Cook's Theorem

Papamakarios Theodoros

November 3, 2014

Reductions

Definition

A polynomial reduction from a language $L_{1} \subseteq \Sigma_{1}^{*}$ to a language $L_{2} \subseteq \Sigma_{2}^{*}$ is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that
(1) There is a polynomial time DTM program that computes f.
(2) For all $x \in \Sigma_{1}^{*}, x \in L_{1}^{*}$ if and only if $f(x) \in L_{2}^{*}$.

Reductions

Definition

A polynomial reduction from a language $L_{1} \subseteq \Sigma_{1}^{*}$ to a language $L_{2} \subseteq \Sigma_{2}^{*}$ is a function $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$ such that
(1) There is a polynomial time DTM program that computes f.
(2) For all $x \in \Sigma_{1}^{*}, x \in L_{1}^{*}$ if and only if $f(x) \in L_{2}^{*}$.

Lemma
If $L_{1} \propto L_{2}$, then $L_{2} \in \mathcal{P} \Rightarrow L_{1} \in \mathcal{P}$.

Reductions

Definition

A language L is defined to be $\mathcal{N} \mathcal{P}$-complete if $L \in \mathcal{N} \mathcal{P}$ and, for all other languages $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \propto L$.

Reductions

Definition

A language L is defined to be $\mathcal{N} \mathcal{P}$-complete if $L \in \mathcal{N} \mathcal{P}$ and, for all other languages $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \propto L$.

If L is $\mathcal{N} \mathcal{P}$-complete, $L \in \mathcal{P} \Leftrightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$.

Reductions

Definition

A language L is defined to be $\mathcal{N} \mathcal{P}$-complete if $L \in \mathcal{N} \mathcal{P}$ and, for all other languages $L^{\prime} \in \mathcal{N} \mathcal{P}, L^{\prime} \propto L$.

If L is $\mathcal{N} \mathcal{P}$-complete, $L \in \mathcal{P} \Leftrightarrow \mathcal{P}=\mathcal{N} \mathcal{P}$.

Lemma

If L_{1} and L_{2} belong to $\mathcal{N P}, L_{1}$ is $\mathcal{N P}$-complete, and $L_{1} \propto L_{2}$, then L_{2} is $\mathcal{N} \mathcal{P}$-complete.

SAT

SATISFIABILITY

Instance: A set X of variables and a collection C of clauses over X (a CNF formula).
Question: Is there a satisfying truth assignment for C ?

SAT

SATISFIABILITY

Instance: A set X of variables and a collection C of clauses over X (a CNF formula).
Question: Is there a satisfying truth assignment for C ?

SAT $=\{\phi: \phi$ a propositional formula in CNF such that ϕ is satisfiable $\}$ Conclusions

An aside

SAT

$$
C=\left\{x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}\right\}
$$

SAT

$$
C=\left\{x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}\right\}
$$

Satisfiable: $x_{1} \longrightarrow$ true, $x_{2} \longrightarrow$ true

SAT

$$
C=\left\{x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}\right\}
$$

Satisfiable: $x_{1} \longrightarrow$ true, $x_{2} \longrightarrow$ true

$$
C^{\prime}=\left\{x_{1} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, \neg x_{1} \vee \neg x_{2}\right\}
$$

SAT

$$
C=\left\{x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}\right\}
$$

Satisfiable: $x_{1} \longrightarrow$ true, $x_{2} \longrightarrow$ true

$$
C^{\prime}=\left\{x_{1} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, \neg x_{1} \vee \neg x_{2}\right\}
$$

Unsatisfiable: No satisfying truth assignment.

SAT

- We wish to show that $S A T$ is $\mathcal{N} \mathcal{P}$-complete,

SAT

- We wish to show that SAT is $\mathcal{N} \mathcal{P}$-complete,
- i.e., for all $L \in \mathcal{N P}, L$ is reduced in polynomial time to $S A T$.

SAT

- We wish to show that $S A T$ is $\mathcal{N} \mathcal{P}$-complete,
- i.e., for all $L \in \mathcal{N} \mathcal{P}, L$ is reduced in polynomial time to $S A T$.
- SAT was the "first" $\mathcal{N} \mathcal{P}$-complete problem.

SAT

- We wish to show that $S A T$ is $\mathcal{N} \mathcal{P}$-complete,
- i.e., for all $L \in \mathcal{N} \mathcal{P}, L$ is reduced in polynomial time to $S A T$.
- SAT was the "first" $\mathcal{N} \mathcal{P}$-complete problem.
- But why SAT ...?

Cook

Abroce in i Arnad	
Prou-diany The The conplexity of Theoren-Proving Procedures	
A.CM Sympo , ing Stephen A. Cook	
A.CM Sympore Uni	University of Taranto
Sumary	cortain recurstive sot of sty
It is shown that any recognition	隹 in the problen of findiaf, a good
probleen solved by a polynonial time-	- lover bound on its popsib1e recog.
hounded nondeterminist ic Tur ing	nition tines Ne provide no such
blem of deteraining *hether a siven	give eridence that (tautologies) is
propositional fornila is a tautalogy.	. adifficult set to recognize. since
Here "reduced" neans, roughly speak-	many apparently difelcuit problens
ing, that the first problen can be	cas be reduced to deternining tau-
solved deterministically in polyno-	tologyhood. by reduced we mean,
mial time provided an oracle is	speaking, that if that 0 -
avaluable for soovirg the second.	logylood could be decided instantiy
From thas notion of reducibile, ${ }^{\text {poly }}$	- coud be decided in polynomial cine.
defined, and it is shown that the	In order to nake this notion precise.
problen of deternining tautologyhood	do introduce query nachines, which
has the sane polynonial degree as the	are like Juring nachines with oracles
probien of deternining whether the first of two given graphs is iso-	in [1].
rpheic to a subgraph of the second.	- ${ }^{2}$ query machine is a moltitape
Other examples are discussed. ${ }_{\text {a }}{ }^{\text {a }}$,	Turing nachine with a distingutshed tape called the query tape, and
method of neasur ing the complexity of	(tape called the query tape and
calculus is introduced and discussed.	1. the query state, yes state, amd no
	state, respectively; if ${ }^{M}$ is a
strings neans a set of strings on.	- strinss. then a T-congutation of

The Theorem

Proposition
 $S A T \in \mathcal{N} \mathcal{P}$.

Proof.
Trivial.

The Theorem

Proposition

$S A T \in \mathcal{N} \mathcal{P}$.
Proof.
Trivial.

Proposition

For every $L \in \mathcal{N P}, L \propto S A T$.
Proof: Non trivial.

The Theorem

Let $L \in \mathcal{N P}$ and M a polynomial time NDTM which decides the language L. Let $p(n)$ be a polynomial that bounds the time complexity function $T_{M}(n)$.

The Theorem

Let $L \in \mathcal{N P}$ and M a polynomial time NDTM which decides the language L. Let $p(n)$ be a polynomial that bounds the time complexity function $T_{M}(n)$.

$$
M, x \longrightarrow \phi(x)
$$

such that ϕ is satisfiable if and only if there is a certificate for which M accepts input x (and $\phi(x)$ can be constructed in polynomial time).

The Theorem

Let $L \in \mathcal{N P}$ and M a polynomial time NDTM which decides the language L. Let $p(n)$ be a polynomial that bounds the time complexity function $T_{M}(n)$.

$$
M, x \longrightarrow \phi(x)
$$

such that ϕ is satisfiable if and only if there is a certificate for which M accepts input x (and $\phi(x)$ can be constructed in polynomial time).

Suppose that M's set of states is

$$
Q=\left\{q_{0}=q_{\text {start }}, q_{1}=q_{y e s}, q_{2}=q_{n o}, \ldots, q_{r}\right\}
$$

and M's alphabet is

$$
\Gamma=\left\{s_{0}=\sqcup, s_{1}, \ldots, s_{v}\right\}
$$

The Theorem

Assume that the certificate is written in cells -1 to $-p(n)$ and the input x is written in cells 1 to $|x|$. Cell 0 always contains by convention the blank symbol \sqcup.

The computation is specified completely by giving the contents of these squares, the current state and the position of the head at each time 0 to $p(n)$.

Variables

ϕ 's variables will be

Variable

Range

Intended Meaning

$$
\begin{array}{ccc}
Q[i, k] & 0 \leq i \leq p(n) & \text { At time } i M \text { is in state } q_{k} . \\
& 0 \leq k \leq r & \\
H[i, j] & 0 \leq i \leq p(n) & \text { At time } i M \text { 's head } \\
& -p(n) \leq j \leq p(n)+1 & \text { is scanning cell } j . \\
& 0 \leq i \leq p(n) & \\
S[i, j, k] & -p(n) \leq j \leq p(n)+1 & \text { At time } i M \text { 's } j \text { 's cell } \\
& 0 \leq k \leq v & \text { contains symbol } s_{k} .
\end{array}
$$

Clauses

Group 1

$$
\begin{array}{ll}
\{Q[i, 0] \vee Q[i, 1] \vee \cdots \vee Q[i, r]\}, & 0 \leq i \leq p(n) \\
\left\{\neg Q[i, j] \vee \neg Q\left[i, j^{\prime}\right]\right\}, & 0 \leq i \leq p(n), \\
\equiv\left\{\neg\left(Q[i, j] \wedge Q\left[i, j^{\prime}\right]\right)\right\} &
\end{array}
$$

Clauses

Group 1

$$
\begin{array}{ll}
\{Q[i, 0] \vee Q[i, 1] \vee \cdots \vee Q[i, r]\}, & 0 \leq i \leq p(n) \\
\left\{\neg Q[i, j] \vee \neg Q\left[i, j^{\prime}\right]\right\}, & 0 \leq i \leq p(n), \\
\equiv\left\{\neg\left(Q[i, j] \wedge Q\left[i, j^{\prime}\right]\right)\right\} &
\end{array}
$$

The machine must be at exactly one state at each time. We suppose that if M accepts before time $p(n)$, then it remains at this configuration until time $p(n)$.

Clauses

Group 1

$$
\begin{array}{ll}
\{Q[i, 0] \vee Q[i, 1] \vee \cdots \vee Q[i, r]\}, & 0 \leq i \leq p(n) \\
\left\{\neg Q[i, j] \vee \neg Q\left[i, j^{\prime}\right]\right\}, & 0 \leq i \leq p(n), \\
\equiv\left\{\neg\left(Q[i, j] \wedge Q\left[i, j^{\prime}\right]\right)\right\} &
\end{array}
$$

The machine must be at exactly one state at each time. We suppose that if M accepts before time $p(n)$, then it remains at this configuration until time $p(n)$.
$\mathcal{O}(p(n))$ such clauses.

Clauses

Group $2 \mathcal{O}\left(p^{3}(n)\right)$ clauses
$\{H[i,-p(n)] \vee \cdots \vee H[i, p(n)+1]\}, 0 \leq i \leq p(n)$
$\left\{\neg H[i, j] \vee \neg H\left[i, j^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j<j^{\prime} \leq p(n)+1$

Clauses

Group $2 \mathcal{O}\left(p^{3}(n)\right)$ clauses

$$
\begin{aligned}
& \{H[i,-p(n)] \vee \cdots \vee H[i, p(n)+1]\}, 0 \leq i \leq p(n) \\
& \left\{\neg H[i, j] \vee \neg H\left[i, j^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j<j^{\prime} \leq p(n)+1
\end{aligned}
$$

Head must be reading exactly one cell at each time.

Clauses

Group $2 \mathcal{O}\left(p^{3}(n)\right)$ clauses
$\{H[i,-p(n)] \vee \cdots \vee H[i, p(n)+1]\}, 0 \leq i \leq p(n)$
$\left\{\neg H[i, j] \vee \neg H\left[i, j^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j<j^{\prime} \leq p(n)+1$
Head must be reading exactly one cell at each time.
Group $3 \mathcal{O}\left(p^{2}(n)\right)$ clauses
$\{S[i, j, 0] \vee \cdots \vee S[i, j, v]\}, \quad 0 \leq i \leq p(n), p(n) \leq j \leq p(n)+1$
$\left\{\neg S[i, j, k] \vee \neg S\left[i, j, k^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j \leq p(n)+1$,
$0 \leq k<k^{\prime} \leq v$

Clauses

Group $2 \mathcal{O}\left(p^{3}(n)\right)$ clauses
$\{H[i,-p(n)] \vee \cdots \vee H[i, p(n)+1]\}, 0 \leq i \leq p(n)$
$\left\{\neg H[i, j] \vee \neg H\left[i, j^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j<j^{\prime} \leq p(n)+1$
Head must be reading exactly one cell at each time.
Group $3 \mathcal{O}\left(p^{2}(n)\right)$ clauses
$\{S[i, j, 0] \vee \cdots \vee S[i, j, v]\}, \quad 0 \leq i \leq p(n), p(n) \leq j \leq p(n)+1$
$\left\{\neg S[i, j, k] \vee \neg S\left[i, j, k^{\prime}\right]\right\}, \quad 0 \leq i \leq p(n),-p(n) \leq j \leq p(n)+1$,
$0 \leq k<k^{\prime} \leq v$
For each time, there must be exactly one symbol at each cell.

Clauses

Group $4 \mathcal{O}(p(n))$ clauses

$$
\begin{aligned}
& \{Q[0,0]\},\{H[0,1]\},\{S[0,0,0]\}, \\
& \left\{S\left[0,1, k_{1}\right]\right\},\left\{S\left[0,2, k_{2}\right\}, \ldots,\left\{S\left[0, n, k_{n}\right]\right\}\right. \\
& \{S[0, n+1,0]\},\{S[0, n+2,0]\}, \ldots,\{S[0, p(n)+1,0]\}, \\
& \text { where } x=s_{k_{1}} s_{k_{2}} \ldots s_{k_{n}}
\end{aligned}
$$

Clauses

Group $4 \mathcal{O}(p(n))$ clauses

$$
\begin{aligned}
& \{Q[0,0]\},\{H[0,1]\},\{S[0,0,0]\}, \\
& \left\{S\left[0,1, k_{1}\right]\right\},\left\{S\left[0,2, k_{2}\right\}, \ldots,\left\{S\left[0, n, k_{n}\right]\right\}\right. \\
& \{S[0, n+1,0]\},\{S[0, n+2,0]\}, \ldots,\{S[0, p(n)+1,0]\}, \\
& \text { where } x=s_{k_{1}} s_{k_{2}} \ldots s_{k_{n}}
\end{aligned}
$$

At time 0 , the computation is in the initial configuration for input x.

Clauses

Group $4 \mathcal{O}(p(n))$ clauses

$$
\begin{aligned}
& \{Q[0,0]\},\{H[0,1]\},\{S[0,0,0]\}, \\
& \left\{S\left[0,1, k_{1}\right]\right\},\left\{S\left[0,2, k_{2}\right\}, \ldots,\left\{S\left[0, n, k_{n}\right]\right\},\right. \\
& \{S[0, n+1,0]\},\{S[0, n+2,0]\}, \ldots,\{S[0, p(n)+1,0]\}, \\
& \text { where } x=s_{k_{1}} s_{k_{2}} \ldots s_{k_{n}}
\end{aligned}
$$

At time 0, the computation is in the initial configuration for input x.

Group 5

$$
\{Q[p(n), 1]\}
$$

Clauses

Group $4 \mathcal{O}(p(n))$ clauses

$$
\begin{aligned}
& \{Q[0,0]\},\{H[0,1]\},\{S[0,0,0]\}, \\
& \left\{S\left[0,1, k_{1}\right]\right\},\left\{S\left[0,2, k_{2}\right\}, \ldots,\left\{S\left[0, n, k_{n}\right]\right\},\right. \\
& \{S[0, n+1,0]\},\{S[0, n+2,0]\}, \ldots,\{S[0, p(n)+1,0]\}, \\
& \text { where } x=s_{k_{1}} s_{k_{2}} \ldots s_{k_{n}}
\end{aligned}
$$

At time 0 , the computation is in the initial configuration for input x.

Group 5

$$
\{Q[p(n), 1]\}
$$

By time $p(n), M$ must enter state $q_{y e s}$ and hence accept \times.

Clauses

Group $6 \mathcal{O}\left(p^{2}(n)\right)$ clauses
The first subgroup guarantees that if the head is not scanning tape square j at time i, then the symbol in cell j does not change between times i and $i+1$.

$$
\begin{aligned}
\{\neg S[i, j, l] \vee H[i, j] \vee S[i+1, j, l]\}, & 0 \leq i<p(n) \\
\equiv\{(S[i, j, l] \wedge \neg H[i, j]) \Rightarrow S[i+1, j, l]\} & -p(n) \leq j \leq p(n)+1 \\
& 0 \leq I \leq v
\end{aligned}
$$

Group $6 \mathcal{O}\left(p^{2}(n)\right)$ clauses
The remaining subgroup guarantees that the changes from one configuration to the next are in accord with the transition function δ for M. For each quadruple (i, j, k, l), $0 \leq i \leq p(n)$, $-p(n) \leq j \leq p(n)+1,0 \leq k \leq r$ and $0 \leq I \leq v$, this subgroup contains the following three clauses:

$$
\begin{aligned}
& \{\neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee H[i+1, j+\Delta]\} \\
& \quad \equiv\{(H[i, j] \wedge Q[i, k] \wedge S[i, j, I]) \Rightarrow H[i+1, j+\Delta]\} \\
& \left\{\neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee Q\left[i+1, k^{\prime}\right]\right\} \\
& \left\{\neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee S\left[i+1, j, I^{\prime}\right]\right\}
\end{aligned}
$$

where if $q_{k} \in Q-\left\{q_{y e s}, q_{n o}\right\}$, then the values of Δ, k^{\prime} and I^{\prime} are such that $\delta\left(q_{k}, s_{l}\right)=\left(q_{k^{\prime}}, s_{l^{\prime}}, \Delta\right)$ and if $q_{k} \in\left\{q_{y e s}, q_{n o}\right\}$, then $\Delta=-, k^{\prime}=k$ and $I^{\prime}=I$.

Almost there

If $x \in L$, then there is a certificate for which M's computation on x will accept after at most $p(n)$ steps, and this computation, given the interpretation of the variables, imposes a truth assignment that satisfies all the clauses in $C=G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup G_{5} \cup G_{6}$.

Conversely, the construction of C is such that any satisfying truth assignment for C must correspond to an accepting computation of M on x for a certificate (the certificate constructed by the truth assignment).

Plus, the construction can be done in polynomial time.

Aftermath

Richard M. Karp

University of California at Berkeley

Abstract: A large class of computational problems involve the determination of properties of graphs, digraphs, integers, arrays elements of other countable domains. Through simple encodings from such domains into the set of words over a finite alphabet these problens can be converted into language recognition problens and we can inquire into their computational complexity. It is reasonable to consider such a problem satisfactorily solved when an algorithn for its solution is found which terminates within a number of steps bounded by a polynonial in the length of the input ing, matching, packing, routing, assignment and sequencing are equivalent, in the sense that either each of them possesses a polynonial-bounded algorithm or none of then does.

Cook's paper was published in 1971. In 1972 Karp showed in the above paper $21 \mathcal{N} \mathcal{P}$-complete problems. And so on...

An aside: Satisfiability variants

3-SAT

Instance: A CNF formula C such that every clause has three literals.
Question: Is there a satisfying truth assignment for C ?
Proposition
3 - SAT is $\mathcal{N} \mathcal{P}$-complete.

An aside: Satisfiability variants

3-SAT

Instance: A CNF formula C such that every clause has three literals.
Question: Is there a satisfying truth assignment for C ?

Proposition

3 - SAT is $\mathcal{N} \mathcal{P}$-complete.
MON3-SAT
Instance: A CNF formula C such that every clause has three variables all negated or all not negated.
Question: Is there a satisfying truth assignment for C?
Proposition
MON3 - SAT is $\mathcal{N P}$-complete.

An aside: Satisfiability variants

Proposition
 2 - SAT is $\mathcal{N} \mathcal{L}$-complete.

An aside: Satisfiability variants

Proposition

$2-S A T$ is $\mathcal{N} \mathcal{L}$-complete.

A Horn clause is a clause such that all variables in it are negated except (maybe) one. Many Horn clauses make up a Horn formula.

HORN-SAT

Instance: A Horn formula C.
Question: Is there a satisfying truth assignment for C ?

Proposition

HORN - SAT is \mathcal{P}-complete.

