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Preeliminaries

Reductions

Definition
A polynomial reduction from a language L1 C ¥ to a language
L, C %3 is a function f : ¥ — X5 such that
© There is a polynomial time DTM program that computes f.
@ For all x € X3, x € L if and only if f(x) € L3.
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Preeliminaries

Reductions

Definition

A polynomial reduction from a language L1 C ¥ to a language
L, C %3 is a function f : ¥ — X5 such that

© There is a polynomial time DTM program that computes f.
@ For all x € X3, x € L if and only if f(x) € L3.

If L1 o< Ly, then L, € P = L1 € P.
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Preeliminaries

Reductions

Definition
A language L is defined to be N'P-complete if L € N'P and, for all
other languages L' ¢ NP, L' o L.
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Preeliminaries

Reductions

Definition
A language L is defined to be N'P-complete if L € N'P and, for all
other languages L' ¢ NP, L' o L.

If Lis N"P-complete, L € P < P = NP.
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Preeliminaries

Reductions

Definition
A language L is defined to be N'P-complete if L € N'P and, for all
other languages L' ¢ NP, L' o L.

If Lis N"P-complete, L € P < P = NP.

If Ly and L, belong to N'P, Ly is N'P-complete, and Ly o L,
then Ly is N"P-complete.
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Preeliminaries

SATISFIABILITY

INSTANCE: A set X of variables and a collection C of clauses
over X (a CNF formula).

QUESTION: Is there a satisfying truth assignment for C?
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Preeliminaries

SATISFIABILITY

INSTANCE: A set X of variables and a collection C of clauses
over X (a CNF formula).

QUESTION: Is there a satisfying truth assignment for C?

SAT = {¢ : ¢ a propositional formula in CNF such that ¢ is satisfiable}
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Preeliminaries

C = {Xl V =xo, —ix1 V X2}
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Preeliminaries

C = {Xl V =xo, —ix1 V X2}

Satisfiable: x; — true, xo — true
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Preeliminaries

C = {Xl V =xo, —ix1 V X2}

Satisfiable: x; — true, xo — true

C' = {Xl V X2, X1 V —xo, X1 V X2, X1 V _\X2}
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Preeliminaries

C = {Xl V =xo, —ix1 V X2}

Satisfiable: x; — true, xo — true

C' = {Xl V X2, X1 V —xo, X1 V X2, X1 V _\X2}

Unsatisfiable: No satisfying truth assignment.
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Preeliminaries

@ We wish to show that SAT is N'P-complete,
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Preeliminaries

e We wish to show that SAT is N'P-complete,
e i.e, forall L e NP, L is reduced in polynomial time to SAT.
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e We wish to show that SAT is N'P-complete,
e i.e, forall L e NP, L is reduced in polynomial time to SAT.
@ SAT was the “first” N'P-complete problem.
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Preeliminaries

e We wish to show that SAT is N'P-complete,

e i.e, forall L e NP, L is reduced in polynomial time to SAT.
@ SAT was the “first” N'P-complete problem.

o But why SAT...?
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Preeliminaries

s Theodoros Cook's Theorem




The Theorem

The Theorem

Proposition
SAT e N'P.
Trivial. O]
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The Theorem

The Theorem

Proposition
SAT e N'P.
Trivial. O]

Proposition
For every L € NP, L oc SAT.

Proof: Non trivial.
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The Theorem

The Theorem

Let L € NP and M a polynomial time NDTM which decides the
language L. Let p(n) be a polynomial that bounds the time
complexity function Tp(n).
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The Theorem

The Theorem

Let L € NP and M a polynomial time NDTM which decides the
language L. Let p(n) be a polynomial that bounds the time
complexity function Tp(n).

M, x — ¢(x),

such that ¢ is satisfiable if and only if there is a certificate for
which M accepts input x (and ¢(x) can be constructed in
polynomial time).
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The Theorem

The Theorem

Let L € NP and M a polynomial time NDTM which decides the
language L. Let p(n) be a polynomial that bounds the time
complexity function Tp(n).

M,X — ¢(X)a
such that ¢ is satisfiable if and only if there is a certificate for

which M accepts input x (and ¢(x) can be constructed in
polynomial time).

Suppose that M's set of states is
Q = {90 = Gstart, 91 = Gyes, G2 = Gno, - - -, r}
and M'’s alphabet is
Fr={so=U,s1,...,5/}
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The Theorem

Assume that the certificate is written in cells —1 to —p(n) and the
input x is written in cells 1 to |x|. Cell 0 always contains by
convention the blank symbol LI.

—p(n) -1 01 p(n)+1

[ [ 1 | [ |

certificate input

The computation is specified completely by giving the contents of
these squares, the current state and the position of the head at
each time 0 to p(n).
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The Theorem

Variables

¢'s variables will be

Variable Range Intended Meaning
Qli, K] 0<i<p(n) At time i M is in stat
m n .
, o<k<r ime i M is in state g
.o 0<i<p(n) At time i M’s head
Hli,J] . . . .
—p(n)<j<p(n)+1 is scanning cell j.
0<i<
. <i<p(n) At time i M’s j's cell
5[’717 k] —p(n)<j<p(n)+1 .
contains symbol s.
0<k<v
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The Theorem

Clauses

Group 1
{Qli,01v Qi1 V-V Q[i,r]}, 0<i<p(n)
{~QUi. v ~QLi. 1} 0<i<p(n), 0<j<j<r

= {~(Q[i,j] A Q[i,j'])}
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The Theorem

Clauses

Group 1
{QU, 0]V Q[i, 1]V --- v Q[irl}, 0<i<p(n)
{~QUi. v ~QLi. 1} 0<i<p(n), 0<j<j<r

= {~(Q[i,j] A Q[i,j'])}

The machine must be at exactly one state at each time. We
suppose that if M accepts before time p(n), then it remains at this
configuration until time p(n).
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The Theorem

Clauses

Group 1
{Qli,01v Qi1 V-V Q[i,r]}, 0<i<p(n)
{~QUi. v ~QLi. 1} 0<i<p(n), 0<j<j<r

= {~(Q[i,j] A Q[i,j'])}

The machine must be at exactly one state at each time. We
suppose that if M accepts before time p(n), then it remains at this
configuration until time p(n).

O(p(n)) such clauses.

Papamakarios Theodoros Cook's Theorem



The Theorem

Clauses

Group 2 O(p3(n)) clauses

(Hli,—p(n)] v -V i, p(n) + 11}, 0< 7 < p(r)
{_'H[’7J] \ _'H[iaj,]}a 0<i < p(”)v _p(n) <J <j/ < p(n) +1
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The Theorem

Clauses

Group 2 O(p3(n)) clauses

(Hli,—p(n)] v -V i, p(n) + 11}, 0< 7 < p(r)
{_'H[’7J] \ _'H[iaj,]}a 0<i < p(”)v _p(n) <J <j/ < p(n) +1

Head must be reading exactly one cell at each time.
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The Theorem

Clauses

Group 2 O(p3(n)) clauses

(Hli,—p(n)] v -V i, p(n) + 11}, 0< 7 < p(r)
{_'H[”./] \ _'H[iaj,]}a 0<i < p(”)v _p(n) <J <j/ < p(n) +1

Head must be reading exactly one cell at each time.

Group 3 O(p?(n)) clauses

{5[’7Ja0] \/"'VS[i,j, V]}v 0<i< p(n)v p(n) <J< p(n)—l— 1
{=Sli,j, kv =Sli,j, KT}, 0<i<p(n), —p(n) <j<p(n)+1,
0<k<k<v
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The Theorem

Clauses

Group 2 O(p3(n)) clauses

(Hli,—p(n)] v -V i, p(n) + 11}, 0< 7 < p(r)
{_'H[”./] \ _'H[iaj,]}a 0<i < p(”)v _p(n) <J <j/ < p(n) +1

Head must be reading exactly one cell at each time.

Group 3 O(p?(n)) clauses

{5[’7Ja0] \/"'VS[i,j, V]}v 0<i< p(n)v p(n) <J< p(n)—l— 1
{=Sli,j, kv =Sli,j, KT}, 0<i<p(n), —p(n) <j<p(n)+1,
0<k<k<v

For each time, there must be exactly one symbol at each cell.
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The Theorem

Clauses

Group 4 O(p(n)) clauses

{Q[0, 0}, {H[0, 1]}, {5[0. 0, 0]},
{5[0,1, k1]},{S[0,2, ko}, ..., {S[0, n, kn]},
{S[0,n+1,0},{S[0, n+2,0]},...,{S[0, p(n) + 1, 0]},

where x = sy Sy, . . . Sk

n
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The Theorem

Clauses

Group 4 O(p(n)) clauses

{Q[0, 0}, {H[0, 1]}, {5[0. 0, 0]},
{5[0,1, k1]},{S[0,2, ko}, ..., {S[0, n, kn]},
{S[0,n+1,0},{S[0, n+2,0]},...,{S[0, p(n) + 1, 0]},

where x = sy Sy, . . . Sk

n

At time 0, the computation is in the initial configuration for input
X.
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The Theorem

Clauses

Group 4 O(p(n)) clauses

{Q[0, 0}, {H[0, 1]}, {5[0. 0, 0]},
{5[0,1, k1]},{S[0,2, ko}, ..., {S[0, n, kn]},
{S[0,n+1,0},{S[0, n+2,0]},...,{S[0, p(n) + 1, 0]},

where x = sy Sy, . . . Sk

n

At time 0, the computation is in the initial configuration for input
X.
Group 5

{QIp(n), 1]}
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The Theorem

Clauses

Group 4 O(p(n)) clauses

{Q[0, 0}, {H[0, 1]}, {5[0. 0, 0]},
{5[0,1, k1]},{S[0,2, ko}, ..., {S[0, n, kn]},
{S[0,n+1,0},{S[0, n+2,0]},...,{S[0, p(n) + 1, 0]},

where x = sy Sy, . . . Sk

n

At time 0, the computation is in the initial configuration for input
X

Group 5
{Qlp(n), 1]}

By time p(n), M must enter state gyes and hence accept x.
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The Theorem

Clauses

Group 6 O(p?(n)) clauses

The first subgroup guarantees that if the head is not scanning tape
square j at time i, then the symbol in cell j does not change
between times / and i + 1.

{=Slij. v Hli v SE+ 1,4, 113, 0<i<p(n),
={(Sli.j. IA—H[i,j]) = Sli+ 1)1} —p(n) <j < p(n)+1,
0<I<v
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Group 6 O(p?(n)) clauses

The remaining subgroup guarantees that the changes from one
configuration to the next are in accord with the transition function
d for M. For each quadruple (i,/, k,1), 0 <i < p(n),

—p(n) <j<p(n)+1,0<k<rand0</<v, this subgroup
contains the following three clauses:

{=Hl[i,j] v ~Q[i, k] v =S[i,j, 1V H[i + 1,j + A]}
={(H[i, )N Q[i, kI AS[i,j, 1) = H[i+ 1,j + A]}

{=H[i,j] vV =Q[i, k] vV =S[i,j, NV Qi + 1, K]}

{=H[i, ]V ~Q[i, k] v =S[i,j, 1V S[i +1,j, ']}

where if gx € Q — {Gyes; Gno }, then the values of A k" and /" are
such that 6(qx, s1) = (qi, s, AA) and if gk € {qyes; Gno }, then
A=— k=kand /! = 1.
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The Theorem

Almost there

If x € L, then there is a certificate for which M's computation on x
will accept after at most p(n) steps, and this computation, given
the interpretation of the variables, imposes a truth assignment that
satisfies all the clauses in C = G1 U Go U Gz U G4 U Gs U Gg.

Conversely, the construction of C is such that any satisfying truth
assignment for C must correspond to an accepting computation of
M on x for a certificate (the certificate constructed by the truth

assignment).

Plus, the construction can be done in polynomial time.
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Conclusions

Aftermath

.
REDUCIBILITY AMONG COMBTNATORIAL PROBLEMS

Richard M. Karp

University of California at erkeley

Abstract: A large class of computational problems fnvolve the

clemencs of other countable domains. Through simple encodings
from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems,
ané we can inquire into thelr computational complexity. It is
reasonable to consider such a problem satisfactorily solved when
an algoritha for its solution is found which terminates within a
nusber of steps bounded by a polynomial in the length of the imput.
We show that a large number of classic unsolved problems of cover-
ing, matching, packing, routing, assighment and sequencing are
cquivalent, in the sense that either each of them possesses a
polynonial-bounded algorithm or none of them does.

Cook’s paper was published in 1971. In 1972 Karp showed in the
above paper 21 N'P-complete problems. And so on...
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An aside

An aside: Satisfiability variants

3-SAT
INsTANCE: A CNF formula C such that every clause has
three literals.
QUESTION: s there a satisfying truth assignment for C?

Proposition
3 — SAT is N'P-complete.
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An aside

An aside: Satisfiability variants

3-SAT
INsTANCE: A CNF formula C such that every clause has
three literals.
QUESTION: s there a satisfying truth assignment for C?

Proposition
3 — SAT is N'P-complete.

MON3-SAT
INSTANCE: A CNF formula C such that every clause has
three variables all negated or all not negated.
QUESTION: Is there a satisfying truth assignment for C?

Proposition
MON3 — SAT is N'P-complete.
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An aside

An aside: Satisfiability variants

Proposition
2 — SAT is N L-complete.
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An aside

An aside: Satisfiability variants

Proposition
2 — SAT is N L-complete.

A Horn clause is a clause such that all variables in it are negated
except (maybe) one. Many Horn clauses make up a Horn formula.

HORN-SAT
INsTANCE: A Horn formula C.
QUESTION: s there a satisfying truth assignment for C?

Proposition
HORN — SAT is P-complete.
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