Descriptive Complexity: Preliminaries from Logic

Stathis Zachos, Petros Potikas, Ioannis Kokkinis and Aggeliki Chalki

ALMA

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHE-MATICS"

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000000000	First Order Que

Overview

1 Organization

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

Organization ●000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000000000	First Order Queries

Overview

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

Organization	Why Descriptive Complexity?	Historical Overview	First Order Logic	
0000				00

First Order Queries

Interaction

Instructors:

- Stathis Zachos: zachos@cs.ntua.gr
- Petros Potikas: ppotik@cs.ntua.gr
- Ioannis Kokkinis: ykokkinis@gmail.com
- Aggeliki Chalki: achalki@corelab.ntua.gr

Lectures:

Tuesday 11:00-15:00 Classroom 1.1.31, old ECE building, NTUA Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Assignments and Evaluation

Presentation

Final Exam

Organization	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000000000	First Order Quer 00000000

- Immerman, Neil. Descriptive complexity. (https://people. cs.umass.edu/~immerman/book/corrections.html)
- Libkin, Leonid. Elements of finite model theory.

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic	First Order Queries

Overview

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

Organization 0000 Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Edge Existence (The Imperative Way)

Does $G = \langle V, E \rangle$ have an edge?

First Order Logic

First Order Queries

Edge Existence (The Imperative Way)

Does $G = \langle V, E \rangle$ have an edge? The imperative way:

```
for(i=0; i<n; i++)
  for(j=0; j<n; j++)
        if (E[i,j] == 1) then
            printf("G has an edge!\n");</pre>
```

First Order Logic

First Order Queries

Edge Existence (The Declarative Way)

Does $G = \langle V, E \rangle$ have and edge?

First Order Logic

First Order Queries

Edge Existence (The Declarative Way)

Does $G = \langle V, E \rangle$ have and edge?

G is actually a structure of a first-order (FO) language with only one binary relation symbol, E.

First Order Logic

First Order Queries

Edge Existence (The Declarative Way)

Does $G = \langle V, E \rangle$ have and edge?

G is actually a structure of a first-order (FO) language with only one binary relation symbol, E.

The declarative way:

 $G \models \exists x \exists y E(x, y).$

Organization	Why Descriptive Complexity?	Historical Overview	First Order Logic	First Order Queries
	000000			

Vertex Cover

Does $G = \langle V, E \rangle$ have a vertex cover of size k?

$$G \models (\exists W \subseteq V) \Big[|W| \le k \land \\ (\forall x, y \in V) \Big[E(x, y) \to (x \in W \lor y \in W) \Big] \Big]$$

Organization	Why Descriptive Complexity?	Historical Overview	First Order Logic	First Order Queries
	000000			

Does $G = \langle V, E \rangle$ have a vertex cover of size k?

$$egin{aligned} G &\models (\exists W \subseteq V) \Big[|W| \leq k \land \ &(orall x, y \in V) ig[E(x,y)
ightarrow (x \in W \lor y \in W) ig] \Big] \end{aligned}$$

Be careful: We quantified over sets.

First Order Logic

First Order Queries

Descriptive Complexity

Descriptive Complexity

The computational complexity of a problem can be understood as the richness of the language needed to specify the problem.

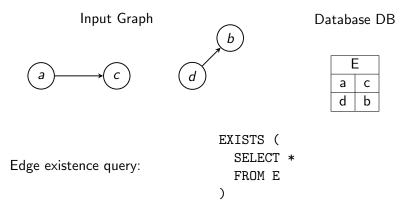
"Edge Existence" is easier than "Has a Vertex Cover of size k" since the formula $\exists x \exists y E(x, y)$ is FO whereas the formula

$$G \models (\exists W \subseteq V) \Big[|W| \le k \land \\ (\forall x, y \in V) \big[E(x, y) \to (x \in W \lor y \in W) \big] \Big]$$

is SO.

Application to Databases

All database management languages, like SQL are extensions of *FO*-logic.



Organization	

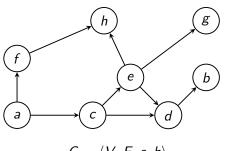
Why Descriptive Complexity?

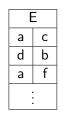
Historical Overview

First Order Logic

First Order Queries

Input Representation





$$G = \langle V, E, a, b \rangle$$
$$G \models \phi?$$

Query Q does DB satisfy Q?

 $V = \{a, b, \ldots\}, E = \{(a, c), (d, b), \ldots\}$

Organization 0000	Why Descriptive Complexity?	Historical Overview ●00000	First Order Logic	First Order Queries

Overview

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

First Order Logic

First Order Queries

Computational Complexity Measures

Engineers: space and time are natural resources.

Mathematicians: space and time depend on the model ...

Theorem (Fagin, 1974)

 $NP = set of problems describable in existential second-order logic (\exists SO).$

.

.

First Order Logic

First Order Queries

Complexity as Expressibility

The most important complexity classes and questions have elegant descriptive analogues.

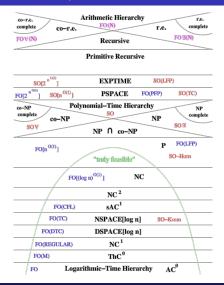
 ${\sf P}$ is the set of problems describable in FO plus inductive definitions.

P = NP iff every problem describable in *SO* is already expressible in *FO* plus inductive definitions.

First Order Logic

First Order Queries

The Complexity World (From a Logician's View)



First Order Logic

First Order Queries

The Case for Finite Models

All objects (programs, inputs, databases, \dots) handled by computers are finite.

So, the structures we are going to study will always be finite.

Most of the techniques/results we knew do not apply any more

First Order Logic

First Order Queries

No Proof Theory for Finite Models!

In the case of *FO*-logic, when infinite and finite models are allowed Validity: R.E.-complete and axiomatizable (Gödel, 1930) Satisfiability: non-R.E

but when only finite models are allowed

Validity: non-R.E, thus non-axiomatizable! Satisfiability: R.E.-complete (Trakhtenbrot, 1950)

Organization	Why Descriptive Complexity?	Historical Overview	F

First Order Logic

First Order Queries

Overview

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic ○●○○○○○○○○○○○○○	First Order Queries

Vocabularies

A vocabulary τ contains: Logical Symbols

variables: x, y, z, \ldots

equality: \approx

logical connectives: \land, \neg, \forall

Non-Logical Symbols

constants: *c*, *r*, ...

relational symbols: P, R, Q, \ldots

We write $\tau = \langle P^{a_1}, R^{a_2}, Q^{a_3}, \dots, c, r, \dots \rangle$.

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic ००●०००००००००००	First Order Queries

Terms and Formulas

Vocabulary
$$au = \langle P^{a_1}, R^{a_2}, Q^{a_3}, \ldots, c, r, \ldots \rangle$$

Definition (Terms over τ)

Every variable and constant is a term.

Definition (Formulas over τ)

- If t_1, \ldots, t_n are terms then $t_1 \approx t_2$ and $P(t_1, \ldots, t_n)$ are formulas.
- if ϕ, ψ are formulas and x is a variable then $(\neg \phi)$, $(\phi \land \psi)$ and $\forall x \psi$ are formulas.

First Order Logic

First Order Queries

Finite Relational Structures

Let
$$\tau = \langle P^{a_1}, R^{a_2}, Q^{a_3}, \ldots, c, r, \ldots \rangle$$
.

A structure over au looks like:

$$\mathcal{A} = \{ |\mathcal{A}|, \mathcal{P}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{Q}^{\mathcal{A}}, \dots, \mathcal{c}^{\mathcal{A}}, \mathcal{r}^{\mathcal{A}}, \dots \}.$$

 $\mathsf{STRUCT}(\tau) = \{ \mathcal{B} \mid \mathcal{B} \text{ is a finite structure over } \tau \}.$

First Order Logic

First Order Queries

Free Variables and Interpretations

x is bounded in ϕ if x occurs under the scope of a quantifier.

x is free in ϕ if x is not bounded in ϕ .

For a structure \mathcal{A} , an interpretation is a partial function $i : VARS \rightharpoonup |\mathcal{A}|$, e.g.:

$$\begin{array}{c} x \stackrel{i}{\mapsto} m \\ y \stackrel{i}{\mapsto} n \\ c \stackrel{i}{\mapsto} c^{\mathcal{A}} \end{array}$$

where c is a constant and $m, n, c^{\mathcal{A}} \in |\mathcal{A}|$.

Organization	

First Order Logic

First Order Queries

Satisfiability

Definition (Truth by Tarski)

Let $\mathcal{A} \in \mathsf{STRUCT}(\tau)$, let ϕ be a formula and $i: VARS \rightarrow |\mathcal{A}|$ an interpretation. Then $\mathcal{A}, i \models \phi$ if

•
$$\phi = t_1 \approx t_2$$
 and $i(t_1) = i(t_2)$.

•
$$\phi = P(t_1, \ldots, t_n)$$
 and $(i(t_1), \ldots, i(t_n)) \in P^{\mathcal{A}}$

•
$$\phi = \neg \psi$$
 and $\mathcal{A}, i \not\models \psi$

•
$$\phi = \psi \land \chi$$
 and $A, i \models \psi$ and $A, i \models \chi$

•
$$\phi = \forall x \psi$$
 and for all $a \in |\mathcal{A}|$, $A, i[x/a] \models \psi$

First Order Logic

First Order Queries

Strings as Relational Structures

A string with 5 characters can be seen as a relational structure:

Position	4	3	2	1	0
String	0	1	0	0	1

Vocabulary $\langle S^1, \leq^2 \rangle$ $\mathcal{A} = \langle |\mathcal{A}|, S^{\mathcal{A}}, \leq^{\mathcal{A}} \rangle$ $|\mathcal{A}| = \{0, 1, 2, 3, 4\}$ $S^{\mathcal{A}} = \{0, 3\}$ $\leq^{\mathcal{A}} = \{(0, 1), (0, 2), \ldots\}$ Example:

$$\phi = \exists u, v \Big[\neg S(u) \land \neg S(v) \land \\ \neg \exists w (v < w < u) \Big].$$

It holds that $\mathcal{A} \models \phi$

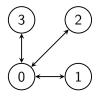
Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Graphs as Relational Structures



Vocabulary
$$\tau = \langle E^2 \rangle$$

 $\mathcal{G} = \langle V, E \rangle, V = \{0, 1, 2, 3\}, E = \{(0, 1), (1, 0), \ldots\}$
 $\psi = (\forall x, y) \Big[\neg E(x, x) \land (E(x, y) \leftrightarrow E(y, x)) \Big]$
 $\mathcal{G} \models \psi$

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000000000000000000000000000000	First Order Queries

Adding *n*-bit Numbers

Let
$$\tau_{ab} = \langle \leq^2, A^1, B^1 \rangle$$
.
Let $\mathcal{A} = \langle |\mathcal{A}|, A, B \rangle$ where $|\mathcal{A}| = \{0, 1, \dots, n-1\}$.
Relations A and B practically represent two *n*-bit numbers.

Position	4	3	2	1	0
1st Number	0	1	1	1	0
2nd Number	0	1	0	0	1

$$A = \{1, 2, 3\}$$
$$B = \{3, 0\}$$

Addition is *FO*-expressible in τ_{ab} (see the carry look-ahead algorithm on whiteboard).

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000●00000	First Order Queries

Ordering and Arithmetic

Position	n-1	<i>n</i> – 2	 1	0
Input	s _{n-1}	<i>s</i> _{n-2}	 <i>s</i> 1	<i>s</i> 0

We need $\log n$ bits to code the input.

Our input structures will always contain \leq (i.e. a total order on the input domain), 0, 1, max and:

SUC(*i*, *j*) j = i + 1BIT(*i*, *j*): the *j*-th bith of element *i* is 1 PLUS(*i*, *j*, *k*): i + j = kTIMES(*i*, *j*, *k*): $i \times j = k$ BIT(*i*, 0) holds iff *i* is odd

Organization	Why Descriptive Complexity?	Historical Overview	First Order Logic	First Order (
0000		000000	000000000000000000000000000000000000	00000000

Many of the previous predicates and constants are *FO*-definable from each other:

- $x = 0 \iff \forall y (x \le y)$
- $x = 1 \iff x > 0 \land \forall y \neg (0 < y < x)$
- SUC $(i,j) \iff j > i \land \forall z \neg (i < z < j)$
- We've seen that PLUS is definable from BIT

Organization 0000 Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Definability (2/2)

$$\begin{split} u &= \lfloor x/y \rfloor \Longleftrightarrow (u \cdot y) \leq x \land (\exists v < y) \big[x \approx u \cdot y + v \big] \\ u &= x \mod y \iff \exists v \big[v \approx \lfloor x/y \rfloor \land (u + y \cdot v \approx x) \big] \\ x \mid y \iff x \mod y \approx 0 \\ \mathsf{PRIME}(x) \iff x > 1 \land (\forall y, z) \big[(x \approx y \cdot z) \rightarrow (y \approx 1 \lor z \approx 1) \big] \\ \mathsf{pow}_2(x) \iff (\forall y) \big[(y \mid x \land \mathsf{PRIME}(y)) \rightarrow (y = 2) \big] \\ \mathsf{BIT}'(i, j) \iff \lfloor x/y \rfloor \mod 2 = 1 \end{split}$$

First Order Logic

First Order Queries

The Bit-Sum Lemma

Lemma

Let BSUM(x, y) be true iff y is equal to the number of ones in the binary representation of x. BSUM is FO-expressible using only BIT and ordering.

Proof.

See lemma 7.2 from David A. Mix Barrington, Neil Immerman, and Howard Straubing. "On uniformity within NC¹" Journal of Computer and System Sciences 41.3 (1990): 274-306.

First Order Logic

First Order Queries

FO (BIT) =FO (PLUS, TIMES)

Using the previous results we can prove that FO (BIT) = FO (PLUS, TIMES).

For more informationm see:

- Immerman, Section 1.2.1
- Libkin, Section 6.4

Organization	Why Descriptive Complexity?	Historical Overview	First Order Logic
			000000000000000

First Order Queries

Isomorphism

Let $\mathcal{A}, \mathcal{B} \in \mathsf{STRUCT}(\tau)$. Then \mathcal{A} is isomorphic to \mathcal{B} iff there is a bijection $f : |\mathcal{A}| \to |\mathcal{B}|$ such that:

•
$$P^{\mathcal{A}}(a_1,\ldots,a_n) \iff P^{\mathcal{B}}(f(a_1),\ldots,f(a_n))$$

• $f(c^{\mathcal{A}}) = c^{\mathcal{B}}.$

	Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic 000000000000000	First Order ●0000000
--	----------------------	-----------------------------	-------------------------------	--------------------------------------	-------------------------

Overview

1 Organization

- 2 Why Descriptive Complexity?
- 3 Historical Overview
- 4 First Order Logic
- 5 First Order Queries

Queries

Organization 0000	Why Descriptive Complexity?	Historical Overview 000000	First Order Logic	First Order Queries 0●000000

First Order Queries

Input Schema: σ Output Schema: $\tau = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$ A k-ary FO-query is a mapping $I : cSTRUCT(\sigma) \rightarrow STRUCT(\tau)$, that consists of 1 + r + s FO-formulas. We write $I = \langle \phi_0, \phi_1, \dots, \phi_r, \psi_1, \dots, \psi_s \rangle$ If $\mathcal{A} \in \mathsf{STRUCT}(\sigma)$ then universe of $I(\mathcal{A})$: consists of all the k-tuples of $|\mathcal{A}|$ that satisfy ϕ_0 relations of $I(\mathcal{A})$: contain elements of $|I(\mathcal{A})|$ that satisfy ϕ_1,\ldots,ϕ_r constants of $I(\mathcal{A})$: elements of $|I(\mathcal{A})|$ that satisfy ψ_1, \ldots, ψ_s

Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Example: A Unary Query (1/2)

Input Vocabulary: $\sigma = \langle F^1, P^2, S^2 \rangle$

For example $\mathcal{B} \in \mathsf{STRUCT}(\sigma)$, where $\mathcal{B} = \langle U, F, P, S \rangle$

$$\begin{split} &U = \{ \text{Abraham, Isaac, Rebekah, Sarah, ...} \} \\ &F = \{ \text{Rebekah, Sarah, ...} \} \\ &P = \{ (\text{Abraham, Isaac}), (\text{Sarah, Isaac}), ... \} \\ &S = \{ (\text{Abraham, Sarah}), (\text{Isaac, Rebekah}), ... \} \end{split}$$

Why Descriptive Complexity?

Historical Overview

First Order Logic

First Order Queries

Example: A Unary Query (2/2)

Input vocabulary: $\sigma = \langle F^1, P^2, S^2 \rangle$ Output vocabulary: $\tau = \langle SI^2, AU^2 \rangle$ $I = \langle true, \phi_{SI}(x, y), \phi_{AII}(x, y) \rangle$ $\phi_{SI}(x, y) = x \not\approx y \wedge$ $(\exists f, m) [f \neq m \land P(f, x) \land P(m, x) \land P(f, y) \land P(m, y)]$ $\phi_{AII}(x, y) = F(x) \wedge$ $(\exists p, s) [P(p, y) \land \phi_{SI}(p, s) \land (s = x \lor S(x, s))]$

First Order Logic

First Order Queries

Example: The Addition Query

Let
$$\sigma = \langle A^1, B^1 \rangle$$
 and $\tau = S^1$.

Remember the addition formula $\phi_{\textit{add}}$ that we defined earlier.

We have the unary query $I = \langle true, \phi_{add} \rangle$ that maps elements of STRUCT(σ) to elements of STRUCT(τ).

First Order Logic

First Order Queries

Example: A Binary Query From Graphs to Graphs

Input Vocabulary: $\sigma = \langle E^2 \rangle$. Output Vocabulary: $\tau = \langle R^2 \rangle$. $I = \langle true, \phi((x, y), (x', y')) \rangle$ where $\phi((x, y), (x', y')) = (x = x' \land E(y, y')) \lor (SUC(x, y) \land x' = y = y')$ Let *G* be undirected. We can show that:

G is connected iff (max, max) is reachable from (0,0) in I(G)

Boolean Queries

Complexity classes are usually defined for decision problems.

The descriptive analogue of a decision problem is the boolean query, i.e a mapping from $STRUCT(\tau)$ to $\{0,1\}$. (Observe that the boolean query does not map structures to structures).

Any FO-sentence ϕ defines a boolean query as follows:

$$I_{\phi}(\mathcal{A}) = 1 \Longleftrightarrow \mathcal{A} \models \phi.$$

E.g. if $\phi = \exists x, y E(x, y)$ then I_{ϕ} is the edge-existence query.

First Order Logic

First Order Queries

Higher Order Boolean Queries

Let
$$\phi = (\exists A, B, C)(\forall x, y) \left[E(x, y) \rightarrow \\ \neg \left((A(x) \land A(y)) \lor (B(x) \land B(y)) \lor (C(x) \land C(y)) \right) \right]$$

Then $I_{\phi}(G) = 1$ iff G is 3-colorable.

Observe that ϕ is $\exists SO$ (Remember Fagin's Theorem).