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Organization
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Interaction

Instructors:
m Stathis Zachos: zachos@cs.ntua.gr
m Petros Potikas: ppotik@cs.ntua.gr
m loannis Kokkinis: ykokkinis@gmail.com

m Aggeliki Chalki: achalki@corelab.ntua.gr

Lectures:
Tuesday 11:00-15:00
Classroom 1.1.31, old ECE building, NTUA
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Assignments and Evaluation

m Presentation

m Final Exam
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References

m Immerman, Neil. Descriptive complexity. (https://people.
cs.umass.edu/~immerman/book/corrections.html)

m Libkin, Leonid. Elements of finite model theory.
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Edge Existence (The Imperative Way)

Does G = (V, E) have an edge?
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Why Descriptive Complexity?
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Edge Existence (The Imperative Way)

Does G = (V, E) have an edge?

The imperative way:

for(i=0; i<n; i++)
for(j=0; j<n; j++)
if (E[i,j] == 1) then
printf ("G has an edge!\n");
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Edge Existence (The Declarative Way)

Does G = (V, E) have and edge?
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Why Descriptive Complexity?
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Edge Existence (The Declarative Way)

Does G = (V, E) have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E.
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Why Descriptive Complexity?
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Edge Existence (The Declarative Way)

Does G = (V, E) have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E.

The declarative way:

G = 3Ix3yE(x,y).
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Vertex Cover

Does G = (V, E) have a vertex cover of size k?

Gl (AW C V)[ywygk/\

(vx,y € V)[E(x.y) > (x e WV y e W]
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Why Descriptive Complexity?
[e]e]e] Jelele]

Vertex Cover

Does G = (V, E) have a vertex cover of size k?

Gl (AW C V)[ywygk/\
(vx,y € V)[E(x.y) > (x e WV y e W]

Be careful: We quantified over sets.
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Descriptive Complexity

Descriptive Complexity

The computational complexity of a problem can be understood as
the richness of the language needed to specify the problem.

“Edge Existence” is easier than “Has a Vertex Cover of size k"
since the formula Ix3JyE(x, y) is FO whereas the formula

Gl (3wWC V)[|W| <k A
(Vx,y € V)[E(x,y)—>(x€ Wvye W)H

is SO.
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Application to Databases

All database management languages, like SQL are extensions of
FO-logic.

Input Graph Database DB

()
E
O—0© O e

EXISTS (
SELECT =*
FROM E

Edge existence query:
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Input Representation

Database DB

G:<V7Eaavb> QueryQ
G E ¢? does DB satisfy Q7

V ={ab,..} E={(ac)(db)..}
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Historical Overview
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Computational Complexity Measures

Engineers: space and time are natural resources.

Mathematicians: space and time depend on the model ...

Theorem (Fagin, 1974)

NP = set of problems describable in existential second-order logic

(350).
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Complexity as Expressibility

The most important complexity classes and questions have elegant
descriptive analogues.

P is the set of problems describable in FO plus inductive
definitions.

P = NP iff every problem describable in SO is already expressible
in FO plus inductive definitions.
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The Complexity World (From a Logician's View)
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The Case for Finite Models

All objects (programs, inputs, databases, ...) handled by
computers are finite.

So, the structures we are going to study will always be finite.

Most of the techniques/results we knew do not apply any more . ..
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No Proof Theory for Finite Models!

In the case of FO-logic, when infinite and finite models are allowed
Validity: R.E.-complete and axiomatizable (Godel, 1930)

Satisfiability: non-R.E

but when only finite models are allowed

Validity: non-R.E, thus non-axiomatizable!
Satisfiability: R.E.-complete (Trakhtenbrot, 1950)
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Overview

First Order Logic
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First Order Logic
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Vocabularies

A vocabulary 7 contains:
Logical Symbols

variables: x,y,z,...
equality: =
logical connectives: A,—,V
Non-Logical Symbols
constants: c,r,...
relational symbols: P, R, Q, ...
We write 7 = (P#,R%2 Q%,... c,r,...).
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First Order Logic
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Terms and Formulas

Vocabulary 7 = (P31, R#2,Q%,...,c,r,...)

Definition (Terms over 1)

Every variable and constant is a term.

Definition (Formulas over 7)

mIf t5,...,t, are terms then t; = t; and P(ty,...,t,) are
formulas.

m if ¢, are formulas and x is a variable then (—¢), (¢ A ) and
Vx1) are formulas.
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First Order Logic
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Finite Relational Structures

Let 7 = (P, R Q%,...,c,r,...).

A structure over 7 looks like:

A= {JALPARA QA A )

STRUCT(7) = {B | B is a finite structure over 7}.
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First Order Logic
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Free Variables and Interpretations

x is bounded in ¢ if x occurs under the scope of a quantifier.
x is free in ¢ if x is not bounded in ¢.

For a structure A, an interpretation is a partial function
i: VARS — |A], e.g.

where ¢ is a constant and m, n, ¢ € | A|.
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First Order Logic
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Satisfiability

Definition (Truth by Tarski)
Let A € STRUCT(7), let ¢ be a formula and i : VARS — | A| an
interpretation. Then A, i |= ¢ if

m o=t~ tpand i(t1) = i(t2).

m¢=P(t,...,t,) and (i(t1),...,i(ty)) € PA
mop=—and A, i}

mo=yYAxand AjiE¢ and Ai E x

m ¢ =Vxy and for all a € |A], A, i[x/a] = ¢
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First Order Logic
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Strings as Relational Structures

A string with 5 characters can be seen as a relational structure:

Position | 4 |3 2|10
String [0 1]0]0 | 1] Example:

Vocabulary (St, <2)
A= (JA], S4, <A)
|A| ={0,1,2,3,4}
s4=1{0,3} It holds that A = ¢
<A={(0,1),(0,2),...}

¢ =Ju,v|=5(u) A=S(v)A

—Iw(v < w < u)|.
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First Order Logic
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Graphs as Relational Structures

Vocabulary 7 = (E?2)
G=(V,E), V=1{0,1,2,3},E = {(0,1),(1,0),...}
b = (9x,) [ FE(x, %) A (E(x,y) > E(y, %)) |
GEY
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First Order Logic
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Adding n-bit Numbers

Let 7. = (<2, AL, BY).
Let A = (|A|, A, B) where |A| ={0,1,...,n—1}.
Relations A and B practically represent two n-bit numbers.

Position 41312110 A={1,2,3)
1st Number | 0 | 1 1 B—
2nd Number |0 |10 |0 |1 ={3,0}

[y

Addition is FO-expressible in 7,5 (see the carry look-ahead
algorithm on whiteboard).
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Ordering and Arithmetic

Position | n—1 | n—2| ... 1|0
Input Sn—1 Spn—2 ... | 51| %S

We need log n bits to code the input.

Our input structures will always contain < (i.e. a total order on
the input domain), 0,1, max and:

SUC(i,j) j=i+1

BIT(/,j): the j-th bith of element j is 1
PLUS(i,j, k): i+j=k
TIMES(/,j, k): i % j = k
BIT(/,0) holds iff / is odd
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Definability (1/2)

Many of the previous predicates and constants are FO-definable
from each other:

Bx=0<=Vy(x<y)
Ex=1<=x>0AVy-(0<y<x)

m SUC(i,j) <= j > iAVz=(i < z <)

m We've seen that PLUS is definable from BIT

Descriptive Complexity: Preliminaries from Logic




First Order Logic
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Definability (2/2)

u=|x/y| <= (u-y) <xAN@v<y)xmu-y+v]
u=xmody < 3Jv[va |x/y]A(u+ty- v=x)
x|y<=xmody=0

PRII\/IE(X)<:>X>1/\(Vy,z)[(x%y-z)—>(y%1\/2%1)]

pow(x) <= (%) |(v | x A PRIME(y)) — (v = 2)|
BIT'(i,j) < |x/y] mod2=1
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The Bit-Sum Lemma

Lemma

Let BSUM(x,y) be true iff y is equal to the number of ones in the
binary representation of x. BSUM is FO-expressible using only BIT
and ordering.

Proof.

See lemma 7.2 from David A. Mix Barrington, Neil Immerman,
and Howard Straubing. “On uniformity within NC1” Journal of
Computer and System Sciences 41.3 (1990): 274-306. Ol
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FO (BIT) =FO (PLUS, TIMES)

Using the previous results we can prove that FO (BIT) =FO
(PLUS, TIMES).

For more informationm see:
m Immerman, Section 1.2.1
m Libkin, Section 6.4
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Isomorphism

Let A, B € STRUCT(7). Then A is isomorphic to B iff there is a
bijection f : |A| — |B| such that:

m PA(ay,...,an) <= PB(f(a1),...,f(an))

m f(c?) =B
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Overview

First Order Queries

Descriptive Complexity: Preliminaries from Logic



First Order Queries
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First Order Queries

Input Schema: o

Output Schema: 7= (R{*,..., R, c1,...,¢Cs)

A k-ary FO-query is a mapping / : cSTRUCT (o) — STRUCT(7),
that consists of 1 + r + s FO-formulas.

We write | = (¢o, P1, .-, Pry V1, .-, Ps)

If A € STRUCT() then

universe of /(. A): consists of all the k-tuples of |.A| that satisfy ¢
relations of /(.A): contain elements of |/(A)| that satisfy

P15 Or
constants of /(A): elements of |/(.A)| that satisfy 11,..., s
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Example: A Unary Query (1/2)

Input Vocabulary: o = (F1, P?2,S?)
For example B € STRUCT (o), where B= (U, F, P, S)

U = {Abraham, Isaac, Rebekah, Sarah,...}

F = {Rebekah, Sarah, ...}

P = {(Abraham, Isaac), (Sarah, Isaac),...}

S = {(Abraham, Sarah), (Isaac, Rebekah),...}
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Example: A Unary Query (2/2)

Input vocabulary: o = (F!, P? S?)
Output vocabulary: 7 = (512, AU?)
I = <true7 ¢Sl(xvy), d)AU(Xay))

bsi1(x,y) = x % yA
3f,m)[f #mAP(f,x) N P(m,x) ANP(f,y) A P(m,y)]

dau(x,y) = F(x)A
(3P, ) [P(p,y) A dsi(p.s) A (s =xV S(x,5))]
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Example: The Addition Query

Let o = (A, B!) and 7 = S,
Remember the addition formula ¢,44 that we defined earlier.

We have the unary query | = (true, ¢,44) that maps elements of
STRUCT(0) to elements of STRUCT(7).
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Example: A Binary Query From Graphs to Graphs

Input Vocabulary: o = (E?).

Output Vocabulary: 7 = (R?).

= (true, ((x,), (x',"))) where

P((x,y), (X', ¥) = (x =X NE(y,y")) V(SUC(x, y) Ax" = y = y')
Let G be undirected. We can show that:

G is connected iff (max, max) is reachable from (0,0) in /(G)
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Boolean Queries

Complexity classes are usually defined for decision problems.

The descriptive analogue of a decision problem is the boolean
query, i.e a mapping from STRUCT(7) to {0,1}. (Observe that
the boolean query does not map structures to structures).

Any FO-sentence ¢ defines a boolean query as follows:
Ip(A) =1 = A= ¢.

E.g. if ¢ = 3x,yE(x,y) then Iy is the edge-existence query.
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Higher Order Boolean Queries

Let ¢ =(3A, B, C)(Vx, y) [E(x,y) —

=((AG) A AW v (BO) A B()) V (C(x) A C(y»)]

Then I4(G) = 1 iff G is 3-colorable.

Observe that ¢ is 3SO (Remember Fagin's Theorem).
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