
Introduction Main Theorems Gaps Intervals

Complexity of Counting

Antonis Antonopoulos

CoReLab
NTUA

March 2014

Introduction Main Theorems Gaps Intervals

1 Introduction
Introduction

2 Main Theorems
Valiant’s Theorem
Toda’s Theorem

3 Gaps
GapP and Complexity Classes
Toda’s Theorem

4 Intervals

Introduction Main Theorems Gaps Intervals

Introduction

Why counting?

So far, we have seen two versions of problems:

Decision Problems (if a solution exists)
Function Problems (if a solution can be produced)

A very important type of problems in Complexity Theory is
also:

Counting Problems (how many solution exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth
assignments that satisfy it.

Note that if we can solve #SAT in polynomial time, we can
solve SAT also.

Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.

Introduction Main Theorems Gaps Intervals

Introduction

Basic Definitions

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time Turing Machine M such that for
every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

The definition implies that f (x) can be expressed in poly(|x |) bits.

Each function f in #P is equal to the number of paths from an
initial configuration to an accepting configuration, or
accepting paths in the configuration graph of a poly-time NDTM.

FP ⊆ #P ⊆ PSPACE

If #P = FP, then P = NP.

If P = PSPACE, then #P = FP.

Introduction Main Theorems Gaps Intervals

Introduction

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPg .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x :

|{y : RA(x , y) = 1}| = |{z : RB(f (x), z) = 1}|

Introduction Main Theorems Gaps Intervals

Introduction

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPg .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x :

|{y : RA(x , y) = 1}| = |{z : RB(f (x), z) = 1}|

Introduction Main Theorems Gaps Intervals

Introduction

Completeness Results

Theorem

#CIRCUIT SAT is #P-complete.

Proof:

Let f ∈ #P. Then, ∃M, p:
f = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|.
Given x , we want to construct a circuit C such that:

|{z : C (z)}| = |{y : y ∈ {0, 1}p(|x |,M(x , y) = 1}|

We can construct a circuit Ĉ such that on input x , y
simulates M(x , y).

We know that this can be done with a circuit with size about
the square of M’s running time.

Let C (y) = Ĉ (x , y). �

Introduction Main Theorems Gaps Intervals

Introduction

Completeness Results

Theorem

#SAT is #P-complete.

Proof:

We reduce #CIRCUIT SAT to #SAT:

Let a circuit C , with x1, . . . , xn input gates and 1, . . . ,m gates.

We construct a Boolean formula φ with variables
x1, . . . , xn, g1, . . . , gm, where gi represents the output of gate
i .

A gate can be complete described by simulating the output
for each of the 4 possible inputs.

In this way, we have reduced C to a formula φ with n + m
variables and 4m clauses. �

Introduction Main Theorems Gaps Intervals

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yi} ∈ E iff Ai ,j = 1.

The term
∏n

i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.
So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Introduction Main Theorems Gaps Intervals

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yi} ∈ E iff Ai ,j = 1.
The term

∏n
i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.

So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Introduction Main Theorems Gaps Intervals

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yi} ∈ E iff Ai ,j = 1.
The term

∏n
i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.

So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Introduction Main Theorems Gaps Intervals

Valiant’s Theorem

Valiant’s Theorem

Theorem (Valiant’s Theorem)

PERMANENT is #P-complete.

Notice that the decision version of PERMANENT is in P ! !

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

The Class ⊕P

Definition

A language L is in the class ⊕P if there is a NDTM M such that
for all strings x , x ∈ L iff the number of accepting paths on input
x is odd.

The problems ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

⊕P is closed under complement.

Theorem

NP ⊆ RP⊕P

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

The Class GapP

For a TM M, we define:

∆M(x) = acc(x)− rej(x) = #M(x)−#M(x)

Definition

A function f : {0, 1}∗ → N is in GapP if there exists a poly-time
NDTM M such that for all inputs x :

f (x) = ∆M(x)

GapP functions are closed under negation:
f ∈ GapP⇒ −f ∈ GapP.

GapP, unlike #P, encompasses all FP functions.

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

The Class GapP

Theorem

For all functions f , the following are equivalent:

1 f ∈ GapP.

2 f is the difference of two #P functions.

3 f is the difference of a #P and an FP function.

4 f is the difference of a FP and an #P function.

In other words:

GapP = #P−#P = #P− FP = FP = #P

(3)⇒ GapP ⊆ FP#P[1].

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

Characterizations of Complexity Classes

NP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) = 0.

UP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.

PP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) ≤ 0 (of f (x) < 0).

SPP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

Characterizations of Complexity Classes

C=P consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 0.
If x /∈ L then f (x) 6= 0 (or f (x) > 0).

⊕P consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) is odd.
If x /∈ L then f (x) is even.

ModkP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) mod k 6= 0.
If x /∈ L then f (x) mod k = 0.

MiddleP consists of those languages L such that for some
#P function f and all inputs x :

If x ∈ L then middle(x) = 1.
If x /∈ L then middle(x) = 0.

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

Characterizations of Complexity Classes

NP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) = 0.

Similarly:

Class Function f in: If x ∈ L: If x /∈ L:

UP #P f (x) = 1 f (x) = 0

PP GapP f (x) > 0 f (x) ≤ 0 or f (x) < 0

SPP GapP f (x) = 1 f (x) = 0

C=P GapP f (x) = 0 f (x) 6= 0 or f (x) > 0

⊕P #P f (x) is odd f (x) is even

ModkP #P f (x) mod k 6= 0 f (x) mod k = 0

MiddleP middle(x) = 1 middle(x) = 0

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

Characterizations of Complexity Classes

We define middle : {0, 1}∗ → {0, 1} to return the d |x |2 eth bit
of the string x .

The class MiddleP consider the middle bit of a string, as PP
consider the high-order bit and ⊕P the low-order bit.

Observe that ⊕P = Mod2P

From the above we can easily have:

NP ⊆ coC=P ⊆ PP
UP ⊆ SPP
C=P ⊆ PP
PP is closed under complement.

Introduction Main Theorems Gaps Intervals

GapP and Complexity Classes

Characterizations of Complexity Classes

Theorem

PPP = PGapP

Proof:
We only need to show that every GapP function g is computable
in FPPP. If we consider the GapP function f (x , k) = g(x)− k , we
have that L ∈ PP by the previous classification. One can use
binary search using L as an oracle to find the value of g(x). �

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Counting vs Quantifiers

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

We can prove the following finer result:

PH ⊆ PGapP[1] = P#P[1] = PPP[1]

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Lemma

1 PH ⊆ P · PP
2 PH ⊆ P · ⊕P
3 PH ⊆ P · C=P

Proof (2):

Let L ∈ PH. Then, χL(x) ∈ GapPPH and by using a
Toda-Ogihara Theorem:

∃ g(x , r) ∈ GapP and a polynomial q such that:

Prr∈Σq [g(x , r) = L(x)] ≥ 3

4

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Proof (cont’d):

If x ∈ L then:

|{r ∈ Σq | g(x , r) = 1}| > |{r ∈ Σq | g(x , r) 6= 1}|

If x /∈ L then:

|{r ∈ Σq | g(x , r) = 0}| > |{r ∈ Σq | g(x , r) 6= 0}|

Let the set A consisting of 〈x , r〉 such that g(x , r) is odd.
Since g(x , r) is in GapP, we have A ∈ ⊕P.

Let f the GapP function defined by #p
A(x)−#p

A
(x).

We have that L is in P · ⊕P. �

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Proof (of Toda’s Theorem):

Let L ∈ PH.

By the above lemma, we have that L ∈ P · ⊕P
In other words, ∃g ∈ GapP and a polynomial q such that
x ∈ L iff:

|{r ∈ Σq(n) : g(x , r)mod2 = 1}|︸ ︷︷ ︸
R1

> |{r ∈ Σq(n) : g(x , r)mod2 = 0}|︸ ︷︷ ︸
R0

Since this g does not lead directly to the proof of Toda’s
Theorem, we can use it to create a new function ĝ in GapP
with more useful properties:

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Lemma

For every polynomial p, there exists a GapP function ĝ such that
for all x and r :

1 If g(x , r)mod2 = 1, then ĝ(x , r)mod2p(n) = 1

2 If g(x , r)mod2 = 0, then ĝ(x , r)mod2p(n) = 0

Proof (of Toda’s Theorem-cont’d):

Let p(n) = q(n) + 1, and let ĝ be the result of applying the
above lemma to g .

Then, consider the GapP function:

h(x) =
∑

r∈Σq(n)

ĝ(x , r)

Introduction Main Theorems Gaps Intervals

Toda’s Theorem

Toda’s Theorem

Proof (of Toda’s Theorem-cont’d):

We have that h(x)mod2p(n) = |R1|mod2p(n) = |R1|, since
|R1| ≤ 2p(n) < 2q(n).

We have that x ∈ L if and only if h(x)mod2p(n) > 2q(n)

2 .

We can thus determine whether x ∈ L by a single query to the
GapP function h. �

Corollary

PH ⊆ P · ⊕P ⊆MP

Introduction Main Theorems Gaps Intervals

Further Reading

Sanjeev Arora and Boaz Barak, Computational Complexity: A
Modern Approach, Cambridge University Press, 1 edition, April 2009

Oded Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 1 edition, April 2008

Christos H. Papadimitriou, Computational Complexity, Addison
Wesley, 1994

Lance Fortnow, Counting Complexity, In Complexity Theory
Retrospective II, pages 81-107. Springer-Verlag, 1997

Jacobo Torán,Counting the number of solutions, In Mathematical
Foundations of Computer Science 1990, MFCS’90 Proceedings

Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz,
Gap-definable counting classes, J. Comput. Syst. Sci.,
48(1):116-148, 1994

Thank You!

	Introduction
	Introduction

	Main Theorems
	Valiant's Theorem
	Toda's Theorem

	Gaps
	GapP and Complexity Classes
	Toda's Theorem

	Intervals

