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The road to the VC-dimension

The problem of characterization

* How do we figure out if a class is PAC-learnable;

The cardinality of the class determines whether it’s PAC-learnable.
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The road to the VC-dimension

Finite classes

Suppose H is a finite hypothesis class. H is PAC-learnable with sample

NgE
complexity O @

* This settles the problem for finite classes.

* What about infinite classes?
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The road to the VC-dimension

Infinite hypothesis classes

Suppose H is a class consisting of all classifiers » : X — {0, 1}. If | X'| = oo,
then H is not PAC-learnable.

* Can this be generalized for all infinite classes?
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The road to the VC-dimension

PAC-learnable infinite classes

» There are infinite classes that are PAC-learnable.

* Remember the concentric circles.

Consider H = {h, : 7 € Ry} with h,.(z) = 1 {||z|| < r},Vz e R% H is
( )

PAC-learnable with sample complexity O

* It’s not the only one.
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Learning intervals

Consider H = {h, : a € R} with hy(z) = 1 {x < a},Vz eR. His
2
PAC-learnable with sample complexity O (ln(j)> .

* We will provide merely a sketch of the proof.
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Algorithm for interval learning

Algorithm 1: Real intervals

Data: training set S
Result: classifier hg with 0 empirical risk
bg = —00, by = +00;
for (z,y) € S do
if y == 1 and = > by then

| b = x;
else if y == 0 and x < b; then
| b=
choose randomly a € (b, by);
}lS = ha;

+ Time complexity: O (m).
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Analysis of algorithm

€ IMass € Imass

an a* a1

Sketch of Proof

* a* is the a we are looking for.

* ag,ay aresuchthat P [z € (ag,a*)] = P [z € (a*,a1)].
x~Dy x~Dy
R b <_P
S~Dm[ p(hs) > € - [bo < ap v b1 > aq]

* Apply union bound.
+ Find an upper bound (the same) for both probabilities.

» Demand the sum to be less than § and this completes the proof. l
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Remarks

+ This algorithm achieves the desired results with the aforementioned
sample complexity.

+ By using the idea from the concentric circles we can have one-sided

1
error and achieve time and sample complexity O (m(j)> .

The cardinality can’t characterize the PAC-learnability of a class.

* Then what can?
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Number of parameters

* Note that the infinite hypothesis classes we encountered before had
smaller sample complexity than the one we proved for finite hypothesis
classes.

 The elements of each of those classes can be described accurately using a
single parameter (r in the circles example and a in the intervals example).

* On the other hand, we didn’t make any assumptions about the members
of H when we studied finite hypothesis classes.

+ We need to know all its || members to describe it.

Argyris Mouzakis (ECE, NTUA) VC-dimension November 23, 2018 13/44



on to the VC-dimension
000080

I'he Fundamental Theorem of Statistical Learning T'he end

The road to the VC-dimension

Parameters and PAC-learnability

The number of parameters (degrees of freedom) required to describe the

elements of a hypothesis class determines the PAC-learnability as well as the
sample complexity.

* This yields:

A class is PAC-learnable if it has finite number of degrees of freedom.

* Better guess than the previous one.
+ Still wrong.
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Sines

Counterexample

The class H = {hgp : 0 € R} where hg(z) = [sin (6x)], Vo € R (consider
[—1] = 0) is not PAC-learnable.

+ Apparently, correlation does not imply causation.
* We need to introduce a new measure.
* That’s the VC-dimension!
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Definition and Properties of the VC-dimension

Restriction of hypothesis class

Definition
Let H be a class of functions from X to {0, 1} and let
C ={c1,c2,...,cm} < X. The restriction of H to C is the set of functions

from C'to {0, 1} that can be derived from H. That is:

He ={(h(c1),h(c2),....,h(cm)):heH}

where we represent each function from C'to {0, 1} as a vector in {0, 1}|C|.

+ Some of the functions in A may be the same when restricted to C'.
+ We refer to |H¢| as the effective size of H with respect to C.
* Clearly, |Hc| < |H]|.
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Definition and Properties of the VC-dimension

Shattering

* There are 2/°| partitions of C.

* Each element of H ¢ corresponds to one of them.

Definition

A hypothesis class # shatters a finite set C' = X if the restriction of # to C'is
the set of all functions from 7 to {0, 1}. That is |H¢| = 2/°I.
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Definition and Properties of the VC-dimension

The VC-dimension

Definition
The VC-dimension of a hypothesis class H, denoted V C'dim (), is the

maximal size of a set C' = X that can be shattered by H. If  can shatter sets
of arbitrarily large size we say that H has infinite VC-dimension.

+ To show that VC'dim (H) > d, it suffices to find one C' = X" with
|C| = d that is shattered by H.

« If VCdim (H) < d, there is no C' = X with |C| = d that is shattered by
H.

+ Based on the above, to show that VCdim (H) = d, we have to show that
VCdim (H) = d A VCdim (H) <d+ 1.
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Definition and Properties of the VC-dimension

Notes

* Introduced by Vladimir Vapnik and Alexej Chervonenkis.

+ Intuively, the VC-dimension of a hypothesis class is a combinatorial
measure that quantifies its expressive power.
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Definition and Properties of the VC-dimension

NFL reminder

* The NFL theorem stated:

Theorem

Let A be any learning algorithm for the task of binary classification with

respect to the 0 — 1 loss over a domain X. Let m be any number smaller than

%, representing a training set size. Then, there exists a distribution D over

X x {0, 1} such that:

+ There exists a function f : X — {0, 1} with Lp(f) = 0.

+ With probability of at least % over the choice of S ~ D" we have that
Lp (A(S)) = 1.
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Definition and Properties of the VC-dimension

VC and NFL

 An alternative formulation involving the VC-dimension is:

Let H be a hypothesis class of functions from X to {0, 1}. Let m be a training
set size. Assume that there exists a set C' = X of size 2m that is shattered by
H. Then, for any learning algorithm, A, there exist a distribution D over

X x {0, 1} and a predictor h € H such that Lp (h) = 0 but with probability
of at least + over the choice of S ~ D™ we have that Lp (A(S)) > 1.

- VCdim (H) = 2m.

* The structure of # is such that, despite there being a hypothesis
corresponding to distribution D, we can’t find it.
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Definition and Properties of the VC-dimension

Infinite VC-dimension and PAC-learnability

If a hypothesis class has infinite VC-dimension, it is not PAC-learnable.

* The above result is an immediate consequence of the previous corollary.

+ Having a finite VC-dimension is a necessary condition for
PAC-learnability. Is it also sufficient?

* Yes!

The theorem will be presented after some examples of VC calculations.
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Examples

Intervals

Consider the class H = {h, : a € R} with h,(z) = 1 {z < a},Vz € R. We
have VCdim (H) = 1.

Sketch of Proof

* It is easy to show that # shatters all sets with only one member.

+ But when it comes to C' = {x1, z2} with z; < w9, it’s impossible to have
the configuration (1, 0).

* SoVCdim(H)=1.1

November 23, 2018 25/44
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Examples

More intervals

Consider the class H = {h(, ) : a,b € R} with
hiap) (x) = 1{z € (a,b)},Vx € R. We have VCdim (H) = 2.

Sketch of Proof

* It is easy to show that 7 shatters all sets with two members.

+ But when it comes to C' = {1, 9, r3} with 1 < 9 < 3, it’s
impossible to have the configuration (1,0, 1).

- SoVCdim (H) = 2. B
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Circles

Example

Consider the class H, = {h, : r € Ry} with h,. (z) = 1 {||z|| < r},Vx € R2.
We have VCdim (H) = 1.

Sketch of Proof
» It is easy to show that # shatters all sets with only one member.

+ But when it comes to C' = {z1, z2} with ||z1|| < ||z2]|, it’s impossible to
have the configuration (1, 0).

- SoVCdim (H) = 1. W
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The Fundamental Theorem

Let H be a hypothesis class of functions from a domain X to {0, 1} and let the
loss function be the 0 — 1 loss. Then, the following are equivalent:

* ‘H has the uniform convergence property.

* Any ERM rule is a successful agnostic PAC learner for .

* 7H is agnostic PAC learnable.

* H is PAC learnable.

* Any ERM rule is a successful PAC learner for .

* H has a finite VC-dimension.

* We are mainly interested in (6) = (1).
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Growth Function

Definition

Let H be a hypothesis class. Then the growth function of #, denoted
7y : N — N, is defined as:

TH(m) = . Hcl

« For m < VCdim(H) there is at least one set of cardinality m that is
shattered by #, so 7;(m) = 2™ (exponential to m).
* What about m > VCdim(H)?
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Sauer’s lemma

Lemma

Let H be a hypothesis class with VC'dim(H) = d < oo. Then, for all m:
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The Fundamental Theorem of Statistical Learning

Remarks

+ This answers our question about the growth function’s values for
m > VCdim(H).

+ Despite increasing exponentially at first, asymptotically, the growth
function increases polynomially.

* Its value transcends machine learning theory.
+ Stated and proven independently by Sauer, Shelah and Perles.
* Many alternative proofs and generalizations.

* Speaking of which, let’s prove this!
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Proof of Sauer’s lemma

* LetC = {x1,22,...,xm} < X.
* Consider the set { B < C' : ‘H shatters B}.

* The subsets of C' shattered by 7 cannot be more than those with up to d
elements.

» Therefore:

d
{B < C : H shatters B}| < Z (m>
i=o \!
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)

« It suffices to prove that 7y (m) < {B < C : H shatters B}|.

* An even more powerful statement is:

VC = {z1,29,...,2m} < X,YH,|Hc| < |{B < C : H shatters B}|

» We will prove this by induction.

* The part involving the upper bound for m > d + 1 will not be presented
here.
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)

* For m = 1 there are two cases according to d.

* Ford = 0: )
el =1 ()

e = 2= (é) i G)

so the inequality holds.
* Ford > 0:

so the inequality holds.

* The base case holds.
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)

* Assume the lemma holds for all & < m.

* Forsome H and C' = {cy1,¢a,. .., ¢}, denote C7 = {ca, ..., ¢y} and
define the sets:

Yo = {2, ym) : (0,92,...,ym) € Ho v (L, y2,...,ym) € Hc}

}/1 = {(y27,ym) : (0’y2)°"aym) EHC N (17y27"'7y’m) E%C}
* Asaresult, we have Heor = Y and [He| = |Yo| + |Yi].
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)

* By the inductive hypothesis, we have:

Yo| = [Her| < |{B c C' : H shatters B}| =

= |{B< C:ci ¢ B A H shatters B}| (1)

+ We define the set #’, containing pairs of classifiers that differ on c;:
H ={heH I eH st (1—h(c1),h (c2),...,h (cm)) =

= (h(c1),h(ca),...,h(cm))} SH
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Proof of Sauer’s lemma (cont’d)

Proof (cont’d)

* H' shatters B < (" < H’ shatters B U {c1}.
* Y1 = H¢ so by inductive hypothesis:

V1| = ’7—[’0,| < HB c C'": H shatters B}| =

— ‘{B c C' : H' shatters B u {01}}‘ =
= |{B <= C:c1 € BAH shatters B}| =
= |{B < C :c1 € B A H shatters B}| (2)

+ Relations (1), (2) and |H¢| = |Yo| + |Y31| complete the proof. B
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Uniform Convergence for Classes of Small Effective Size

Let H be a class and let 73, be its growth function. Then, for every D and
every d € (0, 1), with probability of at least 1 — § over the choice of S ~ D™

we have:
4 + /log (T (2m))
Lp(h) — Lg(h)| <
* No proof.

* We will use this, along with Sauer’s lemma to complete the proof of the
fundamental theorem.
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Proof of the fundamental theorem

Proof

* Combining Sauer’s lemma with the previous theorem, we get that, with
probability at least 1 — 4:

4 dlog (2em
o) — Ls(h)] < Y18 )

ovV2m

» Assume that m is big enough so that:

dlog (22771) =>4
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Proof of the fundamental theorem (cont’d)

Proof (cont’d)

* The previous give:

|Lp(h) — Ls(h)| < ;W

* We demand the previous to be less than e.

» A sufficient condition for that is:

m =4

2d ( 2d ) N 4dlog (%"’)

67 E\Go?) T ey

The end
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The end

Any questions?

NA POTHED KATL: S
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Thank you!
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