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Overview

1 Introduction to the VC-dimension
The road to the VC-dimension
Definition and Properties of the VC-dimension
Examples

2 The Fundamental Theorem of Statistical Learning

3 The end
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The road to the VC-dimension

1 Introduction to the VC-dimension
The road to the VC-dimension
Definition and Properties of the VC-dimension
Examples

2 The Fundamental Theorem of Statistical Learning
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The road to the VC-dimension

The problem of characterization

• How do we figure out if a class is PAC-learnable;

Conjecture
The cardinality of the class determines whether it’s PAC-learnable.

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 5 / 44
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The road to the VC-dimension

Finite classes

Theorem
Suppose H is a finite hypothesis class. H is PAC-learnable with sample

complexity O

˜

ln
´

|H|

δ

¯

ϵ

¸

.

• This settles the problem for finite classes.
• What about infinite classes?

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 6 / 44
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The road to the VC-dimension

Infinite hypothesis classes

Theorem
Suppose H is a class consisting of all classifiers h : X Ñ t0, 1u. If |X | “ 8,
then H is not PAC-learnable.

• Can this be generalized for all infinite classes?

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 7 / 44
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The road to the VC-dimension

PAC-learnable infinite classes

• There are infinite classes that are PAC-learnable.
• Remember the concentric circles.

Theorem
Consider H “ thr : r P R`u with hrpxq “ 1 t||x|| ď ru , @x P R2. H is

PAC-learnable with sample complexity O
ˆ

lnp 1
δ q

ϵ

˙

.

• It’s not the only one.

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 8 / 44



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Introduction to the VC-dimension The Fundamental Theorem of Statistical Learning The end

The road to the VC-dimension

Learning intervals

Theorem
Consider H “ tha : a P Ru with hapxq “ 1 tx ď au , @x P R. H is

PAC-learnable with sample complexity O
ˆ

lnp 2
δ q

ϵ

˙

.

• We will provide merely a sketch of the proof.
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The road to the VC-dimension

Algorithm for interval learning

Algorithm 1: Real intervals
Data: training set S
Result: classifier hS with 0 empirical risk

1 b0 “ ´8, b1 “ `8;
2 for px, yq P S do
3 if y ““ 1 and x ą b0 then
4 b0 “ x;
5 else if y ““ 0 and x ă b1 then
6 b1 “ x;

7 choose randomly a P pb0, b1q;
8 hS “ ha;

• Time complexity: O pmq.

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 10 / 44
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The road to the VC-dimension

Analysis of algorithm

Sketch of Proof
• a‹ is the a we are looking for.
• a0, a1 are such that P

x„Dx

rx P pa0, a‹qs “ P
x„Dx

rx P pa‹, a1qs.

• P
S„Dm

rLDphSq ą ϵs ď P
S„Dm

rb0 ă a0 _ b1 ą a1s

• Apply union bound.
• Find an upper bound (the same) for both probabilities.
• Demand the sum to be less than δ and this completes the proof. ■
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The road to the VC-dimension

Remarks

• This algorithm achieves the desired results with the aforementioned
sample complexity.

• By using the idea from the concentric circles we can have one-sided

error and achieve time and sample complexity O
ˆ

lnp 1
δ q

ϵ

˙

.

Conclusion
The cardinality can’t characterize the PAC-learnability of a class.

• Then what can?
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The road to the VC-dimension

Number of parameters

• Note that the infinite hypothesis classes we encountered before had
smaller sample complexity than the one we proved for finite hypothesis
classes.

• The elements of each of those classes can be described accurately using a
single parameter (r in the circles example and a in the intervals example).

• On the other hand, we didn’t make any assumptions about the members
of H when we studied finite hypothesis classes.

• We need to know all its |H| members to describe it.
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The road to the VC-dimension

Parameters and PAC-learnability

Conjecture
The number of parameters (degrees of freedom) required to describe the
elements of a hypothesis class determines the PAC-learnability as well as the
sample complexity.

• This yields:

Corollary
A class is PAC-learnable if it has finite number of degrees of freedom.

• Better guess than the previous one.
• Still wrong.
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The road to the VC-dimension

Sines

Counterexample
The class H “ thθ : θ P Ru where hθpxq “ rsin pθxqs, @x P R (consider
r´1s “ 0) is not PAC-learnable.

• Apparently, correlation does not imply causation.
• We need to introduce a new measure.
• That’s the VC-dimension!
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Definition and Properties of the VC-dimension

1 Introduction to the VC-dimension
The road to the VC-dimension
Definition and Properties of the VC-dimension
Examples

2 The Fundamental Theorem of Statistical Learning

3 The end
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Definition and Properties of the VC-dimension

Restriction of hypothesis class

Definition
Let H be a class of functions from X to t0, 1u and let
C “ tc1, c2, . . . , cmu Ă X . The restriction of H to C is the set of functions
from C to t0, 1u that can be derived from H. That is:

HC “ tph pc1q , h pc2q , . . . , h pcmqq : h P Hu

where we represent each function from C to t0, 1u as a vector in t0, 1u
|C|.

• Some of the functions in H may be the same when restricted to C.
• We refer to |HC | as the effective size of H with respect to C.
• Clearly, |HC | ď |H|.
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Definition and Properties of the VC-dimension

Shattering

• There are 2|C| partitions of C.
• Each element of HC corresponds to one of them.

Definition
A hypothesis class H shatters a finite set C Ă X if the restriction of H to C is
the set of all functions from H to t0, 1u. That is |HC | “ 2|C|.

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 18 / 44
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Definition and Properties of the VC-dimension

The VC-dimension

Definition
The VC-dimension of a hypothesis class H, denoted V Cdim pHq, is the
maximal size of a set C Ă X that can be shattered by H. If H can shatter sets
of arbitrarily large size we say that H has infinite VC-dimension.

• To show that V Cdim pHq ě d, it suffices to find one C Ă X with
|C| “ d that is shattered by H.

• If V Cdim pHq ă d, there is no C Ă X with |C| “ d that is shattered by
H.

• Based on the above, to show that V Cdim pHq “ d, we have to show that
V Cdim pHq ě d ^ V Cdim pHq ă d ` 1.
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Definition and Properties of the VC-dimension

Notes

• Introduced by Vladimir Vapnik and Alexej Chervonenkis.

• Intuively, the VC-dimension of a hypothesis class is a combinatorial
measure that quantifies its expressive power.
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Definition and Properties of the VC-dimension

NFL reminder

• The NFL theorem stated:

Theorem
Let A be any learning algorithm for the task of binary classification with
respect to the 0 ´ 1 loss over a domain X . Let m be any number smaller than
|X |

2 , representing a training set size. Then, there exists a distribution D over
X ˆ t0, 1u such that:

• There exists a function f : X Ñ t0, 1u with LDpfq “ 0.
• With probability of at least 1

7 over the choice of S „ Dm we have that
LD pA pSqq ě 1

8 .
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Definition and Properties of the VC-dimension

VC and NFL

• An alternative formulation involving the VC-dimension is:

Corollary
Let H be a hypothesis class of functions from X to t0, 1u. Let m be a training
set size. Assume that there exists a set C Ă X of size 2m that is shattered by
H. Then, for any learning algorithm, A, there exist a distribution D over
X ˆ t0, 1u and a predictor h P H such that LD phq “ 0 but with probability
of at least 1

7 over the choice of S „ Dm we have that LD pApSqq ě 1
8 .

• V Cdim pHq ě 2m.
• The structure of H is such that, despite there being a hypothesis
corresponding to distribution D, we can’t find it.
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Definition and Properties of the VC-dimension

Infinite VC-dimension and PAC-learnability

Theorem
If a hypothesis class has infinite VC-dimension, it is not PAC-learnable.

• The above result is an immediate consequence of the previous corollary.
• Having a finite VC-dimension is a necessary condition for
PAC-learnability. Is it also sufficient?

• Yes!
• The theorem will be presented after some examples of VC calculations.
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Examples

1 Introduction to the VC-dimension
The road to the VC-dimension
Definition and Properties of the VC-dimension
Examples

2 The Fundamental Theorem of Statistical Learning

3 The end
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Examples

Intervals

Example
Consider the class H “ tha : a P Ru with hapxq “ 1 tx ď au , @x P R. We
have V Cdim pHq “ 1.

Sketch of Proof
• It is easy to show that H shatters all sets with only one member.
• But when it comes to C “ tx1, x2u with x1 ď x2, it’s impossible to have
the configuration p1, 0q.

• So V Cdim pHq “ 1. ■
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Examples

More intervals

Example
Consider the class H “

␣

hpa,bq : a, b P R
(

with
hpa,bq pxq “ 1 tx P pa, bqu , @x P R. We have V Cdim pHq “ 2.

Sketch of Proof
• It is easy to show that H shatters all sets with two members.
• But when it comes to C “ tx1, x2, x3u with x1 ď x2 ď x3, it’s
impossible to have the configuration p1, 0, 1q.

• So V Cdim pHq “ 2. ■
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Examples

Circles

Example
Consider the class Hr “ thr : r P R`u with hr pxq “ 1 t||x|| ď ru , @x P R2.
We have V Cdim pHq “ 1.

Sketch of Proof
• It is easy to show that H shatters all sets with only one member.
• But when it comes to C “ tx1, x2u with ||x1|| ď ||x2||, it’s impossible to
have the configuration p1, 0q.

• So V Cdim pHq “ 1. ■
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1 Introduction to the VC-dimension

2 The Fundamental Theorem of Statistical Learning

3 The end
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The Fundamental Theorem

Theorem
Let H be a hypothesis class of functions from a domain X to t0, 1u and let the
loss function be the 0 ´ 1 loss. Then, the following are equivalent:

• H has the uniform convergence property.
• Any ERM rule is a successful agnostic PAC learner for H.
• H is agnostic PAC learnable.
• H is PAC learnable.
• Any ERM rule is a successful PAC learner for H.
• H has a finite VC-dimension.

• We are mainly interested in p6q ñ p1q.
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Growth Function

Definition
Let H be a hypothesis class. Then the growth function of H, denoted
τH : N Ñ N, is defined as:

τHpmq “ max
CĂX :|C|“m

|HC |

• For m ď V CdimpHq there is at least one set of cardinality m that is
shattered by H, so τHpmq “ 2m (exponential to m).

• What about m ą V CdimpHq?
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Sauer’s lemma

Lemma
Let H be a hypothesis class with V CdimpHq “ d ă 8. Then, for all m:

τHpmq ď

d
ÿ

i“0

ˆ

m

i

˙

In particular, if m ě d ` 1, then:

τHpmq “

´em

d

¯d
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Remarks

• This answers our question about the growth function’s values for
m ą V CdimpHq.

• Despite increasing exponentially at first, asymptotically, the growth
function increases polynomially.

• Its value transcends machine learning theory.
• Stated and proven independently by Sauer, Shelah and Perles.
• Many alternative proofs and generalizations.
• Speaking of which, let’s prove this!
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Proof of Sauer’s lemma

Proof
• Let C “ tx1, x2, . . . , xmu Ă X .
• Consider the set tB Ď C : H shatters Bu.
• The subsets of C shattered by H cannot be more than those with up to d
elements.

• Therefore:

|tB Ď C : H shatters Bu| ď

d
ÿ

i“0

ˆ

m

i

˙
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)
• It suffices to prove that τHpmq ď |tB Ď C : H shatters Bu|.
• An even more powerful statement is:

@C “ tx1, x2, . . . , xmu Ă X , @H, |HC | ď |tB Ď C : H shatters Bu|

• We will prove this by induction.
• The part involving the upper bound for m ě d ` 1 will not be presented
here.
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)
• For m “ 1 there are two cases according to d.

• For d “ 0:
|HC | “ 1 “

ˆ

1
0

˙

so the inequality holds.
• For d ą 0:

|HC | “ 2 “

ˆ

1
0

˙

`

ˆ

1
1

˙

so the inequality holds.

• The base case holds.
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)
• Assume the lemma holds for all k ă m.
• For some H and C “ tc1, c2, . . . , cmu, denote C 1 “ tc2, . . . , cmu and
define the sets:

Y0 “ tpy2, . . . , ymq : p0, y2, . . . , ymq P HC _ p1, y2, . . . , ymq P HCu

Y1 “ tpy2, . . . , ymq : p0, y2, . . . , ymq P HC ^ p1, y2, . . . , ymq P HCu

• As a result, we have HC1 “ Y0 and |HC | “ |Y0| ` |Y1|.
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)
• By the inductive hypothesis, we have:

|Y0| “ |HC1 | ď
ˇ

ˇ

␣

B Ď C 1 : H shatters B
(ˇ

ˇ “

“ |tB Ď C : c1 R B ^ H shatters Bu| p1q

• We define the set H1, containing pairs of classifiers that differ on c1:

H1 “ th P H : Dh1 P H s.t.
`

1 ´ h1 pc1q , h1 pc2q , . . . , h1 pcmq
˘

“

“ ph pc1q , h pc2q , . . . , h pcmqqu Ď H
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)
• H1 shatters B Ď C 1 ô H1 shatters B Y tc1u.
• Y1 “ H1

C1 so by inductive hypothesis:

|Y1| “
ˇ

ˇH1
C1

ˇ

ˇ ď
ˇ

ˇ

␣

B Ď C 1 : H1 shatters B
(ˇ

ˇ “

“
ˇ

ˇ

␣

B Ď C 1 : H1 shatters B Y tc1u
(ˇ

ˇ “

“
ˇ

ˇ

␣

B Ď C : c1 P B ^ H1 shatters B
(ˇ

ˇ “

“ |tB Ď C : c1 P B ^ H shatters Bu| p2q

• Relations (1), (2) and |HC | “ |Y0| ` |Y1| complete the proof. ■
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Uniform Convergence for Classes of Small Effective Size

Theorem
Let H be a class and let τH be its growth function. Then, for every D and
every δ P p0, 1q, with probability of at least 1 ´ δ over the choice of S „ Dm

we have:

|LDphq ´ LSphq| ď
4 `

a

log pτ p2mqq

δ
?

2m

• No proof.
• We will use this, along with Sauer’s lemma to complete the proof of the
fundamental theorem.
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Proof of the fundamental theorem

Proof
• Combining Sauer’s lemma with the previous theorem, we get that, with
probability at least 1 ´ δ:

|LDphq ´ LSphq| ď
4 `

b

d log
`2em

d

˘

δ
?

2m

• Assume that m is big enough so that:
d

d log
ˆ

2em

d

˙

ě 4
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Proof of the fundamental theorem (cont’d)

Proof (cont’d)
• The previous give:

|LDphq ´ LSphq| ď
1
δ

d

2d log
`2em

d

˘

m

• We demand the previous to be less than ϵ.
• A sufficient condition for that is:

m ě 4 2d

pδϵq
2 log

ˆ

2d

pδϵq
2

˙

`
4d log

`2e
d

˘

pδϵq
2

■
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3 The end
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Any questions?
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Thank you!
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