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Interaction

Instructors:

Stathis Zachos: zachos@cs.ntua.gr

Petros Potikas: ppotik@cs.ntua.gr

Ioannis Kokkinis: ykokkinis@gmail.com

Aggeliki Chalki: achalki@corelab.ntua.gr

Lectures:
Tuesday 11:00-15:00
Classroom 1.1.31, old ECE building, NTUA

Descriptive Complexity: Preliminaries from Logic 4 / 42

mailto:zachos@cs.ntua.gr
mailto:ppotik@cs.ntua.gr
mailto:ykokkinis@gmail.com
mailto:achalki@corelab.ntua.gr


Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Assignments and Evaluation

Presentation

Final Exam
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Edge Existence (The Imperative Way)

Does G = 〈V ,E 〉 have an edge?

The imperative way:

for(i=0; i<n; i++)

for(j=0; j<n; j++)

if (E[i,j] == 1) then

printf("G has an edge!\n");
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Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).
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Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).

Descriptive Complexity: Preliminaries from Logic 9 / 42



Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).

Descriptive Complexity: Preliminaries from Logic 9 / 42



Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Vertex Cover

Does G = 〈V ,E 〉 have a vertex cover of size k?

G |= (∃W ⊆ V )
[
|W | ≤ k ∧

(∀x , y ∈ V )
[
E (x , y)→ (x ∈W ∨ y ∈W )

]]

Be careful: We quantified over sets.
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Descriptive Complexity

Descriptive Complexity

The computational complexity of a problem can be understood as
the richness of the language needed to specify the problem.

“Edge Existence” is easier than “Has a Vertex Cover of size k”
since the formula ∃x∃yE (x , y) is FO whereas the formula

G |= (∃W ⊆ V )
[
|W | ≤ k ∧

(∀x , y ∈ V )
[
E (x , y)→ (x ∈W ∨ y ∈W )

]]
is SO.
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Application to Databases

All database management languages, like SQL are extensions of
FO-logic.

Input Graph

a c d

b

Database DB

E

a c

d b

Edge existence query:

EXISTS (

SELECT *

FROM E

)
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Input Representation

a c d

be
f

gh
Database DB

E

a c

d b

a f
...

Query Q

does DB satisfy Q?

G = 〈V ,E , a, b〉

G |= φ?

V = {a, b, . . .},E = {(a, c), (d , b), . . .}
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Computational Complexity Measures

Engineers: space and time are natural resources.

Mathematicians: space and time depend on the model . . .

Theorem (Fagin, 1974)

NP = set of problems describable in existential second-order logic
(∃SO).
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Complexity as Expressibility

The most important complexity classes and questions have elegant
descriptive analogues.

P is the set of problems describable in FO plus inductive
definitions.

...

P = NP iff every problem describable in SO is already expressible
in FO plus inductive definitions.

...

Descriptive Complexity: Preliminaries from Logic 16 / 42
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The Complexity World (From a Logician’s View)
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The Case for Finite Models

All objects (programs, inputs, databases, . . . ) handled by
computers are finite.

So, the structures we are going to study will always be finite.

Most of the techniques/results we knew do not apply any more . . .
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No Proof Theory for Finite Models!

In the case of FO-logic, when infinite and finite models are allowed

Validity: R.E.-complete and axiomatizable (Gödel, 1930)

Satisfiability: non-R.E

but when only finite models are allowed

Validity: non-R.E, thus non-axiomatizable!

Satisfiability: R.E.-complete (Trakhtenbrot, 1950)
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Vocabularies

A vocabulary τ contains:
Logical Symbols

variables: x , y , z , . . .

equality: ≈
logical connectives: ∧,¬,∀
Non-Logical Symbols

constants: c , r , . . .

relational symbols: P,R,Q, . . .

We write τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c , r , . . .〉.
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Terms and Formulas

Vocabulary τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c, r , . . .〉

Definition (Terms over τ)

Every variable and constant is a term.

Definition (Formulas over τ)

If t1, . . . , tn are terms then t1 ≈ t2 and P(t1, . . . , tn) are
formulas.

if φ, ψ are formulas and x is a variable then (¬φ), (φ ∧ ψ) and
∀xψ are formulas.
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Finite Relational Structures

Let τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c, r , . . .〉.

A structure over τ looks like:

A = {|A|,PA,RA,QA, . . . , cA, rA, . . .}.

STRUCT(τ) = {B | B is a finite structure over τ}.

Descriptive Complexity: Preliminaries from Logic 23 / 42
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Free Variables and Interpretations

x is bounded in φ if x occurs under the scope of a quantifier.

x is free in φ if x is not bounded in φ.

For a structure A, an interpretation is a partial function
i : VARS ⇀ |A|, e.g.:

x
i7→ m

y
i7→ n

c
i7→ cA

where c is a constant and m, n, cA ∈ |A|.
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Satisfiability

Definition (Truth by Tarski)

Let A ∈ STRUCT(τ), let φ be a formula and i : VARS ⇀ |A| an
interpretation. Then A, i |= φ if

φ = t1 ≈ t2 and i(t1) = i(t2).

φ = P(t1, . . . , tn) and (i(t1), . . . , i(tn)) ∈ PA

φ = ¬ψ and A, i 6|= ψ

φ = ψ ∧ χ and A, i |= ψ and A, i |= χ

φ = ∀xψ and for all a ∈ |A|, A, i [x/a] |= ψ

Descriptive Complexity: Preliminaries from Logic 25 / 42
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Strings as Relational Structures

A string with 5 characters can be seen as a relational structure:

Position 4 3 2 1 0

String 0 1 0 0 1

Vocabulary 〈S1,≤2〉

A = 〈|A|,SA,≤A〉

|A| = {0, 1, 2, 3, 4}

SA = {0, 3}

≤A= {(0, 1), (0, 2), . . .}

Example:

φ = ∃u, v
[
¬S(u) ∧ ¬S(v)∧

¬∃w(v < w < u)
]
.

It holds that A |= φ

Descriptive Complexity: Preliminaries from Logic 26 / 42
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Graphs as Relational Structures

0 1

23

Vocabulary τ = 〈E 2〉

G = 〈V ,E 〉, V = {0, 1, 2, 3},E = {(0, 1), (1, 0), . . .}

ψ = (∀x , y)
[
¬E (x , x) ∧

(
E (x , y)↔ E (y , x)

)]
G |= ψ
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Adding n-bit Numbers

Let τab = 〈≤2,A1,B1〉.
Let A = 〈|A|,A,B〉 where |A| = {0, 1, . . . , n − 1}.
Relations A and B practically represent two n-bit numbers.

Position 4 3 2 1 0

1st Number 0 1 1 1 0

2nd Number 0 1 0 0 1

A = {1, 2, 3}
B = {3, 0}

Addition is FO-expressible in τab (see the carry look-ahead
algorithm on whiteboard).
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Ordering and Arithmetic

Position n − 1 n − 2 . . . 1 0

Input sn−1 sn−2 . . . s1 s0

We need log n bits to code the input.

Our input structures will always contain ≤ (i.e. a total order on
the input domain), 0, 1,max and:

SUC(i , j) j = i + 1

BIT(i , j): the j-th bith of element i is 1

PLUS(i , j , k): i + j = k

TIMES(i , j , k): i × j = k

BIT(i , 0) holds iff i is odd

Descriptive Complexity: Preliminaries from Logic 29 / 42
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Definability (1/2)

Many of the previous predicates and constants are FO-definable
from each other:

x = 0⇐⇒ ∀y(x ≤ y)

x = 1⇐⇒ x > 0 ∧ ∀y¬(0 < y < x)

SUC(i , j)⇐⇒ j > i ∧ ∀z¬(i < z < j)

We’ve seen that PLUS is definable from BIT
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Definability (2/2)

u = bx/yc ⇐⇒ (u · y) ≤ x ∧ (∃v < y)
[
x ≈ u · y + v

]
u = x mod y ⇐⇒ ∃v

[
v ≈ bx/yc ∧ (u + y · v ≈ x)

]
x | y ⇐⇒ x mod y ≈ 0

PRIME(x)⇐⇒ x > 1 ∧ (∀y , z)
[
(x ≈ y · z)→ (y ≈ 1 ∨ z ≈ 1)

]
pow2(x)⇐⇒ (∀y)

[
(y | x ∧ PRIME(y))→ (y = 2)

]
BIT′(i , j)⇐⇒ bx/yc mod 2 = 1

Descriptive Complexity: Preliminaries from Logic 31 / 42
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The Bit-Sum Lemma

Lemma

Let BSUM(x , y) be true iff y is equal to the number of ones in the
binary representation of x . BSUM is FO-expressible using only BIT
and ordering.

Proof.

See lemma 7.2 from David A. Mix Barrington, Neil Immerman,
and Howard Straubing. “On uniformity within NC 1” Journal of
Computer and System Sciences 41.3 (1990): 274-306.
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FO (BIT) =FO (PLUS, TIMES)

Using the previous results we can prove that FO (BIT) =FO
(PLUS, TIMES).

For more informationm see:

Immerman, Section 1.2.1

Libkin, Section 6.4
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Isomorphism

Let A,B ∈ STRUCT(τ). Then A is isomorphic to B iff there is a
bijection f : |A| → |B| such that:

PA(a1, . . . , an)⇐⇒ PB(f (a1), . . . , f (an))

f (cA) = cB.

Descriptive Complexity: Preliminaries from Logic 34 / 42
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First Order Queries

Input Schema: σ

Output Schema: τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉

A k-ary FO-query is a mapping I : cSTRUCT(σ)→ STRUCT(τ),
that consists of 1 + r + s FO-formulas.

We write I = 〈φ0, φ1, . . . , φr , ψ1, . . . , ψs〉
If A ∈ STRUCT(σ) then

universe of I (A): consists of all the k-tuples of |A| that satisfy φ0

relations of I (A): contain elements of |I (A)| that satisfy
φ1, . . . , φr

constants of I (A): elements of |I (A)| that satisfy ψ1, . . . , ψs
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Example: A Unary Query (1/2)

Input Vocabulary: σ = 〈F 1,P2,S2〉

For example B ∈ STRUCT(σ), where B = 〈U,F ,P, S〉

U = {Abraham, Isaac, Rebekah, Sarah, . . .}
F = {Rebekah, Sarah, . . .}
P = {(Abraham, Isaac), (Sarah, Isaac), . . .}
S = {(Abraham, Sarah), (Isaac, Rebekah), . . .}
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Example: A Unary Query (2/2)

Input vocabulary: σ = 〈F 1,P2, S2〉

Output vocabulary: τ = 〈SI 2,AU2〉

I = 〈true, φSI (x , y), φAU(x , y)〉

φSI (x , y) = x 6≈ y∧
(∃f ,m) [f 6= m ∧ P(f , x) ∧ P(m, x) ∧ P(f , y) ∧ P(m, y)]

φAU(x , y) = F (x)∧
(∃p, s) [P(p, y) ∧ φSI (p, s) ∧ (s = x ∨ S(x , s))]
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Example: The Addition Query

Let σ = 〈A1,B1〉 and τ = S1.

Remember the addition formula φadd that we defined earlier.

We have the unary query I = 〈true, φadd〉 that maps elements of
STRUCT(σ) to elements of STRUCT(τ).
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Example: A Binary Query From Graphs to Graphs

Input Vocabulary: σ = 〈E 2〉.

Output Vocabulary: τ = 〈R2〉.

I = 〈true, φ((x , y), (x ′, y ′))〉 where

φ((x , y), (x ′, y ′)) = (x = x ′ ∧E (y , y ′))∨ (SUC(x , y)∧ x ′ = y = y ′)

Let G be undirected. We can show that:

G is connected iff (max,max) is reachable from (0, 0) in I (G )
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Boolean Queries

Complexity classes are usually defined for decision problems.

The descriptive analogue of a decision problem is the boolean
query, i.e a mapping from STRUCT(τ) to {0, 1}. (Observe that
the boolean query does not map structures to structures).

Any FO-sentence φ defines a boolean query as follows:

Iφ(A) = 1⇐⇒ A |= φ.

E.g. if φ = ∃x , yE (x , y) then Iφ is the edge-existence query.
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Higher Order Boolean Queries

Let φ =(∃A,B,C )(∀x , y)

[
E (x , y)→

¬
(

(A(x) ∧ A(y)) ∨ (B(x) ∧ B(y)) ∨ (C (x) ∧ C (y))
)]

Then Iφ(G ) = 1 iff G is 3-colorable.

Observe that φ is ∃SO (Remember Fagin’s Theorem).
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