Antonis Antonopoulos

CoRelLab
NTUA

March 2014

«O>r «Fr <

RN Ge

@ Introduction

o Introduction

@ Main Theorems

o Valiant's Theorem
o Toda's Theorem

@ Gaps

o GapP and Complexity Classes
o Toda's Theorem

@ Intervals

«Oo» «F»

it
it
v

RN Ge

Introduction Main Theorems Gaps Intervals
©0000 0000 0000000000000

Introduction

Why counting?

o So far, we have seen two versions of problems:

o Decision Problems (if a solution exists)
o Function Problems (if a solution can be produced)

o A very important type of problems in Complexity Theory is
also:

o Counting Problems (how many solution exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth
assignments that satisfy it.

o Note that if we can solve #SAT in polynomial time, we can
solve SAT also.

o Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.

Introduction Main Theorems Gaps Intervals
©0e000 0000 0000000000000

Introduction

Basic Definitions

Definition (#P)

A function f : {0,1}* — N is in #P if there exists a polynomial
p: N — N and a polynomial-time Turing Machine M such that for
every x € {0,1}*:

f(x) = {y € {0,1}P"1: M(x, y) = 1}]

o The definition implies that f(x) can be expressed in poly(|x]|) bits.

o Each function f in #P is equal to the number of paths from an
initial configuration to an accepting configuration, or
accepting paths in the configuration graph of a poly-time NDTM.

o FP C #P C PSPACE
o If #P = FP, then P = NP.
o If P = PSPACE, then #P = FP.

Introduction
o In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)
A function f is #P-complete if it is in #P and every g € #P is in
FPE.

o As we saw, for each problem in NP we can define the
associated counting problem: If A € NP, then
#A(x) = {y € {0,1}P(D - Ra(x,y) = 1}| € #P

RN Ge

Introduction Main Theorems Gaps Intervals
0oeoo 0000 0000000000000

Introduction

o In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g € #P is in
FP&.

o As we saw, for each problem in NP we can define the
associated counting problem: If A € NP, then

#A(x) = {y € {0,1}P(xD - Ra(x,y) =1} € #P
o We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x:

{y: Ralx,y) =1}| = [{z: Rs(f(x),2) = 1}|

Introduction Main Theorems Gaps Intervals
oooeo 0000 0000000000000

Introduction

Completeness Results

Theorem
#CIRCUIT SAT is #P-complete.

Proof:
o Let f € #P. Then, IM, p:
f =y € {0,137M): M(x,y) = 1}].
o Given x, we want to construct a circuit C such that:

{z: C@H = Hy: ye {0,130 M(x,y) = 1}|

o We can construct a circuit C such that on input x, y
simulates M(x, y).

We know that this can be done with a circuit with size about
the square of M's running time.

~n

Let C(y) = C(x,y). O

©

©

Introduction
Ooooe

Introduction

Main Theorems Gaps Intervals
0000 0000000000000

Completeness Results

Theorem
#SAT is #P-complete.

Proof:

o We reduce #CIRCUIT SAT to #SAT:

o Let a circuit C, with xq,...,x, input gates and 1, ..., m gates.

o We construct a Boolean formula ¢ with variables
X1, .-y Xn, &1, ---,&m, Where g; represents the output of gate
i

o A gate can be complete described by simulating the output
for each of the 4 possible inputs.

o In this way, we have reduced C to a formula ¢ with n+ m

variables and 4m clauses. O

Introduction Main Theorems Gaps Intervals
00000 ®000 0000000000000

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n x n matrix A, the permanent of A is:

perm(A) = > [A0

O’ESn i=1

o Permanent is similar to the determinant, but it seems more
difficult to compute.

o Combinatorial interpretation: If A has entries € {0,1}, it can
be viewed as the adjacency matrix of a bipartite graph
G(X,Y,E)with X ={x1,...,xn}, Y ={»1,...,yn} and
{x,-,y;} € E iff A,'J =1.

Introduction Main Theorems Gaps Intervals
00000 ®000 0000000000000

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n x n matrix A, the permanent of A is:

perm(A) = > [A0

O’ESn i=1

o Permanent is similar to the determinant, but it seems more
difficult to compute.

o Combinatorial interpretation: If A has entries € {0,1}, it can
be viewed as the adjacency matrix of a bipartite graph
G(X,Y,E)with X ={x1,...,xn}, Y ={»1,...,yn} and
{x,-,y;} € E iff A,'J =1.

o The term [[7_4 Ais(i) 1s 1 iff o has a perfect matching.

Introduction Main Theorems Gaps Intervals
00000 ®000 0000000000000

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n x n matrix A, the permanent of A is:

perm(A) = > [A0

O’ESn i=1

o Permanent is similar to the determinant, but it seems more
difficult to compute.

o Combinatorial interpretation: If A has entries € {0,1}, it can
be viewed as the adjacency matrix of a bipartite graph
G(X,Y,E)with X ={x1,...,xn}, Y ={»1,...,yn} and
{x,-,y;} € E iff A,'J =1.

o The term [[7_4 Ais(i) 1s 1 iff o has a perfect matching.

o So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

PERMANENT is #P-complete. '

o Notice that the decision version of PERMANENT is in P ! |

«0O)>» «Fr «=>»

Toda’s Theorem

Quantifiers vs Counting

o An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

o Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

o But, in 1989, S. Toda showed the following theorem:

it
N)
yel
?

Introduction Main Theorems Gaps Intervals
00000 00e0 0000000000000
Toda’s Theorem

Quantifiers vs Counting

o An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

o Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

o But, in 1989, S. Toda showed the following theorem:

Theorem (Toda's Theorem)

PH C p#Pl

Toda’s Theorem

The Class @P

Definition
A language L is in the class &P if there is a NDTM M such that

for all strings x, x € L iff the number of accepting paths on input
X is odd.

o The problems ¢&SAT and HAMILTON PATH are P-complete.
o @®P is closed under complement.

Theorem
NP C RP®P J

Introduction Main Theorems Gaps Intervals
00000 0000 ©000000000000

GapP and Complexity Classes

The Class GapP

o Fora TM M, we define:
AM(x) = acc(x) — rej(x) = #M(x) — #M(x)
Definition

A function f : {0,1}* — N is in GapP if there exists a poly-time
NDTM M such that for all inputs x:

f(x) = AM(x)

o GapP functions are closed under negation:
f € GapP = —f € GapP.

o GapP, unlike #P, encompasses all FP functions.

Introduction Main Theorems Gaps
00000 0000 0®00000000000

GapP and Complexity Classes

The Class GapP

Theorem
For all functions f, the following are equivalent:

@ f € GapP.

@ f is the difference of two #P functions.

@ f is the difference of a #P and an FP function.
@ f is the difference of a FP and an #P function.

In other words:

GapP = #P — #P = #P — FP = FP = #P

Intervals

o (3) = GapP C FP#PlI,

Introduction Main Theorems Gaps
00000 0000 ©00®0000000000

GapP and Complexity Classes

Characterizations of Complexity Classes

o NP consists of those languages L such that for some #P
function f and all inputs x:
o If x € L then f(x) > 0.
o If x ¢ L then f(x) =0.
o UP consists of those languages L such that for some #P
function f and all inputs x:
o If x € L then f(x) =1.
o If x ¢ L then f(x) =0.

o PP consists of those languages L such that for some GapP

function f and all inputs x:

o If x € L then f(x) > 0.
o If x ¢ L then f(x) <0 (of f(x) <0).

o SPP consists of those languages L such that for some GapP

function f and all inputs x:

o If x € L then f(x) = 1.
o If x ¢ L then f(x) =0.

Intervals

Introduction Main Theorems Gaps Intervals
00000 0000 000®000000000

GapP and Complexity Classes

Characterizations of Complexity Classes

o C_P consists of those languages L such that for some GapP
function f and all inputs x:
o If x € L then f(x) =0.
o If x ¢ L then f(x) # 0 (or f(x) > 0).
o @P consists of those languages L such that for some #P
function f and all inputs x:
o If x € L then f(x) is odd.
o If x ¢ L then f(x) is even.

o ModgP consists of those languages L such that for some #P
function f and all inputs x:
o If x € L then f(x) mod k # 0.
o If x ¢ L then f(x) mod k =0.
o MiddleP consists of those languages L such that for some
#P function f and all inputs x:
o If x € L then middle(x) = 1.
o If x ¢ L then middle(x) = 0.

Introduction Main Theorems Gaps
00000 0000 0000@00000000

GapP and Complexity Classes

Characterizations of Complexity Classes

o NP consists of those languages L such that for some #P
function f and all inputs x:
o If x € L then f(x) > 0.
o If x ¢ L then f(x) =0.

Intervals

Similarly:

‘ Class ‘ Function f in: ‘ If x € L: ‘ If x ¢ L:
13 #P F(x) =1 F(x) =0
PP GapP f(x)>0 f(x)<0orf(x)<0
SPP GapP flx)=1 f(x)=0
Cc_P GapP f(x)=0 f(x)#0orf(x)>0
®P #P f(x) is odd f(x) is even
ModcP | #P f(x) mod k #0 | f(x) mod k =
MiddleP middle(x) =1 middle(x) = 0

Introduction Main Theorems Gaps Intervals
00000 0000 ©00000@0000000

GapP and Complexity Classes

Characterizations of Complexity Classes

o We define middle : {0,1}* — {0,1} to return the [%}th bit
of the string x.

The class MiddleP consider the middle bit of a string, as PP
consider the high-order bit and ®P the low-order bit.

Observe that P = Mod;,P

©

()

©

From the above we can easily have:
NP C coC_P C PP

UP C SPP

C_PCPP

PP is closed under complement.

© © 0 o

Introduction Main Theorems Gaps Intervals
00000 0000 000000e000000

GapP and Complexity Classes

Characterizations of Complexity Classes

Theorem
PPP _ PGapP J

Proof:

We only need to show that every GapP function g is computable
in FPPP_If we consider the GapP function f(x, k) = g(x) — k, we
have that L € PP by the previous classification. One can use
binary search using L as an oracle to find the value of g(x). O

PH C p#Pll l

o We can prove the following finer result:

PH - PGapP[l] _ P#P[l] _ PPP[l]

«0O)>» «Fr «=>»

<

it
-

RN Ge

® PHCP-PP

@ PHCP- -@P
@ PHCP-C_P
Proof (2):

o Let L € PH. Then, x.(x) € GapPP" and by using a
Toda-Ogihara Theorem:

o 3 g(x,r) € GapP and a polynomial g such that:

Priesa[g(x,r) = L(x)] > 7

«O» «Fr « =

« =)

RN Ge

Toda’s Theorem

Toda’'s Theorem

Proof (cont'd):

o If x € L then:

{rex?]glx,r)=1}> [{re x| g(x,r) # 1}|
o If x ¢ L then:

{re x| g(x,r) =0} > |{re X9 g(x,r) # 0}

o Let the set A consisting of (x, r) such that g(x,r) is odd.
Since g(x, r) is in GapP, we have A € ©P.

o Let f the GapP function defined by #£)(x) — #5(x).
o We have that Lis in P - ®P. O

Introduction Main Theorems Gaps Intervals
00000 0000 0000000000800

Toda’s Theorem

Toda’'s Theorem

Proof (of Toda's Theorem):
o Let L € PH.
o By the above lemma, we have that L € P - ®P

o In other words, dg € GapP and a polynomial g such that
x € L iff:

{r e =9 . g(x, rymod2 = 1}| > |{r € 9 : g(x rymod2 = 0}|

Ry RO

o Since this g does not lead directly to the proof of Toda's
Theorem, we can use it to create a new function g in GapP
with more useful properties:

Introduction Main Theorems Gaps Intervals
00000 0000 0000000000080

Toda’s Theorem

Toda’'s Theorem

Lemma
For every polynomial p, there exists a GapP function g such that
for all x and r:

@ If g(x, rymod2 = 1, then g(x, r)mod2°P(") =1

@ If g(x,r)mod2 = 0, then g(x, r)mod2p(”) =0

Proof (of Toda's Theorem-cont'd):

o Let p(n) = q(n) + 1, and let g be the result of applying the
above lemma to g.

o Then, consider the GapP function:

Proof (of Toda's Theorem-cont'd)

o We have that h(x)mod2P(") = |R;|mod2P(") = |Ry|, since
|Ry| < 2P(n) < 2a(n),

o We have that x € L if and only if h(x)mod2P(") > zq("
o We can thus determine whether x € L by a single query to the
GapP function h.

U
PHC P -@oP C MP I

«O» «Fr « =

<

>

RN Ge

Introduction Main Theorems Gaps Intervals
00000 0000 0000000000000

Further Reading

o Sanjeev Arora and Boaz Barak, Computational Complexity: A
Modern Approach, Cambridge University Press, 1 edition, April 2009

o Oded Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 1 edition, April 2008

o Christos H. Papadimitriou, Computational Complexity, Addison
Wesley, 1994

o Lance Fortnow, Counting Complexity, In Complexity Theory
Retrospective Il, pages 81-107. Springer-Verlag, 1997

o Jacobo Toran, Counting the number of solutions, In Mathematical
Foundations of Computer Science 1990, MFCS’90 Proceedings

o Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz,
Gap-definable counting classes, J. Comput. Syst. Sci.,
48(1):116-148, 1994

Thank You!

	Introduction
	Introduction

	Main Theorems
	Valiant's Theorem
	Toda's Theorem

	Gaps
	GapP and Complexity Classes
	Toda's Theorem

	Intervals

