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$) : $L_{S}(h)=\frac{\sum_{i=1}^{m} \ell\left(h, z_{i}\right)}{m}$

■ Our use of that will be limited.

Simpler Setting

Restrict Z to \mathcal{X} or $\mathcal{X} \times\{0,1\}$ (is there is a labelling function f or not ?).

- Define ℓ as the $0-1$ loss.

PAC-learnability

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}:(0,1)^{2} \rightarrow \mathbb{N}$ and a learning algorithm with the following property : For every $\epsilon, \delta \in(0,1)$, for every distribution \mathcal{D} over \mathcal{X}, and for every labeling function $f: \mathcal{X} \rightarrow 0,1$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1-\delta$ (over the choice of the examples), $L(\mathcal{D}, f)(h) \leq \epsilon$.

PAC-learnability

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}:(0,1)^{2} \rightarrow \mathbb{N}$ and a learning algorithm with the following property : For every $\epsilon, \delta \in(0,1)$, for every distribution \mathcal{D} over \mathcal{X}, and for every labeling function $f: \mathcal{X} \rightarrow 0,1$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1-\delta$ (over the choice of the examples), $L(\mathcal{D}, f)(h) \leq \epsilon$.

■ Why bother with PAC-learning since we went such a long way to extend it ?

PAC-learnability

Definition

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}:(0,1)^{2} \rightarrow \mathbb{N}$ and a learning algorithm with the following property : For every $\epsilon, \delta \in(0,1)$, for every distribution \mathcal{D} over \mathcal{X}, and for every labeling function $f: \mathcal{X} \rightarrow 0,1$, if the realizable assumption holds with respect to $\mathcal{H}, \mathcal{D}, f$, then when running the learning algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by \mathcal{D} and labeled by f, the algorithm returns a hypothesis h such that, with probability of at least $1-\delta$ (over the choice of the examples), $L(\mathcal{D}, f)(h) \leq \epsilon$.

- Why bother with PAC-learning since we went such a long way to extend it?
- Turns out PAC-learnable classes are also APAC-learnable (more on that next week).

1 Reminder

2 Exercises

Concentric Circles (Exercise 3.3)

Statement

Let $\mathcal{X}=\mathbb{R}^{2}, \mathcal{Y}=\{0,1\}$, and let \mathcal{H} be the class of concentric circles in the plane, that is, $\mathcal{H}=\left\{h_{r}: r \in \mathbb{R}_{+}\right\}$, where $h_{r}(x)=\mathbb{1}_{[||x|| \leq r]}$. Prove that \mathcal{H} is PAC-learnable (assume realizability), and its sample complexity is bounded by

$$
m_{\mathcal{H}}(\epsilon, \delta) \leq \frac{\ln \left(\frac{1}{\delta}\right)}{\epsilon}
$$

Concentric Circles (Exercise 3.3)

Statement

Let $\mathcal{X}=\mathbb{R}^{2}, \mathcal{Y}=\{0,1\}$, and let \mathcal{H} be the class of concentric circles in the plane, that is, $\mathcal{H}=\left\{h_{r}: r \in \mathbb{R}_{+}\right\}$, where $h_{r}(x)=\mathbb{1}_{[||x|| \leq r]}$. Prove that \mathcal{H} is PAC-learnable (assume realizability), and its sample complexity is bounded by

$$
m_{\mathcal{H}}(\epsilon, \delta) \leq \frac{\ln \left(\frac{1}{\delta}\right)}{\epsilon}
$$

■ Realizability implies there is a circle inside which all points have label 1 while all outside points have label 0 .

Concentric Circles (Exercise 3.3)

Statement

Let $\mathcal{X}=\mathbb{R}^{2}, \mathcal{Y}=\{0,1\}$, and let \mathcal{H} be the class of concentric circles in the plane, that is, $\mathcal{H}=\left\{h_{r}: r \in \mathbb{R}_{+}\right\}$, where $h_{r}(x)=\mathbb{1}_{[||x|| \leq r]}$. Prove that \mathcal{H} is PAC-learnable (assume realizability), and its sample complexity is bounded by

$$
m_{\mathcal{H}}(\epsilon, \delta) \leq \frac{\ln \left(\frac{1}{\delta}\right)}{\epsilon}
$$

■ Realizability implies there is a circle inside which all points have label 1 while all outside points have label 0 .
$■$ Suppose that circle has radius r^{*}.

Algorithm for the Concentric Circles problem

■ Compute the smallest circle enclosing all positive examples.

Algorithm for the Concentric Circles problem

■ Compute the smallest circle enclosing all positive examples.

- ERM rule is implemented (empirical risk is equal to 0).

Algorithm for the Concentric Circles problem

■ Compute the smallest circle enclosing all positive examples.

- ERM rule is implemented (empirical risk is equal to 0).
\square Why is this algorithm better than others implementing the ERM rule?

Algorithm for the Concentric Circles problem

■ Compute the smallest circle enclosing all positive examples.

- ERM rule is implemented (empirical risk is equal to 0).
\square Why is this algorithm better than others implementing the ERM rule?
- The error is one-sided!

Algorithm for the Concentric Circles problem

■ Compute the smallest circle enclosing all positive examples.
■ ERM rule is implemented (empirical risk is equal to 0).
\square Why is this algorithm better than others implementing the ERM rule?

- The error is one-sided!
- Runtime : $\mathcal{O}(m)=\mathcal{O}\left(\frac{\ln \left(\frac{1}{\delta}\right)}{\epsilon}\right)$

Sample Complexity

Proof for the sample complexity?

Sample Complexity

■ Proof for the sample complexity?

Independent but not identically distributed (Exercise 3.5)

Statement

Let \mathcal{X} be a domain and let $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{m}$ be a sequence of distributions over \mathcal{X}. Let \mathcal{H} be a finite class of binary classifiers over \mathcal{X} and let $f \in \mathcal{H}$. Suppose we are getting a sample S of m examples, such that the instances are independent but are not identically distributed ; the ith instance is sampled from \mathcal{D}_{i} and then y_{i} is set to be $f\left(x_{i}\right)$. Let $\overline{\mathcal{D}_{m}}$ denote the average, that is,

$$
\overline{\mathcal{D}_{m}}=\frac{\mathcal{D}_{1}+\cdots+\mathcal{D}_{m}}{m}
$$

Fix an accuracy parameter $\epsilon \in(0,1)$. Show that

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. } L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right] \leq|\mathcal{H}| e^{-\epsilon m}
$$

Independent but not identically distributed (Exercise 3.5)

Statement

Let \mathcal{X} be a domain and let $\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{m}$ be a sequence of distributions over \mathcal{X}. Let \mathcal{H} be a finite class of binary classifiers over \mathcal{X} and let $f \in \mathcal{H}$. Suppose we are getting a sample S of m examples, such that the instances are independent but are not identically distributed ; the ith instance is sampled from \mathcal{D}_{i} and then y_{i} is set to be $f\left(x_{i}\right)$. Let $\overline{\mathcal{D}_{m}}$ denote the average, that is,

$$
\overline{\mathcal{D}_{m}}=\frac{\mathcal{D}_{1}+\cdots+\mathcal{D}_{m}}{m}
$$

Fix an accuracy parameter $\epsilon \in(0,1)$. Show that

$$
\mathbb{P}\left[\exists h \in \mathcal{H} \text { s.t. } L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right] \leq|\mathcal{H}| e^{-\epsilon m}
$$

$■$ Note that this example does not involve a learning algorithm.

Proof

Overview

Proof

Overview

$$
-L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)
$$

Proof

Overview

$-L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$
$-\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$

Proof

Overview

- $L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$
- $\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$
- Apply union bound based on the above.

Proof

Overview

- $L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$
- $\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$
- Apply union bound based on the above.
- In the resulting sum, each element has the form :

$$
\mathbb{P}\left[L_{S}(h)=0\right] \mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]
$$

where $\mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]=\mathbb{1}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon\right\}$.

Proof

Overview

- $L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$
- $\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$
- Apply union bound based on the above.
- In the resulting sum, each element has the form :

$$
\mathbb{P}\left[L_{S}(h)=0\right] \mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]
$$

where $\mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]=\mathbb{1}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon\right\}$.
$=\mathbb{P}\left[L_{S}(h)=0\right]=\prod_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right)$

Proof

Overview

- $L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$
- $\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$
- Apply union bound based on the above.
- In the resulting sum, each element has the form :

$$
\mathbb{P}\left[L_{S}(h)=0\right] \mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]
$$

where $\mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]=\mathbb{1}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon\right\}$.
$-\mathbb{P}\left[L_{S}(h)=0\right]=\prod_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right)$

- By AM-GM :

$$
\prod_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right) \leq\left[\frac{1}{m} \sum_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right)\right]^{m}=\left[1-L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)\right]^{m}
$$

Proof

Overview

$-L_{\left(\overline{\mathcal{D}_{m}}, f\right)}(h)=\frac{1}{m} \sum_{i \in[m]} L_{\left(\mathcal{D}_{i}, f\right)}(h)$

- $\left\{\exists h \in \mathcal{H}: L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}=\bigcup_{h \in \mathcal{H}}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \wedge L_{S}(h)=0\right\}$
- Apply union bound based on the above.
- In the resulting sum, each element has the form :

$$
\mathbb{P}\left[L_{S}(h)=0\right] \mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]
$$

where $\mathbb{P}\left[L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon \mid L_{S}(h)=0\right]=\mathbb{1}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon\right\}$.
$-\mathbb{P}\left[L_{S}(h)=0\right]=\prod_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right)$

- By AM-GM :

$$
\prod_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right) \leq\left[\frac{1}{m} \sum_{i=1}^{m}\left(1-L_{\left(\mathcal{D}_{i}, f\right)}(h)\right)\right]^{m}=\left[1-L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)\right]^{m}
$$

- We have the upper bound : $\sum_{h \in \mathcal{H}} \mathbb{1}\left\{L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)>\epsilon\right\}\left[1-L_{\left(\overline{\mathcal{D}}_{m}, f\right)}(h)\right]^{m}$

The Bayes Optimal Predictor (Exercise 3.7)

Statement

Show that for every probability distribution \mathcal{D}, the Bayes optimal predictor $f_{\mathcal{D}}$ is optimal, in the sense that for every classifier g from \mathcal{X} to $\{0,1\}, L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}(g)$.

The Bayes Optimal Predictor (Exercise 3.7)

Statement

Show that for every probability distribution \mathcal{D}, the Bayes optimal predictor $f_{\mathcal{D}}$ is optimal, in the sense that for every classifier g from \mathcal{X} to $\{0,1\}, L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}(g)$.

■ Reminder :

$$
f_{\mathcal{D}}(x)= \begin{cases}1 & \text { if } \mathbb{P}[y=1 \mid x] \geq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

The Bayes Optimal Predictor (Exercise 3.7)

Statement

Show that for every probability distribution \mathcal{D}, the Bayes optimal predictor $f_{\mathcal{D}}$ is optimal, in the sense that for every classifier g from \mathcal{X} to $\{0,1\}, L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}(g)$.

■ Reminder:

$$
f_{\mathcal{D}}(x)= \begin{cases}1 & \text { if } \mathbb{P}[y=1 \mid x] \geq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Intuitively, when we have to choose between classifying x in class 0 and class 1, we should choose the one with the higher posterior probability.

The Bayes Optimal Predictor (Exercise 3.7)

Statement

Show that for every probability distribution \mathcal{D}, the Bayes optimal predictor $f_{\mathcal{D}}$ is optimal, in the sense that for every classifier g from \mathcal{X} to $\{0,1\}, L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}(g)$.

■ Reminder :

$$
f_{\mathcal{D}}(x)= \begin{cases}1 & \text { if } \mathbb{P}[y=1 \mid x] \geq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Intuitively, when we have to choose between classifying x in class 0 and class 1, we should choose the one with the higher posterior probability.
- Formal proof is not much harder than that.

The Bayes Optimal Predictor (Exercise 3.7)

Statement

Show that for every probability distribution \mathcal{D}, the Bayes optimal predictor $f_{\mathcal{D}}$ is optimal, in the sense that for every classifier g from \mathcal{X} to $\{0,1\}, L_{\mathcal{D}}\left(f_{\mathcal{D}}\right) \leq L_{\mathcal{D}}(g)$.

■ Reminder :

$$
f_{\mathcal{D}}(x)= \begin{cases}1 & \text { if } \mathbb{P}[y=1 \mid x] \geq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

- Intuitively, when we have to choose between classifying x in class 0 and class 1, we should choose the one with the higher posterior probability.
- Formal proof is not much harder than that.
\square Suppose \mathcal{X} is discrete.

Bayes Optimality Proof

Overview

Bayes Optimality Proof

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]$

Bayes Optimality Proof

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]$
\square We have $: \underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]=\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq y \mid x=x^{*}\right]$

Bayes Optimality Proof

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]$
- We have : $\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]=\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq y \mid x=x^{*}\right]$
- For each term of the sum, we have :

$$
\begin{gathered}
\mathbb{P}\left[h\left(x^{*}\right) \neq y \mid x=x^{*}\right]= \\
=\mathbb{P}\left[y=0 \mid x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq 0\right]+\mathbb{P}\left[y=1 \mid x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq 1\right]
\end{gathered}
$$

Bayes Optimality Proof

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]$
- We have : $\underset{(x, y) \sim \mathcal{D}}{\mathbb{P}}[h(x) \neq y]=\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq y \mid x=x^{*}\right]$
- For each term of the sum, we have :

$$
\begin{gathered}
\mathbb{P}\left[h\left(x^{*}\right) \neq y \mid x=x^{*}\right]= \\
=\mathbb{P}\left[y=0 \mid x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq 0\right]+\mathbb{P}\left[y=1 \mid x=x^{*}\right] \mathbb{P}\left[h\left(x^{*}\right) \neq 1\right]
\end{gathered}
$$

- Minimizing the above completes the proof.

Probabilistic Classifiers and the Bayes Optimal Predictor (Exercise 3.8a)

Probabilistic Classifiers and the Bayes Optimal Predictor (Exercise 3.8a)

Statement

- Probabilistic Predictor : $h: \mathcal{X} \rightarrow[0,1]$ (instead of $\{0,1\}$).

Probabilistic Classifiers and the Bayes Optimal Predictor (Exercise 3.8a)

Statement

- Probabilistic Predictor : $h: \mathcal{X} \rightarrow[0,1]$ (instead of $\{0,1\}$).
- Loss function : $\ell(h,(x, y))=|h(x)-y|$

Probabilistic Classifiers and the Bayes Optimal Predictor (Exercise 3.8a)

Statement

- Probabilistic Predictor : $h: \mathcal{X} \rightarrow[0,1]$ (instead of $\{0,1\}$).
- Loss function : $\ell(h,(x, y))=|h(x)-y|$
- The Bayes Optimal Predictor is optimal even in this setting.

Bayes Optimality Proof v2

Overview

Bayes Optimality Proof v2

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y))]$

Bayes Optimality Proof v2

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y))]$
- We have :

$$
\begin{aligned}
\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}} & {\left[\ell\left(h,\left(x^{*}, y^{*}\right)\right)\right]=\sum_{x^{*} \in \mathcal{X}} \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[x=x^{*}, y=y^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)=} \\
& =\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[y=y^{*} \mid x=x^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)
\end{aligned}
$$

Bayes Optimality Proof v2

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y))]$
- We have :

$$
\begin{aligned}
\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}} & {\left[\ell\left(h,\left(x^{*}, y^{*}\right)\right)\right]=\sum_{x^{*} \in \mathcal{X}} \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[x=x^{*}, y=y^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)=} \\
& =\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[y=y^{*} \mid x=x^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)
\end{aligned}
$$

- Minimize :

$$
\begin{aligned}
& \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[y=y^{*} \mid x=x^{*}\right] \ell(h,(x, y))=\mathbb{P}\left[y=0 \mid x=x^{*}\right]\left|h\left(x^{*}\right)-0\right|+ \\
& +\mathbb{P}\left[y=1 \mid x=x^{*}\right]\left|h\left(x^{*}\right)-1\right|=\mathbb{P}\left[y=0 \mid x=x^{*}\right] h\left(x^{*}\right)+\mathbb{P}\left[y=1 \mid x=x^{*}\right]\left(1-h\left(x^{*}\right)\right)
\end{aligned}
$$

Bayes Optimality Proof v2

Overview

- Minimize : $L_{\mathcal{D}}(h)=\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}}[\ell(h,(x, y))]$
- We have :

$$
\begin{aligned}
\underset{(x, y) \sim \mathcal{D}}{\mathbb{E}} & {\left[\ell\left(h,\left(x^{*}, y^{*}\right)\right)\right]=\sum_{x^{*} \in \mathcal{X}} \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[x=x^{*}, y=y^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)=} \\
& =\sum_{x^{*} \in \mathcal{X}} \mathbb{P}\left[x=x^{*}\right] \sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[y=y^{*} \mid x=x^{*}\right] \ell\left(h,\left(x^{*}, y^{*}\right)\right)
\end{aligned}
$$

- Minimize :

$$
\begin{gathered}
\sum_{y^{*} \in \mathcal{Y}} \mathbb{P}\left[y=y^{*} \mid x=x^{*}\right] \ell(h,(x, y))=\mathbb{P}\left[y=0 \mid x=x^{*}\right]\left|h\left(x^{*}\right)-0\right|+ \\
+\mathbb{P}\left[y=1 \mid x=x^{*}\right]\left|h\left(x^{*}\right)-1\right|=\mathbb{P}\left[y=0 \mid x=x^{*}\right] h\left(x^{*}\right)+\mathbb{P}\left[y=1 \mid x=x^{*}\right]\left(1-h\left(x^{*}\right)\right)
\end{gathered}
$$

- This leads again to the Bayes Optimal Predictor.

Discussion

The End

Thank You!

