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Introduction

Why counting?

So far, we have seen two versions of problems:

Decision Problems (if a solution exists)
Function Problems (if a solution can be produced)

A very important type of problems in Complexity Theory is
also:

Counting Problems (how many solution exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth
assignments that satisfy it.

Note that if we can solve #SAT in polynomial time, we can
solve SAT also.

Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.
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Introduction

Basic Definitions

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time Turing Machine M such that for
every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

The definition implies that f (x) can be expressed in poly(|x |) bits.

Each function f in #P is equal to the number of paths from an
initial configuration to an accepting configuration, or
accepting paths in the configuration graph of a poly-time NDTM.

FP ⊆ #P ⊆ PSPACE

If #P = FP, then P = NP.

If P = PSPACE, then #P = FP.
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Introduction

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPg .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x :

|{y : RA(x , y) = 1}| = |{z : RB(f (x), z) = 1}|
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Introduction

Completeness Results

Theorem

#CIRCUIT SAT is #P-complete.

Proof:

Let f ∈ #P. Then, ∃M, p:
f = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|.
Given x , we want to construct a circuit C such that:

|{z : C (z)}| = |{y : y ∈ {0, 1}p(|x |,M(x , y) = 1}|

We can construct a circuit Ĉ such that on input x , y
simulates M(x , y).

We know that this can be done with a circuit with size about
the square of M’s running time.

Let C (y) = Ĉ (x , y). �
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Introduction

Completeness Results

Theorem

#SAT is #P-complete.

Proof:

We reduce #CIRCUIT SAT to #SAT:

Let a circuit C , with x1, . . . , xn input gates and 1, . . . ,m gates.

We construct a Boolean formula φ with variables
x1, . . . , xn, g1, . . . , gm, where gi represents the output of gate
i .

A gate can be complete described by simulating the output
for each of the 4 possible inputs.

In this way, we have reduced C to a formula φ with n + m
variables and 4m clauses. �
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Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E ) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yi} ∈ E iff Ai ,j = 1.

The term
∏n

i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.
So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!
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Valiant’s Theorem

Valiant’s Theorem

Theorem (Valiant’s Theorem)

PERMANENT is #P-complete.

Notice that the decision version of PERMANENT is in P ! !
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Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]
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Toda’s Theorem

The Class ⊕P

Definition

A language L is in the class ⊕P if there is a NDTM M such that
for all strings x , x ∈ L iff the number of accepting paths on input
x is odd.

The problems ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

⊕P is closed under complement.

Theorem

NP ⊆ RP⊕P
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GapP and Complexity Classes

The Class GapP

For a TM M, we define:

∆M(x) = acc(x)− rej(x) = #M(x)−#M(x)

Definition

A function f : {0, 1}∗ → N is in GapP if there exists a poly-time
NDTM M such that for all inputs x :

f (x) = ∆M(x)

GapP functions are closed under negation:
f ∈ GapP⇒ −f ∈ GapP.

GapP, unlike #P, encompasses all FP functions.



Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

The Class GapP

Theorem

For all functions f , the following are equivalent:

1 f ∈ GapP.

2 f is the difference of two #P functions.

3 f is the difference of a #P and an FP function.

4 f is the difference of a FP and an #P function.

In other words:

GapP = #P−#P = #P− FP = FP = #P

(3)⇒ GapP ⊆ FP#P[1].
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GapP and Complexity Classes

Characterizations of Complexity Classes

NP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) = 0.

UP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.

PP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) ≤ 0 (of f (x) < 0).

SPP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.
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GapP and Complexity Classes

Characterizations of Complexity Classes

C=P consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 0.
If x /∈ L then f (x) 6= 0 (or f (x) > 0).

⊕P consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) is odd.
If x /∈ L then f (x) is even.

ModkP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) mod k 6= 0.
If x /∈ L then f (x) mod k = 0.

MiddleP consists of those languages L such that for some
#P function f and all inputs x :

If x ∈ L then middle(x) = 1.
If x /∈ L then middle(x) = 0.
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GapP and Complexity Classes

Characterizations of Complexity Classes

NP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) = 0.

Similarly:

Class Function f in: If x ∈ L: If x /∈ L:

UP #P f (x) = 1 f (x) = 0

PP GapP f (x) > 0 f (x) ≤ 0 or f (x) < 0

SPP GapP f (x) = 1 f (x) = 0

C=P GapP f (x) = 0 f (x) 6= 0 or f (x) > 0

⊕P #P f (x) is odd f (x) is even

ModkP #P f (x) mod k 6= 0 f (x) mod k = 0

MiddleP middle(x) = 1 middle(x) = 0
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GapP and Complexity Classes

Characterizations of Complexity Classes

We define middle : {0, 1}∗ → {0, 1} to return the d |x |2 eth bit
of the string x .

The class MiddleP consider the middle bit of a string, as PP
consider the high-order bit and ⊕P the low-order bit.

Observe that ⊕P = Mod2P

From the above we can easily have:

NP ⊆ coC=P ⊆ PP
UP ⊆ SPP
C=P ⊆ PP
PP is closed under complement.
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GapP and Complexity Classes

Characterizations of Complexity Classes

Theorem

PPP = PGapP

Proof:
We only need to show that every GapP function g is computable
in FPPP. If we consider the GapP function f (x , k) = g(x)− k , we
have that L ∈ PP by the previous classification. One can use
binary search using L as an oracle to find the value of g(x). �
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Toda’s Theorem

Counting vs Quantifiers

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

We can prove the following finer result:

PH ⊆ PGapP[1] = P#P[1] = PPP[1]
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Toda’s Theorem

Toda’s Theorem

Lemma

1 PH ⊆ P · PP
2 PH ⊆ P · ⊕P
3 PH ⊆ P · C=P

Proof (2):

Let L ∈ PH. Then, χL(x) ∈ GapPPH and by using a
Toda-Ogihara Theorem:

∃ g(x , r) ∈ GapP and a polynomial q such that:

Prr∈Σq [g(x , r) = L(x)] ≥ 3

4
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Toda’s Theorem

Toda’s Theorem

Proof (cont’d):

If x ∈ L then:

|{r ∈ Σq | g(x , r) = 1}| > |{r ∈ Σq | g(x , r) 6= 1}|

If x /∈ L then:

|{r ∈ Σq | g(x , r) = 0}| > |{r ∈ Σq | g(x , r) 6= 0}|

Let the set A consisting of 〈x , r〉 such that g(x , r) is odd.
Since g(x , r) is in GapP, we have A ∈ ⊕P.

Let f the GapP function defined by #p
A(x)−#p

A
(x).

We have that L is in P · ⊕P. �
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Toda’s Theorem

Toda’s Theorem

Proof (of Toda’s Theorem):

Let L ∈ PH.

By the above lemma, we have that L ∈ P · ⊕P
In other words, ∃g ∈ GapP and a polynomial q such that
x ∈ L iff:

|{r ∈ Σq(n) : g(x , r)mod2 = 1}|︸ ︷︷ ︸
R1

> |{r ∈ Σq(n) : g(x , r)mod2 = 0}|︸ ︷︷ ︸
R0

Since this g does not lead directly to the proof of Toda’s
Theorem, we can use it to create a new function ĝ in GapP
with more useful properties:



Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Lemma

For every polynomial p, there exists a GapP function ĝ such that
for all x and r :

1 If g(x , r)mod2 = 1, then ĝ(x , r)mod2p(n) = 1

2 If g(x , r)mod2 = 0, then ĝ(x , r)mod2p(n) = 0

Proof (of Toda’s Theorem-cont’d):

Let p(n) = q(n) + 1, and let ĝ be the result of applying the
above lemma to g .

Then, consider the GapP function:

h(x) =
∑

r∈Σq(n)

ĝ(x , r)
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Toda’s Theorem

Toda’s Theorem

Proof (of Toda’s Theorem-cont’d):

We have that h(x)mod2p(n) = |R1|mod2p(n) = |R1|, since
|R1| ≤ 2p(n) < 2q(n).

We have that x ∈ L if and only if h(x)mod2p(n) > 2q(n)

2 .

We can thus determine whether x ∈ L by a single query to the
GapP function h. �

Corollary

PH ⊆ P · ⊕P ⊆MP
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Thank You!
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