VC-dimension

Chapter 6 of Understanding Machine Learning: From Theory to Algorithms

Argyris Mouzakis amouzakis17@hotmail.com

November 23, 2018

1 Introduction to the VC-dimension

The road to the VC-dimension Definition and Properties of the VC-dimension Examples

2 The Fundamental Theorem of Statistical Learning

3 The end

2 The Fundamental Theorem of Statistical Learning

B The end

< 口 > < 同

-

Introduction to the VC-dimension The road to the VC-dimension Definition and Properties of the VC-dimension Examples

2 The Fundamental Theorem of Statistical Learning

B The end

-

The problem of characterization

• How do we figure out if a class is PAC-learnable;

Conjecture

The cardinality of the class determines whether it's PAC-learnable.

The road to the VC-dimension

Suppose \mathcal{H} is a finite hypothesis class. \mathcal{H} is PAC-learnable with sample complexity $\mathcal{O}\left(\frac{\ln\left(\frac{|\mathcal{H}|}{\delta}\right)}{\epsilon}\right)$.

- This settles the problem for finite classes.
- What about infinite classes?

Infinite hypothesis classes

Theorem

Suppose \mathcal{H} is a class consisting of all classifiers $h : \mathcal{X} \to \{0, 1\}$. If $|\mathcal{X}| = \infty$, then \mathcal{H} is not PAC-learnable.

• Can this be generalized for all infinite classes?

PAC-learnable infinite classes

- There are infinite classes that are PAC-learnable.
- Remember the concentric circles.

Theorem

Consider $\mathcal{H} = \{h_r : r \in \mathbb{R}_+\}$ with $h_r(x) = \mathbb{1}\{||x|| \leq r\}, \forall x \in \mathbb{R}^2$. \mathcal{H} is PAC-learnable with sample complexity $\mathcal{O}\left(\frac{\ln(\frac{1}{\delta})}{\epsilon}\right)$.

• It's not the only one.

The road to the VC-dimension

Learning intervals

Theorem

Consider
$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$
 with $h_a(x) = \mathbb{1}\{x \leq a\}, \forall x \in \mathbb{R}. \mathcal{H}$ is PAC-learnable with sample complexity $\mathcal{O}\left(\frac{\ln\left(\frac{2}{\delta}\right)}{\epsilon}\right)$.

• We will provide merely a sketch of the proof.

The road to the VC-dimension

Algorithm for interval learning

Algorithm 1: Real intervals

Data: training set *S*

Result: classifier h_S with 0 empirical risk

$$1 \quad b_0 = -\infty, b_1 = +\infty;$$

$$2 \quad \text{for } (x, y) \in S \text{ do}$$

$$3 \quad | \quad \text{if } y == 1 \text{ and } x > b_0 \text{ then}$$

$$4 \quad | \quad b_0 = x;$$

$$5 \quad \text{else if } y == 0 \text{ and } x < b_1 \text{ then}$$

$$6 \quad | \quad b_1 = x;$$

- 7 choose randomly $a \in (b_0, b_1)$;
- 8 $h_S = h_a;$
 - Time complexity: $\mathcal{O}(m)$.

Analysis of algorithm

- a^* is the *a* we are looking for.
- a_0, a_1 are such that $\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a_0, a^*)] = \mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a^*, a_1)].$
- $\mathbb{P}_{S \sim \mathcal{D}^m} [L_{\mathcal{D}}(h_S) > \epsilon] \leq \mathbb{P}_{S \sim \mathcal{D}^m} [b_0 < a_0 \lor b_1 > a_1]$
- Apply union bound.
- Find an upper bound (the same) for both probabilities.
- Demand the sum to be less than δ and this completes the proof.

Remarks

- This algorithm achieves the desired results with the aforementioned sample complexity.
- By using the idea from the concentric circles we can have one-sided error and achieve time and sample complexity $\mathcal{O}\left(\frac{\ln(\frac{1}{\delta})}{\epsilon}\right)$.

Conclusion

The cardinality can't characterize the PAC-learnability of a class.

• Then what can?

Number of parameters

- Note that the infinite hypothesis classes we encountered before had smaller sample complexity than the one we proved for finite hypothesis classes.
- The elements of each of those classes can be described accurately using a single parameter (*r* in the circles example and *a* in the intervals example).
- On the other hand, we didn't make any assumptions about the members of \mathcal{H} when we studied finite hypothesis classes.
- We need to know all its $\left|\mathcal{H}\right|$ members to describe it.

The road to the VC-dimension

Parameters and PAC-learnability

Conjecture

The number of parameters (degrees of freedom) required to describe the elements of a hypothesis class determines the PAC-learnability as well as the sample complexity.

• This yields:

Corollary

A class is PAC-learnable if it has finite number of degrees of freedom.

- Better guess than the previous one.
- Still wrong.

The road to the VC-dimension

Sines

Counterexample

The class $\mathcal{H} = \{h_{\theta} : \theta \in \mathbb{R}\}$ where $h_{\theta}(x) = [\sin(\theta x)], \forall x \in \mathbb{R}$ (consider [-1] = 0) is not PAC-learnable.

- Apparently, correlation does not imply causation.
- We need to introduce a new measure.
- That's the VC-dimension!

Definition and Properties of the VC-dimension

1 Introduction to the VC-dimension

The road to the VC-dimension Definition and Properties of the VC-dimension Examples

2 The Fundamental Theorem of Statistical Learning

B The end

-

Definition and Properties of the VC-dimension

Restriction of hypothesis class

Definition

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0, 1\}$ and let $C = \{c_1, c_2, \ldots, c_m\} \subset \mathcal{X}$. The restriction of \mathcal{H} to C is the set of functions from C to $\{0, 1\}$ that can be derived from \mathcal{H} . That is:

$$\mathcal{H}_{C} = \{ (h(c_{1}), h(c_{2}), \dots, h(c_{m})) : h \in \mathcal{H} \}$$

where we represent each function from *C* to $\{0, 1\}$ as a vector in $\{0, 1\}^{|C|}$.

- Some of the functions in \mathcal{H} may be the same when restricted to C.
- We refer to $|\mathcal{H}_C|$ as the effective size of \mathcal{H} with respect to C.
- Clearly, $|\mathcal{H}_C| \leq |\mathcal{H}|$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition and Properties of the VC-dimension

Shattering

- There are $2^{|C|}$ partitions of C.
- Each element of \mathcal{H}_C corresponds to one of them.

Definition

A hypothesis class \mathcal{H} shatters a finite set $C \subset \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from \mathcal{H} to $\{0,1\}$. That is $|\mathcal{H}_C| = 2^{|C|}$.

Definition and Properties of the VC-dimension

The VC-dimension

Definition

The VC-dimension of a hypothesis class \mathcal{H} , denoted $VCdim(\mathcal{H})$, is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

- To show that $VCdim(\mathcal{H}) \ge d$, it suffices to find one $C \subset \mathcal{X}$ with |C| = d that is shattered by \mathcal{H} .
- If $VCdim(\mathcal{H}) < d$, there is no $C \subset \mathcal{X}$ with |C| = d that is shattered by \mathcal{H} .
- Based on the above, to show that $VCdim(\mathcal{H}) = d$, we have to show that $VCdim(\mathcal{H}) \ge d \land VCdim(\mathcal{H}) < d + 1$.

くロト (得) (ヨト (ヨト) ヨ

Definition and Properties of the VC-dimension

Notes

• Introduced by Vladimir Vapnik and Alexej Chervonenkis.

• Intuively, the VC-dimension of a hypothesis class is a combinatorial measure that quantifies its expressive power.

Definition and Properties of the VC-dimension

NFL reminder

• The NFL theorem stated:

Theorem

Let *A* be any learning algorithm for the task of binary classification with respect to the 0-1 loss over a domain \mathcal{X} . Let *m* be any number smaller than $\frac{|\mathcal{X}|}{2}$, representing a training set size. Then, there exists a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ such that:

- There exists a function $f : \mathcal{X} \to \{0, 1\}$ with $L_{\mathcal{D}}(f) = 0$.
- With probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \ge \frac{1}{8}$.

Definition and Properties of the VC-dimension

VC and NFL

• An alternative formulation involving the VC-dimension is:

Corollary

Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0, 1\}$. Let m be a training set size. Assume that there exists a set $C \subset X$ of size 2m that is shattered by \mathcal{H} . Then, for any learning algorithm, A, there exist a distribution \mathcal{D} over $\mathcal{X} \times \{0, 1\}$ and a predictor $h \in H$ such that $L_{\mathcal{D}}(h) = 0$ but with probability of at least $\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}$.

- $VCdim(\mathcal{H}) \ge 2m$.
- The structure of \mathcal{H} is such that, despite there being a hypothesis corresponding to distribution \mathcal{D} , we can't find it.

Definition and Properties of the VC-dimension

The end

Infinite VC-dimension and PAC-learnability

Theorem

If a hypothesis class has infinite VC-dimension, it is not PAC-learnable.

- The above result is an immediate consequence of the previous corollary.
- Having a finite VC-dimension is a necessary condition for PAC-learnability. Is it also sufficient?
- Yes!
- The theorem will be presented after some examples of VC calculations.

Examples

1 Introduction to the VC-dimension

The road to the VC-dimension Definition and Properties of the VC-dimension **Examples**

2 The Fundamental Theorem of Statistical Learning

B The end

-

Examples

Intervals

Example

Consider the class $\mathcal{H} = \{h_a : a \in \mathbb{R}\}$ with $h_a(x) = \mathbb{1}\{x \leq a\}, \forall x \in \mathbb{R}$. We have $VCdim(\mathcal{H}) = 1$.

- It is easy to show that ${\mathcal H}$ shatters all sets with only one member.
- But when it comes to $C = \{x_1, x_2\}$ with $x_1 \leq x_2$, it's impossible to have the configuration (1, 0).

• So
$$VCdim(\mathcal{H}) = 1$$
.

Examples

More intervals

Example

Consider the class
$$\mathcal{H} = \{h_{(a,b)} : a, b \in \mathbb{R}\}$$
 with $h_{(a,b)}(x) = \mathbb{1}\{x \in (a,b)\}, \forall x \in \mathbb{R}.$ We have $VCdim(\mathcal{H}) = 2$.

- It is easy to show that ${\mathcal H}$ shatters all sets with two members.
- But when it comes to $C = \{x_1, x_2, x_3\}$ with $x_1 \le x_2 \le x_3$, it's impossible to have the configuration (1, 0, 1).

• So
$$VCdim(\mathcal{H}) = 2$$
.

Example

Consider the class $\mathcal{H}_r = \{h_r : r \in \mathbb{R}_+\}$ with $h_r(x) = \mathbb{1}\{||x|| \leq r\}, \forall x \in \mathbb{R}^2$. We have $VCdim(\mathcal{H}) = 1$.

- It is easy to show that ${\mathcal H}$ shatters all sets with only one member.
- But when it comes to $C = \{x_1, x_2\}$ with $||x_1|| \le ||x_2||$, it's impossible to have the configuration (1, 0).

• So
$$VCdim(\mathcal{H}) = 1.$$

2 The Fundamental Theorem of Statistical Learning

B The end

-

< 口 > < 同

990

The Fundamental Theorem

Theorem

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0, 1\}$ and let the loss function be the 0 - 1 loss. Then, the following are equivalent:

- + $\ensuremath{\mathcal{H}}$ has the uniform convergence property.
- Any ERM rule is a successful agnostic PAC learner for \mathcal{H} .
- \mathcal{H} is agnostic PAC learnable.
- \mathcal{H} is PAC learnable.
- Any *ERM* rule is a successful PAC learner for \mathcal{H} .
- + ${\mathcal H}$ has a finite VC-dimension.
- We are mainly interested in $(6) \Rightarrow (1)$.

Growth Function

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset \mathcal{X}: |C| = m} |\mathcal{H}_C|$$

- For $m \leq VCdim(\mathcal{H})$ there is at least one set of cardinality m that is shattered by \mathcal{H} , so $\tau_{\mathcal{H}}(m) = 2^m$ (exponential to m).
- What about $m > VCdim(\mathcal{H})$?

Sauer's lemma

Lemma

Let \mathcal{H} be a hypothesis class with $VCdim(\mathcal{H}) = d < \infty$. Then, for all m:

$$\tau_{\mathcal{H}}(m) \leqslant \sum_{i=0}^{d} \binom{m}{i}$$

In particular, if $m \ge d + 1$, then:

$$\tau_{\mathcal{H}}(m) = \left(\frac{em}{d}\right)^d$$

Remarks

- This answers our question about the growth function's values for $m > VCdim(\mathcal{H})$.
- Despite increasing exponentially at first, asymptotically, the growth function increases polynomially.
- Its value transcends machine learning theory.
- Stated and proven independently by Sauer, Shelah and Perles.
- Many alternative proofs and generalizations.
- Speaking of which, let's prove this!

Proof of Sauer's lemma

Proof

- Let $C = \{x_1, x_2, \dots, x_m\} \subset \mathcal{X}$.
- Consider the set $\{B \subseteq C : \mathcal{H} \text{ shatters } B\}$.
- The subsets of *C* shattered by \mathcal{H} cannot be more than those with up to *d* elements.
- Therefore:

$$|\{B \subseteq C : \mathcal{H} \text{ shatters } B\}| \leqslant \sum_{i=0}^{d} \binom{m}{i}$$

Proof (cont'd)

- It suffices to prove that $\tau_{\mathcal{H}}(m) \leq |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|.$
- An even more powerful statement is:

 $\forall C = \{x_1, x_2, \dots, x_m\} \subset \mathcal{X}, \forall \mathcal{H}, |\mathcal{H}_C| \leq |\{B \subseteq C : \mathcal{H} \text{ shatters } B\}|$

- We will prove this by induction.
- The part involving the upper bound for $m \ge d+1$ will not be presented here.

Proof (cont'd)

- For m = 1 there are two cases according to d.
 - For d = 0:

$$|\mathcal{H}_C| = 1 = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

so the inequality holds.

• For d > 0:

$$|\mathcal{H}_C| = 2 = \begin{pmatrix} 1\\ 0 \end{pmatrix} + \begin{pmatrix} 1\\ 1 \end{pmatrix}$$

so the inequality holds.

• The base case holds.

Proof (cont'd)

- Assume the lemma holds for all k < m.
- For some \mathcal{H} and $C = \{c_1, c_2, \dots, c_m\}$, denote $C' = \{c_2, \dots, c_m\}$ and define the sets:

$$Y_0 = \{(y_2, \dots, y_m) : (0, y_2, \dots, y_m) \in \mathcal{H}_C \lor (1, y_2, \dots, y_m) \in \mathcal{H}_C\}$$

$$Y_1 = \{(y_2, \dots, y_m) : (0, y_2, \dots, y_m) \in \mathcal{H}_C \land (1, y_2, \dots, y_m) \in \mathcal{H}_C\}$$

• As a result, we have $\mathcal{H}_{C'} = Y_0$ and $|\mathcal{H}_C| = |Y_0| + |Y_1|$.

Proof (cont'd)

• By the inductive hypothesis, we have:

$$|Y_0| = |\mathcal{H}_{C'}| \le |\{B \subseteq C' : \mathcal{H} \text{ shatters } B\}| =$$

$$= |\{B \subseteq C : c_1 \notin B \land \mathcal{H} \text{ shatters } B\}| (1)$$

• We define the set \mathcal{H}' , containing pairs of classifiers that differ on c_1 :

$$\mathcal{H}' = \{h \in \mathcal{H} : \exists h' \in \mathcal{H} \text{ s.t. } (1 - h'(c_1), h'(c_2), \dots, h'(c_m)) = \\ = (h(c_1), h(c_2), \dots, h(c_m))\} \subseteq \mathcal{H}$$

Proof (cont'd)

- \mathcal{H}' shatters $B \subseteq C' \Leftrightarrow \mathcal{H}'$ shatters $B \cup \{c_1\}$.
- $Y_1 = \mathcal{H}'_{C'}$ so by inductive hypothesis:

$$|Y_1| = |\mathcal{H}'_{C'}| \leq |\{B \subseteq C' : \mathcal{H}' \text{ shatters } B\}| =$$
$$= |\{B \subseteq C' : \mathcal{H}' \text{ shatters } B \cup \{c_1\}\}| =$$
$$= |\{B \subseteq C : c_1 \in B \land \mathcal{H}' \text{ shatters } B\}| =$$
$$= |\{B \subseteq C : c_1 \in B \land \mathcal{H} \text{ shatters } B\}| (2)$$

• Relations (1), (2) and $|\mathcal{H}_C| = |Y_0| + |Y_1|$ complete the proof.

Uniform Convergence for Classes of Small Effective Size

Theorem

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every \mathcal{D} and every $\delta \in (0, 1)$, with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ we have:

$$|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \frac{4 + \sqrt{\log\left(\tau\left(2m\right)\right)}}{\delta\sqrt{2m}}$$

- No proof.
- We will use this, along with Sauer's lemma to complete the proof of the fundamental theorem.

Proof of the fundamental theorem

Proof

• Combining Sauer's lemma with the previous theorem, we get that, with probability at least $1 - \delta$:

$$|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \frac{4 + \sqrt{d \log\left(\frac{2em}{d}\right)}}{\delta\sqrt{2m}}$$

• Assume that *m* is big enough so that:

$$\sqrt{d\log\left(\frac{2em}{d}\right)} \ge 4$$

Proof of the fundamental theorem (cont'd)

Proof (cont'd)

• The previous give:

$$|L_{\mathcal{D}}(h) - L_{S}(h)| \leq \frac{1}{\delta} \sqrt{\frac{2d\log\left(\frac{2em}{d}\right)}{m}}$$

- We demand the previous to be less than $\epsilon.$
- A sufficient condition for that is:

$$m \ge 4 \frac{2d}{\left(\delta\epsilon\right)^2} \log\left(\frac{2d}{\left(\delta\epsilon\right)^2}\right) + \frac{4d\log\left(\frac{2e}{d}\right)}{\left(\delta\epsilon\right)^2}$$

2 The Fundamental Theorem of Statistical Learning

3 The end

• □ ▶ < 同 ▶ < 三</p>

Any questions?

Thank you!

