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Reductions

Definition

A polynomial reduction from a language L1 ⊆ Σ∗1 to a language
L2 ⊆ Σ∗2 is a function f : Σ∗1 → Σ∗2 such that

1 There is a polynomial time DTM program that computes f .

2 For all x ∈ Σ∗1, x ∈ L∗1 if and only if f (x) ∈ L∗2.

Lemma

If L1 ∝ L2, then L2 ∈ P ⇒ L1 ∈ P.
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Reductions

Definition

A language L is defined to be NP-complete if L ∈ NP and, for all
other languages L′ ∈ NP, L′ ∝ L.

If L is NP-complete, L ∈ P ⇔ P = NP.

Lemma

If L1 and L2 belong to NP, L1 is NP-complete, and L1 ∝ L2,
then L2 is NP-complete.
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SAT

SATISFIABILITY

Instance: A set X of variables and a collection C of clauses
over X (a CNF formula).

Question: Is there a satisfying truth assignment for C?

SAT = {φ : φ a propositional formula in CNF such that φ is satisfiable}
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SAT

C = {x1 ∨ ¬x2,¬x1 ∨ x2}

Satisfiable: x1 −→ true, x2 −→ true

C ′ = {x1 ∨ x2, x1 ∨ ¬x2,¬x1 ∨ x2,¬x1 ∨ ¬x2}

Unsatisfiable: No satisfying truth assignment.
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SAT

We wish to show that SAT is NP-complete,

i.e., for all L ∈ NP, L is reduced in polynomial time to SAT .

SAT was the “first” NP-complete problem.

But why SAT ...?
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The Theorem

Proposition

SAT ∈ NP.

Proof.

Trivial.

Proposition

For every L ∈ NP, L ∝ SAT .

Proof: Non trivial.
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The Theorem

Let L ∈ NP and M a polynomial time NDTM which decides the
language L. Let p(n) be a polynomial that bounds the time
complexity function TM(n).

M, x −→ φ(x),

such that φ is satisfiable if and only if there is a certificate for
which M accepts input x (and φ(x) can be constructed in
polynomial time).

Suppose that M’s set of states is

Q = {q0 = qstart , q1 = qyes , q2 = qno , . . . , qr}
and M’s alphabet is

Γ = {s0 = t, s1, . . . , sv}
.
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The Theorem

Assume that the certificate is written in cells −1 to −p(n) and the
input x is written in cells 1 to |x |. Cell 0 always contains by
convention the blank symbol t.

−p(n) ··· −1 0 1 ··· p(n)+1

︸ ︷︷ ︸ ︸ ︷︷ ︸
certificate input

The computation is specified completely by giving the contents of
these squares, the current state and the position of the head at
each time 0 to p(n).
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Variables

φ’s variables will be

Variable Range Intended Meaning

Q[i , k]
0≤i≤p(n)

0≤k≤r
At time i M is in state qk .

H[i , j ]
0≤i≤p(n)

−p(n)≤j≤p(n)+1

At time i M’s head

is scanning cell j .

S [i , j , k]
0≤i≤p(n)

−p(n)≤j≤p(n)+1

0≤k≤v

At time i M’s j ’s cell

contains symbol sk .
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Clauses

Group 1

{Q[i , 0] ∨ Q[i , 1] ∨ · · · ∨ Q[i , r ]}, 0 ≤ i ≤ p(n)

{¬Q[i , j ] ∨ ¬Q[i , j ′]}, 0 ≤ i ≤ p(n), 0 ≤ j < j ′ ≤ r

≡ {¬(Q[i , j ] ∧ Q[i , j ′])}

The machine must be at exactly one state at each time. We
suppose that if M accepts before time p(n), then it remains at this
configuration until time p(n).

O(p(n)) such clauses.
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Clauses

Group 2 O(p3(n)) clauses

{H[i ,−p(n)] ∨ · · · ∨ H[i , p(n) + 1]}, 0 ≤ i ≤ p(n)

{¬H[i , j ] ∨ ¬H[i , j ′]}, 0 ≤ i ≤ p(n), −p(n) ≤ j < j ′ ≤ p(n) + 1

Head must be reading exactly one cell at each time.

Group 3 O(p2(n)) clauses

{S [i , j , 0] ∨ · · · ∨ S [i , j , v ]}, 0 ≤ i ≤ p(n), p(n) ≤ j ≤ p(n) + 1

{¬S [i , j , k] ∨ ¬S [i , j , k ′]}, 0 ≤ i ≤ p(n), −p(n) ≤ j ≤ p(n) + 1,

0 ≤ k < k ′ ≤ v

For each time, there must be exactly one symbol at each cell.
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Clauses

Group 4 O(p(n)) clauses

{Q[0, 0]}, {H[0, 1]}, {S [0, 0, 0]},
{S [0, 1, k1]}, {S [0, 2, k2}, . . . , {S [0, n, kn]},
{S [0, n + 1, 0]}, {S [0, n + 2, 0]}, . . . , {S [0, p(n) + 1, 0]},
where x = sk1sk2 . . . skn

At time 0, the computation is in the initial configuration for input
x.
Group 5

{Q[p(n), 1]}

By time p(n), M must enter state qyes and hence accept x.
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Clauses

Group 6 O(p2(n)) clauses
The first subgroup guarantees that if the head is not scanning tape
square j at time i , then the symbol in cell j does not change
between times i and i + 1.

{¬S [i , j , l ] ∨ H[i , j ] ∨ S [i + 1, j , l ]}, 0 ≤ i < p(n),

≡ {(S [i , j , l ] ∧ ¬H[i , j ])⇒ S [i + 1, j , l ]} − p(n) ≤ j ≤ p(n) + 1,

0 ≤ l ≤ v
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Group 6 O(p2(n)) clauses
The remaining subgroup guarantees that the changes from one
configuration to the next are in accord with the transition function
δ for M. For each quadruple (i , j , k , l), 0 ≤ i ≤ p(n),
−p(n) ≤ j ≤ p(n) + 1, 0 ≤ k ≤ r and 0 ≤ l ≤ v , this subgroup
contains the following three clauses:

{¬H[i , j ] ∨ ¬Q[i , k] ∨ ¬S [i , j , l ] ∨ H[i + 1, j + ∆]}
≡ {(H[i , j ] ∧ Q[i , k] ∧ S [i , j , l ])⇒ H[i + 1, j + ∆]}

{¬H[i , j ] ∨ ¬Q[i , k] ∨ ¬S [i , j , l ] ∨ Q[i + 1, k ′]}
{¬H[i , j ] ∨ ¬Q[i , k] ∨ ¬S [i , j , l ] ∨ S [i + 1, j , l ′]}

where if qk ∈ Q − {qyes , qno}, then the values of ∆,k ′ and l ′ are
such that δ(qk , sl) = (qk ′ , sl ′ ,∆) and if qk ∈ {qyes , qno}, then
∆ = −, k ′ = k and l ′ = l .
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Almost there

If x ∈ L, then there is a certificate for which M’s computation on x
will accept after at most p(n) steps, and this computation, given
the interpretation of the variables, imposes a truth assignment that
satisfies all the clauses in C = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 ∪ G6.

Conversely, the construction of C is such that any satisfying truth
assignment for C must correspond to an accepting computation of
M on x for a certificate (the certificate constructed by the truth
assignment).

Plus, the construction can be done in polynomial time.
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Aftermath

Cook’s paper was published in 1971. In 1972 Karp showed in the
above paper 21 NP-complete problems. And so on...
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An aside: Satisfiability variants

3-SAT

Instance: A CNF formula C such that every clause has
three literals.

Question: Is there a satisfying truth assignment for C?

Proposition

3− SAT is NP-complete.

MON3-SAT

Instance: A CNF formula C such that every clause has
three variables all negated or all not negated.

Question: Is there a satisfying truth assignment for C?

Proposition

MON3− SAT is NP-complete.
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An aside: Satisfiability variants

Proposition

2− SAT is NL-complete.

A Horn clause is a clause such that all variables in it are negated
except (maybe) one. Many Horn clauses make up a Horn formula.

HORN-SAT

Instance: A Horn formula C .

Question: Is there a satisfying truth assignment for C?

Proposition

HORN − SAT is P-complete.
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