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Reminder Exercises

Risk Functions Reminder

General Setting

Given a loss function ` : H× Z → R+ and a distribution D over Z we defined :

True Risk : LD(h) = E
z∼D

[`(h, (x , y)]

Empirical Risk (given S = (z1, z2, . . . , zm)) : LS(h) =
∑m

i=1 `(h,zi )

m

Our use of that will be limited.

Simpler Setting

Restrict Z to X or X × {0, 1} (is there is a labelling function f or not ?).

Define ` as the 0− 1 loss.
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Reminder Exercises

PAC-learnability

Definition
A hypothesis class H is PAC learnable if there exist a function mH : (0, 1)2 → N and a
learning algorithm with the following property : For every ε, δ ∈ (0, 1), for every
distribution D over X , and for every labeling function f : X → 0, 1, if the realizable
assumption holds with respect to H,D, f , then when running the learning algorithm on
m ≥ mH(ε, δ) i.i.d. examples generated by D and labeled by f , the algorithm returns a
hypothesis h such that, with probability of at least 1− δ (over the choice of the
examples), L(D, f )(h) ≤ ε.

Why bother with PAC-learning since we went such a long way to extend it ?

Turns out PAC-learnable classes are also APAC-learnable (more on that next
week).
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Reminder Exercises

Concentric Circles (Exercise 3.3)

Statement
Let X = R2, Y = {0, 1}, and let H be the class of concentric circles in the plane, that
is, H = {hr : r ∈ R+}, where hr (x) = 1[||x||≤r ]. Prove that H is PAC-learnable
(assume realizability), and its sample complexity is bounded by

mH(ε, δ) ≤
ln
( 1
δ

)
ε

Realizability implies there is a circle inside which all points have label 1 while all
outside points have label 0.

Suppose that circle has radius r∗.
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Algorithm for the Concentric Circles problem

Compute the smallest circle enclosing all positive examples.

ERM rule is implemented (empirical risk is equal to 0).

Why is this algorithm better than others implementing the ERM rule ?

The error is one-sided !

Runtime : O(m) = O
(

ln
(

1
δ

)
ε

)
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Sample Complexity

Proof for the sample complexity ?
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Independent but not identically distributed (Exercise 3.5)

Statement
Let X be a domain and let D1,D2, . . . ,Dm be a sequence of distributions over X . Let
H be a finite class of binary classifiers over X and let f ∈ H. Suppose we are getting a
sample S of m examples, such that the instances are independent but are not
identically distributed ; the ith instance is sampled from Di and then yi is set to be f (xi ).
Let D̄m denote the average, that is,

D̄m =
D1 + · · ·+Dm

m

Fix an accuracy parameter ε ∈ (0, 1). Show that

P[∃h ∈ H s.t . L(D̄m,f )(h) > ε ∧ LS(h) = 0] ≤ |H|e−εm

Note that this example does not involve a learning algorithm.
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Proof

Overview

L(D̄m,f )(h) = 1
m
∑

i∈[m] L(Di ,f )(h)

{∃h ∈ H : L(D̄m,f )(h) > ε ∧ LS(h) = 0} =
⋃

h∈H{L(D̄m,f )(h) > ε ∧ LS(h) = 0}
Apply union bound based on the above.

In the resulting sum, each element has the form :

P[LS(h) = 0]P[L(D̄m,f )(h) > ε|LS(h) = 0]

where P[L(D̄m,f )(h) > ε|LS(h) = 0] = 1{L(D̄m,f )(h) > ε}.

P[LS(h) = 0] =
∏m

i=1
(
1− L(Di ,f )(h)

)
By AM-GM :

m∏
i=1

(
1− L(Di ,f )(h)

)
≤
[

1
m

m∑
i=1

(
1− L(Di ,f )(h)

)]m

= [1− L(D̄m,f )(h)]m

We have the upper bound :
∑

h∈H 1{L(D̄m,f )(h) > ε}[1− L(D̄m,f )(h)]m
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Reminder Exercises

The Bayes Optimal Predictor (Exercise 3.7)

Statement
Show that for every probability distribution D, the Bayes optimal predictor fD is optimal,
in the sense that for every classifier g from X to {0, 1}, LD(fD) ≤ LD(g).

Reminder :

fD(x) =

{
1 if P[y = 1|x ] ≥ 1

2
0 otherwise

Intuitively, when we have to choose between classifying x in class 0 and class 1,
we should choose the one with the higher posterior probability.

Formal proof is not much harder than that.

Suppose X is discrete.
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Bayes Optimality Proof

Overview

Minimize : LD(h) = P
(x,y)∼D

[h(x) 6= y ]

We have : P
(x,y)∼D

[h(x) 6= y ] =
∑

x∗∈X P[x = x∗]P[h(x∗) 6= y |x = x∗]

For each term of the sum, we have :

P[h(x∗) 6= y |x = x∗] =

= P[y = 0|x = x∗]P[h(x∗) 6= 0] + P[y = 1|x = x∗]P[h(x∗) 6= 1]

Minimizing the above completes the proof.
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Probabilistic Classifiers and the Bayes Optimal Predictor (Exercise 3.8a)

Statement

Probabilistic Predictor : h : X → [0, 1] (instead of {0, 1}).
Loss function : `(h, (x , y)) = |h(x)− y |
The Bayes Optimal Predictor is optimal even in this setting.
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Bayes Optimality Proof v2

Overview

Minimize : LD(h) = E
(x,y)∼D

[`(h, (x , y))]

We have :

E
(x,y)∼D

[`(h, (x∗, y∗))] =
∑

x∗∈X

∑
y∗∈Y

P[x = x∗, y = y∗]`(h, (x∗, y∗)) =

=
∑

x∗∈X
P[x = x∗]

∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x∗, y∗))

Minimize :∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x , y)) = P[y = 0|x = x∗]|h(x∗)− 0|+

+P[y = 1|x = x∗]|h(x∗)−1| = P[y = 0|x = x∗]h(x∗)+P[y = 1|x = x∗](1−h(x∗))

This leads again to the Bayes Optimal Predictor.

Argyris Mouzakis (ECE, NTUA) Exercises 09/11/2018 15 / 17



Reminder Exercises

Bayes Optimality Proof v2

Overview

Minimize : LD(h) = E
(x,y)∼D

[`(h, (x , y))]

We have :

E
(x,y)∼D

[`(h, (x∗, y∗))] =
∑

x∗∈X

∑
y∗∈Y

P[x = x∗, y = y∗]`(h, (x∗, y∗)) =

=
∑

x∗∈X
P[x = x∗]

∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x∗, y∗))

Minimize :∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x , y)) = P[y = 0|x = x∗]|h(x∗)− 0|+

+P[y = 1|x = x∗]|h(x∗)−1| = P[y = 0|x = x∗]h(x∗)+P[y = 1|x = x∗](1−h(x∗))

This leads again to the Bayes Optimal Predictor.

Argyris Mouzakis (ECE, NTUA) Exercises 09/11/2018 15 / 17



Reminder Exercises

Bayes Optimality Proof v2

Overview

Minimize : LD(h) = E
(x,y)∼D

[`(h, (x , y))]

We have :

E
(x,y)∼D

[`(h, (x∗, y∗))] =
∑

x∗∈X

∑
y∗∈Y

P[x = x∗, y = y∗]`(h, (x∗, y∗)) =

=
∑

x∗∈X
P[x = x∗]

∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x∗, y∗))

Minimize :∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x , y)) = P[y = 0|x = x∗]|h(x∗)− 0|+

+P[y = 1|x = x∗]|h(x∗)−1| = P[y = 0|x = x∗]h(x∗)+P[y = 1|x = x∗](1−h(x∗))

This leads again to the Bayes Optimal Predictor.

Argyris Mouzakis (ECE, NTUA) Exercises 09/11/2018 15 / 17



Reminder Exercises

Bayes Optimality Proof v2

Overview

Minimize : LD(h) = E
(x,y)∼D

[`(h, (x , y))]

We have :

E
(x,y)∼D

[`(h, (x∗, y∗))] =
∑

x∗∈X

∑
y∗∈Y

P[x = x∗, y = y∗]`(h, (x∗, y∗)) =

=
∑

x∗∈X
P[x = x∗]

∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x∗, y∗))

Minimize :∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x , y)) = P[y = 0|x = x∗]|h(x∗)− 0|+

+P[y = 1|x = x∗]|h(x∗)−1| = P[y = 0|x = x∗]h(x∗)+P[y = 1|x = x∗](1−h(x∗))

This leads again to the Bayes Optimal Predictor.

Argyris Mouzakis (ECE, NTUA) Exercises 09/11/2018 15 / 17



Reminder Exercises

Bayes Optimality Proof v2

Overview

Minimize : LD(h) = E
(x,y)∼D

[`(h, (x , y))]

We have :

E
(x,y)∼D

[`(h, (x∗, y∗))] =
∑

x∗∈X

∑
y∗∈Y

P[x = x∗, y = y∗]`(h, (x∗, y∗)) =

=
∑

x∗∈X
P[x = x∗]

∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x∗, y∗))

Minimize :∑
y∗∈Y

P[y = y∗|x = x∗]`(h, (x , y)) = P[y = 0|x = x∗]|h(x∗)− 0|+

+P[y = 1|x = x∗]|h(x∗)−1| = P[y = 0|x = x∗]h(x∗)+P[y = 1|x = x∗](1−h(x∗))

This leads again to the Bayes Optimal Predictor.

Argyris Mouzakis (ECE, NTUA) Exercises 09/11/2018 15 / 17



Reminder Exercises

Discussion
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The End

Thank You !
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