Descriptive Complexity: Preliminaries from Complexity

Stathis Zachos, Petros Potikas, Ioannis Kokkinis and Aggeliki Chalki

ALMA

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHEMATICS"

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

- The language accepted by a Turing machine M is denoted by $L(M)=\left\{w \in\{0,1\}^{*} \mid M(w) \downarrow\right\}$.
- Everything that a Turing machine does can be considered as a query from binary strings to binary strings.
■ For each vocabulary τ, we define an encoding query,

$$
\operatorname{bin}_{\tau}: \operatorname{STRUC}[\tau] \rightarrow \operatorname{STRUC}\left[\tau_{s}\right]
$$

where $\tau_{s}=\left\langle S^{1}\right\rangle$ is the vocabulary of boolean strings.

The binary encoding of structures

$■$ Let $\tau=\left\langle R_{1}^{a_{1}}, \ldots, R_{r}^{a_{r}}, c_{1}, \ldots, c_{s}\right\rangle$ be a vocabulary and $\mathcal{A}=\left\langle\{0, \ldots, n-1\}, R_{1}^{\mathcal{A}}, \ldots, R_{r}^{\mathcal{A}}, c_{1}^{\mathcal{A}}, \ldots, c_{s}^{\mathcal{A}}\right\rangle$ be an ordered τ-structure.

- Each $R_{i}^{\mathcal{A}}$ can be encoded as a binary string of length a_{i} :
- We order the elements of $|\mathcal{A}|^{a_{i}}$ lexicographically.
- The j-th bit of the binary string that encodes $R_{i}^{\mathcal{A}}$ is 1 iff $R\left(x_{1}^{j}, \ldots, x_{a i}^{j}\right)$, where $x_{1}^{j}, \ldots, x_{a_{i}}^{j}$ is the j-th element in the defined ordering.
- Each constant $c_{i}^{\mathcal{A}}$ can be encoded as a binary string of length $\lceil\log n\rceil$.

The binary encoding of structures

- The binary encoding of the structure \mathcal{A} is the concatenation

$$
\operatorname{bin}_{\tau}(\mathcal{A})=\operatorname{bin}^{\mathcal{A}}\left(R_{1}\right) \ldots \operatorname{bin}^{\mathcal{A}}\left(R_{r}\right) \operatorname{bin}^{\mathcal{A}}\left(c_{1}\right) \ldots \operatorname{bin}^{\mathcal{A}}\left(c_{s}\right)
$$

which has length $\hat{n}_{\tau}=n^{a_{1}}+\ldots+n^{a_{r}}+s\lceil\log n\rceil$.

The coding $\operatorname{bin}_{\tau}(\mathcal{A})$ presupposes an ordering on the universe!

Definition

Let $I: \operatorname{STRUC}[\sigma] \rightarrow \operatorname{STRUC}[\tau]$ be a query and T be a Turing machine.
We say that \mathbf{T} computes the query \mathbf{I} iff for any $\mathcal{A} \in \operatorname{STRUC}[\sigma]$,

$$
T(\operatorname{bin}(\mathcal{A}))=\operatorname{bin}(I(\mathcal{A}))
$$

Complexity Classes

■ We use the notation

$$
\operatorname{DTIME}[t(n)], \operatorname{NTIME}[t(n)], \operatorname{DSPACE}[s(n)], \operatorname{NSPACE}[s(n)]
$$

to denote the set of boolean queries that are computable by a TM in deterministic time $\mathcal{O}(t(n))$, nondeterministic time $\mathcal{O}(t(n))$, deterministic space $\mathcal{O}(s(n))$, nondeterministic space $\mathcal{O}(s(n))$ respectively.

Complexity Classes

- L = DSPACE[logn]
- NL = NSPACE[logn]
∞
- $\mathrm{P}=\bigcup_{k=1} D \operatorname{TIME[n^{k}]}$
- NP $=\bigcup_{k=1}^{\infty} N T I M E\left[n^{k}\right]$
- $\operatorname{PSPACE}=\bigcup_{k=1}^{\infty}$ DSPACE $\left[n^{k}\right]$
- EXPTIME $=\bigcup_{k=1} \operatorname{DTIME[2^{2^{k}}]}$

The Queries computable in C

Definition

Let $I: S T R U C[\sigma] \rightarrow \operatorname{STRUC}[\tau]$ be a query.
We say that \mathbf{I} is computable in \mathbf{C} iff the boolean query I_{b} is in C, where

$$
I_{b}=\left\{(\mathcal{A}, i, a) \mid \text { the } i^{\text {th }} \text { bit of } \operatorname{bin}(I(\mathcal{A})) \text { is "a" }\right\}
$$

We define $Q(\mathrm{C})=\mathrm{C} \cup\left\{I \mid I_{b} \in \mathrm{C}\right\}$ to be the set of all queries computable in C .

Useful Inclusions and Relationships

Theorem (The Time Hierarchy Theorem)

If $f(n) \geq n$ is a proper complexity function, then the class $\operatorname{TIME}[f(n)]$ is strictly contained within $\operatorname{TIME}\left[f(n) \log ^{2} f(n)\right]$.

Theorem (The Space Hierarchy Theorem)
If $f(n) \geq n$ is a proper complexity function, then $\operatorname{SPACE}[f(n)]$ is strictly contained within SPACE $[f(n) \log f(n)]$.

By Space and Time Hierarchy Theorems:
$1 \mathrm{~L} \subsetneq$ PSPACE and NL \subsetneq NPSPACE
2 P $\subsetneq E X P T I M E$ and NP \subsetneq NEXPTIME

Useful Inclusions and Relationships

Theorem

Suppose that $f(n)$ is a proper complexity function. Then:
1 - $\operatorname{DSPACE}[f(n)] \subseteq \operatorname{NSPACE}[f(n)]$,

- DTIME $[f(n)] \subseteq \operatorname{NTIME}[f(n)]$.
$2 \operatorname{NTIME}[f(n)] \subseteq \operatorname{DSPACE}[f(n)]$.
$3 \operatorname{NSPACE}[f(n)] \subseteq \operatorname{DTIME}\left[2^{\mathcal{O}(f(n))}\right]$.
$■ L \subseteq N L$ and $P \subseteq N P$
- NP \subseteq PSPACE
$■ N L \subseteq P$ and NPSPACE $\subseteq E X P T I M E$

Useful Inclusions and Relationships

Theorem (Savitch's Theorem)

For any proper complexity function $f(n) \geq$ logn, $N S P A C E[f(n)] \subseteq D S P A C E\left[f^{2}(n)\right]$.

In particular,
$1 \mathrm{~L} \subseteq \mathrm{NL} \subseteq D S P A C E\left[\log ^{2} n\right]$
2 PSPACE = NPSPACE

Useful Inclusions and Relationships

$\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq \mathrm{EXPTIME}$

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Turing reductions

Definition

Given two boolean queries A, B and a complexity class C. We say that \mathbf{A} is \mathbf{C}-Turing reducible to \mathbf{B}, symb. $A \leq_{C}^{T} B$, iff there exists an oracle Turing machine M such that M^{B} :
1 runs in complexity class C and
$2 L\left(M^{B}\right)=A$
An example is the polynomial-time Turing reduction, \leq_{P}^{T}.

An example of a Turing reduction

Let $\tau_{g k}=\left\langle E^{2}, k\right\rangle$.
1 The boolean query CliQue, decides if a given $\tau_{g k}$-structure G has a clique of size k.
2 The query Max-Clique computes the size of the largest clique in a given $\tau_{g k}$-structure G.
3 Max-Clique $_{b}=$ $\{(G, i, a) \mid$ bit i of $\operatorname{bin}(\operatorname{Max}-\operatorname{Clique}(G))$ is "a" $\}$.

Max-Clique $_{b} \leq_{P}^{T}$ Clique: Given (G, i, a) perform binary search using an oracle for Clique to determine the size s of the maximum clique for G. After logn queries to the oracle, s has been computed. Accept iff bit i of s is "a".

Many-One reductions

Recall that a boolean query I: STRUC $[\sigma] \rightarrow\{0,1\}$ can be considered as a subset of STRUC[σ].

Definition

Let C be a complexity class, and $A \subseteq S T R U C[\sigma], B \subseteq S T R U C[\tau]$ be boolean queries.
We say that the query I:STRUC $[\sigma] \rightarrow \operatorname{STRUC}[\tau]$ is a
C-many-one reduction from \mathbf{A} to \mathbf{B} iff I is in $Q(\mathbf{C})$ with the property that for any $\mathcal{A} \in S T R U C[\sigma]$,

$$
\mathcal{A} \in A \Leftrightarrow I(\mathcal{A}) \in B
$$

We say that \mathbf{A} is \mathbf{C}-many-one reducible to \mathbf{B}, symb. $A \leq c B$.

Many-One reductions

Examples:

1 If I is a first order query, then it is a first-order reduction, symb. $\leq_{f o}$.
2 If $I \in Q(\mathrm{~L})$, then it is a logspace reduction, symb. $\leq_{\log }$.
3 If $I \in Q(P)$, then it is a polynomial-time reduction, symb. \leq_{p}.

A many-one reduction is a special case of a Turing reduction: To decide whether $\mathcal{A} \in A$, compute $I(\mathcal{A})$ and ask the oracle whether $I(\mathcal{A})$ is in B.

An example of a first-order reduction

1 Parity is the boolean query on binary strings that is true iff a given string has an odd number of ones.
2 MULT is the multiplicative query that maps a pair of n-length binary strings to their $2 n$-length product.
$3 \mathrm{Mult}_{b}$ is a boolean query on structures of $\tau_{a b c d}=\left\langle A^{1}, B^{1}, c, d\right\rangle$ that is true iff bit c of the product $A \cdot B$ is " d ".

An example of a first-order reduction

$$
\text { Parity } \leq_{f o} \operatorname{Mult}_{b}
$$

The first-order reduction $I_{P M}: \operatorname{STRUC}\left[\tau_{s}\right] \rightarrow \operatorname{STRUC}\left[\tau_{a b c d}\right]$ is given by the following formulas:

- $\phi_{A}(x, y) \equiv y=\max \wedge S(x)$
- $\phi_{B}(x, y) \equiv y=\max$

■ $I_{P M} \equiv \lambda_{x y}\left\langle\right.$ true $\left., \phi_{A}, \phi_{B},\langle 0, \max \rangle,\langle 0,1\rangle\right\rangle$

$$
\mathcal{A} \in \operatorname{PARITY} \Leftrightarrow I_{P M}(\mathcal{A}) \in \operatorname{MuLT}_{b}
$$

Completeness for C

Definition

Let A be a boolean query, C be a complexity class and \leq be a reducibility relation.
We say that \mathbf{A} is complete for \mathbf{C} with respect to \leq iff
$1 A \in C$ and
2 for all $B \in \mathrm{C}, B \leq A$.
We prove later that if a problem is complete with respect to first-order reductions, then it is complete with respect to logspace and polynomial-time reductions.

Complete problems

Complete for L :

■ Cycle : Given an undirected graph, does it contain a cycle?

- REACH_{d} : Given a directed graph, is there a deterministic path from vertex s to vertex t ?

Complete for NL:

- Reach: Given a directed graph, is there a path from vertex s to vertex t ?
- 2-SAT: Given a boolean formula in conjunctive normal form with only two literals per clause, is it satisfiable?

Complete problems

Complete for P :

■ CircuitValueProblem: Given an acyclic boolean circuit, with inputs specified, does its output gate have value one?
■ NetworkFlow: Given a directed graph, with capacities on its edges, and a value V, is it possible to achieve a steady-state flow of value V through the graph?

Complete problems

Complete for NP:

- SAT: Given a boolean formula, is it satisfiable?
- 3-SAT: Given a boolean formula in conjunctive normal form with only three literals per clause, is it satisfiable?
- Clique: Given an undirected graph and a value k, does the graph have a complete subgraph with k vertices?

Complete for PSPACE:

■ QSAT: Given a quantified boolean formula, is it satisfiable?

- Go: Given a position in the game go, is there a forced win for the player whose move it is?
- The reductions $\leq_{f o}, \leq_{\log }, \leq_{p}$ are transitive.
- Let \leq_{r} be a transitive many-one reducibility relation and A be complete for C with respect to \leq_{r}.
Let T be any boolean query.
We can show that T is complete for C with respect to \leq_{r} by showing that

$$
T \in C \text { and } A \leq_{r} T
$$

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Alternating Turing Machines

A configuration cof a Turing machine consists of the machine's state, work-tape contents and head positions.

Definition

An alternating Turing machine (ATM) is a Turing machine the states of which are divided into two groups: the existential states and the universal states.
The ATM in a given configuration c accepts iff
1 c is in a final accepting state, or
2 c is in an existential state and there exists a successor configuration c^{\prime} that accepts, or
3 c is in a universal state, and all the successor configurations accept.

Definition

We define $\operatorname{ATIME}[t(n)]$ (ASPACE $[s(n)])$ to be the set of boolean queries accepted by alternating Turing machines using $\mathcal{O}(t(n))$ time $(\mathcal{O}(s(n))$ space respectively).

Definition

We define $A P=\bigcup_{k=1} A T I M E\left[n^{k}\right]$ and $A L=A S P A C E[\operatorname{logn}]$.

Definition

A boolean circuit is a directed acyclic graph (DAG)

$$
C=\left(V, E, G_{\wedge}, G_{\vee}, G_{\neg}, I, r\right) \in \operatorname{STRUC}\left[\tau_{c}\right]
$$

where $\tau_{c}=\left\langle E^{2}, G_{\wedge}^{1}, G_{\vee}^{1}, G_{\neg}^{1}, I^{1}, r\right\rangle$.
Internal node w is:

- an and-gate iff $G_{\wedge}(w)$ holds
- an or-gate iff $G_{\vee}(w)$ holds
- a not-gate iff $G_{\neg}(w)$ holds
- called a leaf iff it has no incoming edges and leaf w is one iff $I(w)$ holds
Define Circuit Value Problem (CVP) to consist of those circuits the root gate of which evaluate to one.
- The Monotone Circuit Value Problem (MCVP) is the subset of CVP in which no negation gates occur.

MCVP is in AL
Proof. For a node a of a monotone circuit define $\operatorname{EVAL}(a)$ as follows:

- if $I(a)$ then accept
- if not $I(a)$ and a has no outgoing edges then reject
- if $G_{\wedge}(a)$ then in a universal state choose a child b of a and call $\operatorname{EVAL}(b)$
- if $G_{\vee}(a)$ then in an existential state choose a child b of a and call $\operatorname{EVAL}(b)$
The ATM calls $\operatorname{EVAL}(r)$ where r is the root gate.
The machine requires logspace.

Definition

The quantified satisfiability problem (QSAT) is the set of true formulas of the following form:

$$
\psi=\left(Q_{1} x_{1}\right)\left(Q_{2} x_{2}\right) \ldots\left(Q_{r} x_{r}\right) \phi
$$

where ϕ is a boolean formula and each Q_{i} is either \forall or \exists and $x_{1}, \ldots x_{r}$ are the boolean variables occuring in ϕ.

QSAT is in ATIME[n]

Proof. For the formula

$$
\Phi=\left(\exists x_{1}\right)\left(\forall x_{2}\right) \ldots\left(Q_{r} x_{r}\right) \phi(\vec{x})
$$

the alternating machine

- writes down a boolean value for x_{1} in an existential state
- then it writes down a boolean value for x_{2} in a universal state and so on
Eventually the machine evaluates the quantifier-free boolean formula ϕ given the nondeterministic choices for $x_{1}, x_{2}, \ldots x_{r}$.
- $\mathrm{AP}=\mathrm{PSPACE}$

■ $A L=P$
These are special cases of the following theorem:

Theorem

For $s(n) \geq \log n$, and for $t(n) \geq n$,
$1 \bigcup_{k=1}^{\infty} \operatorname{ATIME}\left[(t(n))^{k}\right]=\bigcup_{k=1}^{\infty} \operatorname{DSPACE}\left[(t(n))^{k}\right]$
$2 \operatorname{ASPACE}[s(n)]=\bigcup_{k=1}^{\infty} \operatorname{DTIME}\left[k^{s(n)}\right]$

