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(e,0) competitiveness - Nonuniform Learnability

We say that a hypothesis h is (e, d)-competitive with another hypothesis b’
if, with probability higher than (1 — 9),

Lp(h) < Lp(K) +¢

Nonuniform Learnability: Allow the sample size to depend on the
hypothesis to which the learner is compared.
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Nonuniform learnability

A hypothesis class H is nonuniformly learnable if there exist a learning
algorithm, A, and a function m%UL g (0.1)2 x H — N such that, for every
€,6 € (0,1) and every h € H, if m > mlUL(e, 8, h) then for every
distribution D, with probability of at least 1 — § over the choice of

S ~ D™ it holds that

Lo(A(S)) < Lp(h) + ¢
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Nonuniform learnability

A hypothesis class H is nonuniformly learnable if there exist a learning
algorithm, A, and a function m%UL (0.1)? x H — N such that, for every
€,6 € (0,1) and every h € H, if m > mlUL(e, 8, h) then for every
distribution D, with probability of at least 1 — & over the choice of

S ~ D™ it holds that

Lo(A(S)) < Lp(h) + ¢

Agnostic PAC learnability

A hypothesis class H is PAC learnable if there exist a learning algorithm,
A, and a function m}UL : (0.1)? x H — N such that, for every €,4 € (0,1)
and for every D, if m > my(e, §) then with probability of at least 1 —
over the choice of S ~ D™ it holds that

Lo(A(S)) = min Lp(h) + e

.
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|
Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class H.
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|
Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class H.
Express prior knowledge via specifying preferences over hypotheses within
H

@ H = UpenHn, Hn has uniform convergence property.

o w:N—0,1], > 02, w(n) <1

@ €, : N x (0,1) — (0,1), en(m, 8) = min{e € (0,1) : m{<(e,0) < m}
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|
Structural Risk Minimization (SRM) paradigm

So far we encoded prior knowledge by specifying a hypothesis class H.

Express prior knowledge via specifying preferences over hypotheses within
H

@ H = UpenHn, Hn has uniform convergence property.
o w:N—0,1], > 02, w(n) <1
@ €, : N x (0,1) — (0,1), en(m, 8) = min{e € (0,1) : m{<(e,0) < m}

It follows that for every m and &, with probability of at least 1 — ¢
over the choice of S ~ D™ we have that

Vh € Ha, |Lp(h) — Ls(h)| < en(m, 8)
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Theorem: ¢,-representativeness under SRM assumptions

Let w : N — [0, 1] be a function such that > 72, w(n) < 1. Let H be a
hypothesis class that can be written as H = Up,enH., where for each n, H,
satisfies the uniform convergence property with a sample complexity
function mff_j[f Then for every § € (0,1) and distribution D, with
probability of at least 1 — § over the choice of S ~ D, the following
bound holds (simultaneously) for every n € N and h € H,,.

|Lp(h) = Ls(h)| < en(m, w(n) - 9)

Therefore, for every 6 € (0,1) and distribution D, with probability of at
least 1 — 0 it holds that

Vh e H,Lp(h) < Ls(h) + Tlg}][ en(m, w(n) - 9)
n:n€Hn
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Theorem: ¢,-representativeness under SRM assumptions

Proof
Vn define §, = w(n)d. Assuming uniform convergence for all n with rate

Vh e Hp, ‘Lp(h) — Ls(h) < en(m,é)

we get that if we fix n in advance, then with probability > 1 — §, over the
choice of S ~ D™,

Vh € Hp, |Lp(h) — Ls(h)| < en(m, dp)

Applying the union bound over n = 1,2, ... we obtain that with probability
ofatleast1—> 6, =1—-09> , w(n)>1—J, the preceding holds for all
n.
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Structural Risk Minimization (SRM) complete

@ prior knowledge: ‘H = UpenHn, where H,, has uniform convergence
with m%f
w: N — [0,1], where Y72, w(n) <1

o define: €,(m,8) = min{e € (0,1) : m¥(e,8) < m} and
n(h) = min{n: he H,}

@ input: training set S ~ D™, confidence §

e output: h € argminpey[Ls(h) + €nny(m, w(n(h)) - 6)]
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SRM suitable for nonuniform learning of every class, which
is countable union of uniformly converging hypothesis
classes.

Nonuniform learnability with SRM rule

Let H be a hypothesis class such that H = Up,enH,, where each H,, has
the uniform convergence property W|th sample complexity mHC Let

w: N — [0,1] be such that w(n) = . Then, # is nonuniformly
learnable using the SRM rule with rate

)

mNUL(e, 8, h) < UC(h)(g’ %
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|
proof

A: SRM algorithm with respect to w.

For every h € H,¢,6 let m > mé_j[f(h)(e/z w(n(h))d).

Using the previous theorem: with probability of at least 1 — § over the
choice of S ~ D™, we have for every b’ € H,

Lo(H) < Ls(H) + €xmy(m. w(n())3)

Applying for A(S) returned from SRM rule and by definition of SRM we get
Lo(A(S)) < minw [Ls(H)+éngury(m, w(n(H)))] < Ls(h)+engey (m, w(n(h))5)
Finally if m > myC_ (c/2, w(n(h))0) then co(sy(m, w(n(h))9) < /2

UC = with probability more than 1 — 4, Ls(h) < Lp(h) + €/2
Combining we obtain that Lp(A(S)) < Lp(h) + €
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Corollary

Let H be a hypothesis class that can be written as a countable union of
hypothesis classes, H = UpenHn, where each H,, enjoys the uniform
convergence property. Then 7 is nonuniformly learnable.
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Corollary

Let H be a hypothesis class that can be written as a countable union of
hypothesis classes, H = UpenHn, where each H,, enjoys the uniform
convergence property. Then 7 is nonuniformly learnable.

In chapter 4 we saw uniform convergence is sufficient for agnostic PAC
learnability. The corollary generalizes this result to nonuniform learnability.
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Nonuniform learnability is a strict relaxation of agnostic
PAC learnability

Example
e ¥Y¥=R
o for every n € N, H, class of polynomial classifiers of degree n.
h(x) = sign(p(x)), where p : R — R is a polynomial of degree n.

o let H = UpenH,. Therefore H is the class of all polynomial classifiers
over R.

@ it easy to see that VCdim(H) = oo while VCdim(H,) = n+1

Hence, H is not PAC learnable, while according to previous corollary, H is
nonuniformly learnable.
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Nonuniform learnability necessary and sufficient conditions

A hypothesis class H of binary classifiers is nonuniformly learnable if and
only if it is a countable union of agnostic PAC learnable hypothesis cIasses.J

Proof
=
Assume H = UpenHp, Hn PAC learnable.
Using fundamental theorem of statistical learning, H, uniform convergent.
Using the previous theorem we obtain that 7 is nonuniform learnable.
=
Assume that H is nonuniform learnable using some algorithm A. For every
neN, Ho=heH:mdV(1/8,1/7,h) < n. So H = UnenHn.
By the definition of mé_VLUL, for any distribution D satisfying realizability
assumption with respect to H,,, with probability > 6/7 over S ~ D", we
have Lp(A(S)) < 1/8.
Using F.T.S.L. the VC-dimension of H, must be finite, #, is agnostic
PAC learnable.
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Uniform convergence

We say a hypothesis class H has the uniform convergence property (w.r.t.
a domain Z and a loss function /) if there exists a function

mYC : (0,1)> — N such that for every ¢, € (0,1) and for every
probability distribution D over Z, if S is a sample of m > m&C(e, §)
examples drawn i.i.d. according to D, then, with probability of at least

1 -4, S is e-representative.

A training set S is called e-representative (w.r.t. domain Z, hypothesis
class H, loss function ¢, and distribution D) if

Wh e H, |Ls(h) — Lp(h)| <
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