
Descriptive Complexity: Preliminaries from Logic

Stathis Zachos, Petros Potikas, Ioannis Kokkinis and Aggeliki
Chalki

ALMA
INTER-INSTITUTIONAL GRADUATE PROGRAM
“ALGORITHMS, LOGIC AND DISCRETE MATHE-
MATICS”

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 2 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 3 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Interaction

Instructors:

Stathis Zachos: zachos@cs.ntua.gr

Petros Potikas: ppotik@cs.ntua.gr

Ioannis Kokkinis: ykokkinis@gmail.com

Aggeliki Chalki: achalki@corelab.ntua.gr

Lectures:
Tuesday 11:00-15:00
Classroom 1.1.31, old ECE building, NTUA

Descriptive Complexity: Preliminaries from Logic 4 / 42

mailto:zachos@cs.ntua.gr
mailto:ppotik@cs.ntua.gr
mailto:ykokkinis@gmail.com
mailto:achalki@corelab.ntua.gr

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Assignments and Evaluation

Presentation

Final Exam

Descriptive Complexity: Preliminaries from Logic 5 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

References

Immerman, Neil. Descriptive complexity. (https://people.
cs.umass.edu/~immerman/book/corrections.html)

Libkin, Leonid. Elements of finite model theory.

Descriptive Complexity: Preliminaries from Logic 6 / 42

https://people.cs.umass.edu/~immerman/book/corrections.html
https://people.cs.umass.edu/~immerman/book/corrections.html

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 7 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Imperative Way)

Does G = 〈V ,E 〉 have an edge?

The imperative way:

for(i=0; i<n; i++)

for(j=0; j<n; j++)

if (E[i,j] == 1) then

printf("G has an edge!\n");

Descriptive Complexity: Preliminaries from Logic 8 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Imperative Way)

Does G = 〈V ,E 〉 have an edge?

The imperative way:

for(i=0; i<n; i++)

for(j=0; j<n; j++)

if (E[i,j] == 1) then

printf("G has an edge!\n");

Descriptive Complexity: Preliminaries from Logic 8 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).

Descriptive Complexity: Preliminaries from Logic 9 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).

Descriptive Complexity: Preliminaries from Logic 9 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Edge Existence (The Declarative Way)

Does G = 〈V ,E 〉 have and edge?

G is actually a structure of a first-order (FO) language with only
one binary relation symbol, E .

The declarative way:

G |= ∃x∃yE (x , y).

Descriptive Complexity: Preliminaries from Logic 9 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Vertex Cover

Does G = 〈V ,E 〉 have a vertex cover of size k?

G |= (∃W ⊆ V)
[
|W | ≤ k ∧

(∀x , y ∈ V)
[
E (x , y)→ (x ∈W ∨ y ∈W)

]]

Be careful: We quantified over sets.

Descriptive Complexity: Preliminaries from Logic 10 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Vertex Cover

Does G = 〈V ,E 〉 have a vertex cover of size k?

G |= (∃W ⊆ V)
[
|W | ≤ k ∧

(∀x , y ∈ V)
[
E (x , y)→ (x ∈W ∨ y ∈W)

]]
Be careful: We quantified over sets.

Descriptive Complexity: Preliminaries from Logic 10 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Descriptive Complexity

Descriptive Complexity

The computational complexity of a problem can be understood as
the richness of the language needed to specify the problem.

“Edge Existence” is easier than “Has a Vertex Cover of size k”
since the formula ∃x∃yE (x , y) is FO whereas the formula

G |= (∃W ⊆ V)
[
|W | ≤ k ∧

(∀x , y ∈ V)
[
E (x , y)→ (x ∈W ∨ y ∈W)

]]
is SO.

Descriptive Complexity: Preliminaries from Logic 11 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Application to Databases

All database management languages, like SQL are extensions of
FO-logic.

Input Graph

a c d

b

Database DB

E

a c

d b

Edge existence query:

EXISTS (

SELECT *

FROM E

)

Descriptive Complexity: Preliminaries from Logic 12 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Input Representation

a c d

be
f

gh
Database DB

E

a c

d b

a f
...

Query Q

does DB satisfy Q?

G = 〈V ,E , a, b〉

G |= φ?

V = {a, b, . . .},E = {(a, c), (d , b), . . .}

Descriptive Complexity: Preliminaries from Logic 13 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 14 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Computational Complexity Measures

Engineers: space and time are natural resources.

Mathematicians: space and time depend on the model . . .

Theorem (Fagin, 1974)

NP = set of problems describable in existential second-order logic
(∃SO).

Descriptive Complexity: Preliminaries from Logic 15 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Complexity as Expressibility

The most important complexity classes and questions have elegant
descriptive analogues.

P is the set of problems describable in FO plus inductive
definitions.

...

P = NP iff every problem describable in SO is already expressible
in FO plus inductive definitions.

...

Descriptive Complexity: Preliminaries from Logic 16 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

The Complexity World (From a Logician’s View)

Descriptive Complexity: Preliminaries from Logic 17 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

The Case for Finite Models

All objects (programs, inputs, databases, . . .) handled by
computers are finite.

So, the structures we are going to study will always be finite.

Most of the techniques/results we knew do not apply any more . . .

Descriptive Complexity: Preliminaries from Logic 18 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

No Proof Theory for Finite Models!

In the case of FO-logic, when infinite and finite models are allowed

Validity: R.E.-complete and axiomatizable (Gödel, 1930)

Satisfiability: non-R.E

but when only finite models are allowed

Validity: non-R.E, thus non-axiomatizable!

Satisfiability: R.E.-complete (Trakhtenbrot, 1950)

Descriptive Complexity: Preliminaries from Logic 19 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 20 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Vocabularies

A vocabulary τ contains:
Logical Symbols

variables: x , y , z , . . .

equality: ≈
logical connectives: ∧,¬,∀
Non-Logical Symbols

constants: c , r , . . .

relational symbols: P,R,Q, . . .

We write τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c , r , . . .〉.

Descriptive Complexity: Preliminaries from Logic 21 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Terms and Formulas

Vocabulary τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c, r , . . .〉

Definition (Terms over τ)

Every variable and constant is a term.

Definition (Formulas over τ)

If t1, . . . , tn are terms then t1 ≈ t2 and P(t1, . . . , tn) are
formulas.

if φ, ψ are formulas and x is a variable then (¬φ), (φ ∧ ψ) and
∀xψ are formulas.

Descriptive Complexity: Preliminaries from Logic 22 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Finite Relational Structures

Let τ = 〈Pa1 ,Ra2 ,Qa3 , . . . , c, r , . . .〉.

A structure over τ looks like:

A = {|A|,PA,RA,QA, . . . , cA, rA, . . .}.

STRUCT(τ) = {B | B is a finite structure over τ}.

Descriptive Complexity: Preliminaries from Logic 23 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Free Variables and Interpretations

x is bounded in φ if x occurs under the scope of a quantifier.

x is free in φ if x is not bounded in φ.

For a structure A, an interpretation is a partial function
i : VARS ⇀ |A|, e.g.:

x
i7→ m

y
i7→ n

c
i7→ cA

where c is a constant and m, n, cA ∈ |A|.

Descriptive Complexity: Preliminaries from Logic 24 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Satisfiability

Definition (Truth by Tarski)

Let A ∈ STRUCT(τ), let φ be a formula and i : VARS ⇀ |A| an
interpretation. Then A, i |= φ if

φ = t1 ≈ t2 and i(t1) = i(t2).

φ = P(t1, . . . , tn) and (i(t1), . . . , i(tn)) ∈ PA

φ = ¬ψ and A, i 6|= ψ

φ = ψ ∧ χ and A, i |= ψ and A, i |= χ

φ = ∀xψ and for all a ∈ |A|, A, i [x/a] |= ψ

Descriptive Complexity: Preliminaries from Logic 25 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Strings as Relational Structures

A string with 5 characters can be seen as a relational structure:

Position 4 3 2 1 0

String 0 1 0 0 1

Vocabulary 〈S1,≤2〉

A = 〈|A|,SA,≤A〉

|A| = {0, 1, 2, 3, 4}

SA = {0, 3}

≤A= {(0, 1), (0, 2), . . .}

Example:

φ = ∃u, v
[
¬S(u) ∧ ¬S(v)∧

¬∃w(v < w < u)
]
.

It holds that A |= φ

Descriptive Complexity: Preliminaries from Logic 26 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Graphs as Relational Structures

0 1

23

Vocabulary τ = 〈E 2〉

G = 〈V ,E 〉, V = {0, 1, 2, 3},E = {(0, 1), (1, 0), . . .}

ψ = (∀x , y)
[
¬E (x , x) ∧

(
E (x , y)↔ E (y , x)

)]
G |= ψ

Descriptive Complexity: Preliminaries from Logic 27 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Adding n-bit Numbers

Let τab = 〈≤2,A1,B1〉.
Let A = 〈|A|,A,B〉 where |A| = {0, 1, . . . , n − 1}.
Relations A and B practically represent two n-bit numbers.

Position 4 3 2 1 0

1st Number 0 1 1 1 0

2nd Number 0 1 0 0 1

A = {1, 2, 3}
B = {3, 0}

Addition is FO-expressible in τab (see the carry look-ahead
algorithm on whiteboard).

Descriptive Complexity: Preliminaries from Logic 28 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Ordering and Arithmetic

Position n − 1 n − 2 . . . 1 0

Input sn−1 sn−2 . . . s1 s0

We need log n bits to code the input.

Our input structures will always contain ≤ (i.e. a total order on
the input domain), 0, 1,max and:

SUC(i , j) j = i + 1

BIT(i , j): the j-th bith of element i is 1

PLUS(i , j , k): i + j = k

TIMES(i , j , k): i × j = k

BIT(i , 0) holds iff i is odd

Descriptive Complexity: Preliminaries from Logic 29 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Definability (1/2)

Many of the previous predicates and constants are FO-definable
from each other:

x = 0⇐⇒ ∀y(x ≤ y)

x = 1⇐⇒ x > 0 ∧ ∀y¬(0 < y < x)

SUC(i , j)⇐⇒ j > i ∧ ∀z¬(i < z < j)

We’ve seen that PLUS is definable from BIT

Descriptive Complexity: Preliminaries from Logic 30 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Definability (2/2)

u = bx/yc ⇐⇒ (u · y) ≤ x ∧ (∃v < y)
[
x ≈ u · y + v

]
u = x mod y ⇐⇒ ∃v

[
v ≈ bx/yc ∧ (u + y · v ≈ x)

]
x | y ⇐⇒ x mod y ≈ 0

PRIME(x)⇐⇒ x > 1 ∧ (∀y , z)
[
(x ≈ y · z)→ (y ≈ 1 ∨ z ≈ 1)

]
pow2(x)⇐⇒ (∀y)

[
(y | x ∧ PRIME(y))→ (y = 2)

]
BIT′(i , j)⇐⇒ bx/yc mod 2 = 1

Descriptive Complexity: Preliminaries from Logic 31 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

The Bit-Sum Lemma

Lemma

Let BSUM(x , y) be true iff y is equal to the number of ones in the
binary representation of x . BSUM is FO-expressible using only BIT
and ordering.

Proof.

See lemma 7.2 from David A. Mix Barrington, Neil Immerman,
and Howard Straubing. “On uniformity within NC 1” Journal of
Computer and System Sciences 41.3 (1990): 274-306.

Descriptive Complexity: Preliminaries from Logic 32 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

FO (BIT) =FO (PLUS, TIMES)

Using the previous results we can prove that FO (BIT) =FO
(PLUS, TIMES).

For more informationm see:

Immerman, Section 1.2.1

Libkin, Section 6.4

Descriptive Complexity: Preliminaries from Logic 33 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Isomorphism

Let A,B ∈ STRUCT(τ). Then A is isomorphic to B iff there is a
bijection f : |A| → |B| such that:

PA(a1, . . . , an)⇐⇒ PB(f (a1), . . . , f (an))

f (cA) = cB.

Descriptive Complexity: Preliminaries from Logic 34 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Overview

1 Organization

2 Why Descriptive Complexity?

3 Historical Overview

4 First Order Logic

5 First Order Queries

Descriptive Complexity: Preliminaries from Logic 35 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

First Order Queries

Input Schema: σ

Output Schema: τ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉

A k-ary FO-query is a mapping I : cSTRUCT(σ)→ STRUCT(τ),
that consists of 1 + r + s FO-formulas.

We write I = 〈φ0, φ1, . . . , φr , ψ1, . . . , ψs〉
If A ∈ STRUCT(σ) then

universe of I (A): consists of all the k-tuples of |A| that satisfy φ0

relations of I (A): contain elements of |I (A)| that satisfy
φ1, . . . , φr

constants of I (A): elements of |I (A)| that satisfy ψ1, . . . , ψs

Descriptive Complexity: Preliminaries from Logic 36 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Example: A Unary Query (1/2)

Input Vocabulary: σ = 〈F 1,P2,S2〉

For example B ∈ STRUCT(σ), where B = 〈U,F ,P, S〉

U = {Abraham, Isaac, Rebekah, Sarah, . . .}
F = {Rebekah, Sarah, . . .}
P = {(Abraham, Isaac), (Sarah, Isaac), . . .}
S = {(Abraham, Sarah), (Isaac, Rebekah), . . .}

Descriptive Complexity: Preliminaries from Logic 37 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Example: A Unary Query (2/2)

Input vocabulary: σ = 〈F 1,P2, S2〉

Output vocabulary: τ = 〈SI 2,AU2〉

I = 〈true, φSI (x , y), φAU(x , y)〉

φSI (x , y) = x 6≈ y∧
(∃f ,m) [f 6= m ∧ P(f , x) ∧ P(m, x) ∧ P(f , y) ∧ P(m, y)]

φAU(x , y) = F (x)∧
(∃p, s) [P(p, y) ∧ φSI (p, s) ∧ (s = x ∨ S(x , s))]

Descriptive Complexity: Preliminaries from Logic 38 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Example: The Addition Query

Let σ = 〈A1,B1〉 and τ = S1.

Remember the addition formula φadd that we defined earlier.

We have the unary query I = 〈true, φadd〉 that maps elements of
STRUCT(σ) to elements of STRUCT(τ).

Descriptive Complexity: Preliminaries from Logic 39 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Example: A Binary Query From Graphs to Graphs

Input Vocabulary: σ = 〈E 2〉.

Output Vocabulary: τ = 〈R2〉.

I = 〈true, φ((x , y), (x ′, y ′))〉 where

φ((x , y), (x ′, y ′)) = (x = x ′ ∧E (y , y ′))∨ (SUC(x , y)∧ x ′ = y = y ′)

Let G be undirected. We can show that:

G is connected iff (max,max) is reachable from (0, 0) in I (G)

Descriptive Complexity: Preliminaries from Logic 40 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Boolean Queries

Complexity classes are usually defined for decision problems.

The descriptive analogue of a decision problem is the boolean
query, i.e a mapping from STRUCT(τ) to {0, 1}. (Observe that
the boolean query does not map structures to structures).

Any FO-sentence φ defines a boolean query as follows:

Iφ(A) = 1⇐⇒ A |= φ.

E.g. if φ = ∃x , yE (x , y) then Iφ is the edge-existence query.

Descriptive Complexity: Preliminaries from Logic 41 / 42

Organization Why Descriptive Complexity? Historical Overview First Order Logic First Order Queries

Higher Order Boolean Queries

Let φ =(∃A,B,C)(∀x , y)

[
E (x , y)→

¬
(

(A(x) ∧ A(y)) ∨ (B(x) ∧ B(y)) ∨ (C (x) ∧ C (y))
)]

Then Iφ(G) = 1 iff G is 3-colorable.

Observe that φ is ∃SO (Remember Fagin’s Theorem).

Descriptive Complexity: Preliminaries from Logic 42 / 42

	Organization
	Why Descriptive Complexity?
	Historical Overview
	First Order Logic
	First Order Queries

