Nonuniform Learnability Κεφάλαιο 7

Ιωσήφ Μουλίνος

7 Δεκεμβρίου 2018

Machine Learning

Nonuniform Learnability

7 Δεκεμβρίου 2018 1 / 13

э

(ϵ, δ) competitiveness - Nonuniform Learnability

We say that a hypothesis h is (ϵ, δ) -competitive with another hypothesis h' if, with probability higher than $(1 - \delta)$,

$$L_{\mathcal{D}}(h) \leq L_{\mathcal{D}}(h') + \epsilon$$

Nonuniform Learnability: Allow the sample size to depend on the hypothesis to which the learner is compared.

Nonuniform learnability

A hypothesis class \mathcal{H} is nonuniformly learnable if there exist a learning algorithm, A, and a function $m_{\mathcal{H}}^{NUL} : (0.1)^2 \times \mathcal{H} \to \mathbb{N}$ such that, for every $\epsilon, \delta \in (0, 1)$ and every $h \in \mathcal{H}$, if $m \geq m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ then for every distribution \mathcal{D} , with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ it holds that

 $L_D(A(S)) \leq L_D(h) + \epsilon$

A B K A B K

Nonuniform learnability

A hypothesis class \mathcal{H} is nonuniformly learnable if there exist a learning algorithm, A, and a function $m_{\mathcal{H}}^{NUL} : (0.1)^2 \times \mathcal{H} \to \mathbb{N}$ such that, for every $\epsilon, \delta \in (0, 1)$ and every $h \in \mathcal{H}$, if $m \geq m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h)$ then for every distribution \mathcal{D} , with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ it holds that

$$L_D(A(S)) \leq L_D(h) + \epsilon$$

Agnostic PAC learnability

A hypothesis class \mathcal{H} is PAC learnable if there exist a learning algorithm, A, and a function $m_{\mathcal{H}}^{NUL}$: $(0.1)^2 \times \mathcal{H} \to \mathbb{N}$ such that, for every $\epsilon, \delta \in (0, 1)$ and for every \mathcal{D} , if $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ then with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$ it holds that

$$L_D(A(S)) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class $\mathcal{H}.$

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class $\mathcal{H}.$ Express prior knowledge via specifying preferences over hypotheses within \mathcal{H}

• $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, \mathcal{H}_n has uniform convergence property.

•
$$w: \mathbb{N} \to [0,1], \sum_{n=1}^{\infty} w(n) \leq 1$$

• $\epsilon_n : \mathbb{N} \times (0,1) \to (0,1), \ \epsilon_n(m,\delta) = \min\{\epsilon \in (0,1) : m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) \leq m\}$

Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class \mathcal{H} . Express prior knowledge via specifying preferences over hypotheses within \mathcal{H}

• $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, \mathcal{H}_n has uniform convergence property.

•
$$w: \mathbb{N} \to [0,1], \sum_{n=1}^{\infty} w(n) \leq 1$$

• $\epsilon_n : \mathbb{N} \times (0,1) \to (0,1), \ \epsilon_n(m,\delta) = \min\{\epsilon \in (0,1) : m_{\mathcal{H}_n}^{UC}(\epsilon,\delta) \leq m\}$

It follows that for every m and δ , with probability of at least $1 - \delta$ over the choice of $S \sim D^m$ we have that

$$\forall h \in \mathcal{H}_n, |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \epsilon_n(m, \delta)$$

Theorem: ϵ_n -representativeness under SRM assumptions

Let $w : \mathbb{N} \to [0,1]$ be a function such that $\sum_{n=1}^{\infty} w(n) \leq 1$. Let \mathcal{H} be a hypothesis class that can be written as $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$ where for each n, \mathcal{H}_n satisfies the uniform convergence property with a sample complexity function $m_{\mathcal{H}_n}^{UC}$. Then for every $\delta \in (0,1)$ and distribution \mathcal{D} , with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$, the following bound holds (simultaneously) for every $n \in \mathbb{N}$ and $h \in \mathcal{H}_n$.

$$|L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \epsilon_n(m, w(n) \cdot \delta)$$

Therefore, for every $\delta \in (0,1)$ and distribution \mathcal{D} , with probability of at least $1-\delta$ it holds that

$$\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + \min_{n:h \in \mathcal{H}_n} \epsilon_n(m, w(n) \cdot \delta)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem: ϵ_n -representativeness under SRM assumptions

Proof

 $\forall n \text{ define } \delta_n = w(n)\delta$. Assuming uniform convergence for all n with rate

$$\forall h \in \mathcal{H}_n, |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h) \leq \epsilon_n(m, \delta)$$

we get that if we fix n in advance, then with probability $\geq 1 - \delta_n$ over the choice of $S \sim D^m$,

$$\forall h \in \mathcal{H}_n, |L_{\mathcal{D}}(h) - L_{\mathcal{S}}(h)| \leq \epsilon_n(m, \delta_n)$$

Applying the union bound over n = 1, 2, ... we obtain that with probability of at least $1 - \sum_n \delta_n = 1 - \delta \sum_n w(n) \ge 1 - \delta$, the preceding holds for all n.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Structural Risk Minimization (SRM) complete

- prior knowledge: $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where \mathcal{H}_n has uniform convergence with $m_{\mathcal{H}_n}^{UC}$ $w : \mathbb{N} \to [0, 1]$, where $\sum_{n=1}^{\infty} w(n) \leq 1$
- define: $\epsilon_n(m, \delta) = \min\{\epsilon \in (0, 1) : m_{\mathcal{H}_n}^{UC}(\epsilon, \delta) \le m\}$ and $n(h) = \min\{n : h \in \mathcal{H}_n\}$
- input: training set $S \sim \mathcal{D}^m$, confidence δ
- output: $h \in argmin_{h \in \mathcal{H}}[L_{\mathcal{S}}(h) + \epsilon_{n(h)}(m, w(n(h)) \cdot \delta)]$

SRM suitable for nonuniform learning of every class, which is countable union of uniformly converging hypothesis classes.

Nonuniform learnability with SRM rule

Let \mathcal{H} be a hypothesis class such that $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n has the uniform convergence property with sample complexity $m_{\mathcal{H}_n}^{UC}$. Let $w : \mathbb{N} \to [0,1]$ be such that $w(n) = \frac{6}{n^2 \pi^2}$. Then, \mathcal{H} is nonuniformly learnable using the SRM rule with rate

$$m_{\mathcal{H}}^{NUL}(\epsilon, \delta, h) \leq m_{\mathcal{H}_{n(h)}}^{UC}(\frac{\epsilon}{2}, \frac{6\delta}{(\pi n(h))^2})$$

proof

A: SRM algorithm with respect to w. For every $h \in \mathcal{H}, \epsilon, \delta$ let $m \ge m_{\mathcal{H}_{n(h)}}^{UC}(\epsilon/2, w(n(h))\delta)$. Using the previous theorem: with probability of at least $1 - \delta$ over the choice of $S \sim \mathcal{D}^m$, we have for every $h' \in \mathcal{H}$,

$$L_{\mathcal{D}}(h') \leq L_{\mathcal{S}}(h') + \epsilon_{n(h')}(m, w(n(h'))\delta)$$

Applying for A(S) returned from SRM rule and by definition of SRM we get

 $L_{\mathcal{D}}(A(S)) \leq \min_{h'}[L_{S}(h') + \epsilon_{n(h')}(m, w(n(h'))\delta)] \leq L_{S}(h) + \epsilon_{n(h)}(m, w(n(h))\delta)$

Finally if $m \ge m_{\mathcal{H}_{n(h)}}^{UC}(\epsilon/2, w(n(h))\delta)$ then $\epsilon_{n(h)}(m, w(n(h))\delta) \le \epsilon/2$ UC \Rightarrow with probability more than $1 - \delta$, $L_S(h) \le L_D(h) + \epsilon/2$ Combining we obtain that $L_D(A(S)) \le L_D(h) + \epsilon$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let \mathcal{H} be a hypothesis class that can be written as a countable union of hypothesis classes, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n enjoys the uniform convergence property. Then \mathcal{H} is nonuniformly learnable.

Let \mathcal{H} be a hypothesis class that can be written as a countable union of hypothesis classes, $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, where each \mathcal{H}_n enjoys the uniform convergence property. Then \mathcal{H} is nonuniformly learnable.

In chapter 4 we saw uniform convergence is sufficient for agnostic PAC learnability. The corollary generalizes this result to nonuniform learnability.

イロト 人間ト イヨト イヨト

Nonuniform learnability is a strict relaxation of agnostic PAC learnability

Example

- $\mathcal{X} = \mathbb{R}$
- for every n ∈ N, H_n class of polynomial classifiers of degree n.
 h(x) = sign(p(x)), where p : R → R is a polynomial of degree n.
- let *H* = ∪_{n∈ℕ}*H_n*. Therefore *H* is the class of all polynomial classifiers over ℝ.
- it easy to see that $VCdim(\mathcal{H}) = \infty$ while $VCdim(\mathcal{H}_n) = n + 1$

Hence, ${\cal H}$ is not PAC learnable, while according to previous corollary, ${\cal H}$ is nonuniformly learnable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Nonuniform learnability necessary and sufficient conditions

A hypothesis class \mathcal{H} of binary classifiers is nonuniformly learnable if and only if it is a countable union of agnostic PAC learnable hypothesis classes.

Proof

 \Rightarrow

Assume $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$, \mathcal{H}_n PAC learnable.

Using fundamental theorem of statistical learning, \mathcal{H}_n uniform convergent. Using the previous theorem we obtain that \mathcal{H} is nonuniform learnable. \Leftarrow

Assume that \mathcal{H} is nonuniform learnable using some algorithm A. For every $n \in \mathbb{N}$, $\mathcal{H}_n = h \in \mathcal{H} : m_{\mathcal{H}}^{NUL}(1/8, 1/7, h) \leq n$. So $\mathcal{H} = \bigcup_{n \in \mathbb{N}} \mathcal{H}_n$. By the definition of $m_{\mathcal{H}}^{NUL}$, for any distribution \mathcal{D} satisfying realizability assumption with respect to \mathcal{H}_n , with probability $\geq 6/7$ over $S \sim \mathcal{D}^n$, we have $L_{\mathcal{D}}(A(S)) \leq 1/8$. Using F.T.S.L. the VC-dimension of \mathcal{H}_n must be finite, \mathcal{H}_n is agnostic PAC learnable.

Machine Learning

We say a hypothesis class \mathcal{H} has the uniform convergence property (w.r.t. a domain Z and a loss function ℓ) if there exists a function $m_{\mathcal{H}}^{UC} : (0,1)^2 \to \mathbb{N}$ such that for every $\epsilon, \delta \in (0,1)$ and for every probability distribution \mathcal{D} over Z, if S is a sample of $m \ge m_{\mathcal{H}}^{UC}(\epsilon, \delta)$ examples drawn i.i.d. according to \mathcal{D} , then, with probability of at least $1 - \delta$, S is ϵ -representative.

A training set S is called ϵ -representative (w.r.t. domain Z, hypothesis class \mathcal{H} , loss function ℓ , and distribution \mathcal{D}) if

$$orall h \in \mathcal{H}, |L_{\mathcal{S}}(h) - L_{\mathcal{D}}(h)| \leq \epsilon$$

イロッ 不良 とくほう イロット しゅ