
Descriptive Complexity: Preliminaries from
Complexity

Stathis Zachos, Petros Potikas, Ioannis Kokkinis and Aggeliki
Chalki

ALMA
INTER-INSTITUTIONAL GRADUATE PROGRAM
“ALGORITHMS, LOGIC AND DISCRETE MATHE-
MATICS”

Preliminary Definitions Reductions and Complete Problems Alternation

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Descriptive Complexity: Preliminaries from Complexity 2 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Descriptive Complexity: Preliminaries from Complexity 3 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The language accepted by a Turing machine M is denoted by
L(M) = {w ∈ {0, 1}∗|M(w) ↓}.

Everything that a Turing machine does can be considered as a
query from binary strings to binary strings.

For each vocabulary τ , we define an encoding query,

binτ : STRUC [τ]→ STRUC [τs]

where τs = 〈S1〉 is the vocabulary of boolean strings.

Descriptive Complexity: Preliminaries from Complexity 4 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The binary encoding of structures

Let τ = 〈Ra1
1 , ...,R

ar
r , c1, ..., cs〉 be a vocabulary and

A = 〈{0, ..., n − 1},RA1 , ...,RAr , cA1 , ..., cAs 〉 be an ordered
τ -structure.

Each RAi can be encoded as a binary string of length ai :

We order the elements of |A|ai lexicographically.
The j-th bit of the binary string that encodes RA

i is 1 iff

R(x j1, ..., x
j
ai), where x j1, ..., x

j
ai is the j-th element in the defined

ordering.

Each constant cAi can be encoded as a binary string of length
dlogne.

Descriptive Complexity: Preliminaries from Complexity 5 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The binary encoding of structures

The binary encoding of the structure A is the concatenation

binτ (A) = binA(R1)...binA(Rr)binA(c1)...binA(cs)

which has length n̂τ = na1 + ...+ nar + sdlogne.

The coding binτ (A) presupposes an ordering on the universe!

Descriptive Complexity: Preliminaries from Complexity 6 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Definition

Let I : STRUC [σ] → STRUC [τ] be a query and T be a Turing machine.

We say that T computes the query I iff for any A ∈ STRUC [σ],

T (bin(A)) = bin(I (A)).

Descriptive Complexity: Preliminaries from Complexity 7 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Complexity Classes

We use the notation

DTIME [t(n)],NTIME [t(n)],DSPACE [s(n)],NSPACE [s(n)]

to denote the set of boolean queries that are computable by a TM in

deterministic time O(t(n)), nondeterministic time O(t(n)),
deterministic space O(s(n)), nondeterministic space O(s(n))
respectively.

Descriptive Complexity: Preliminaries from Complexity 8 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Complexity Classes

L = DSPACE [logn]

NL = NSPACE [logn]

P =
∞⋃
k=1

DTIME [nk]

NP =
∞⋃
k=1

NTIME [nk]

PSPACE =
∞⋃
k=1

DSPACE [nk]

EXPTIME =
∞⋃
k=1

DTIME [2n
k
]

Descriptive Complexity: Preliminaries from Complexity 9 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The Queries computable in C

Definition

Let I : STRUC [σ]→ STRUC [τ] be a query.
We say that I is computable in C iff the boolean query Ib is in C,
where

Ib = {(A, i , a)| the i th bit of bin(I (A)) is “a”}.

We define Q(C) = C ∪ {I |Ib ∈ C} to be the set of all queries

computable in C.

Descriptive Complexity: Preliminaries from Complexity 10 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Useful Inclusions and Relationships

Theorem (The Time Hierarchy Theorem)

If f (n) ≥ n is a proper complexity function, then the class
TIME [f (n)] is strictly contained within TIME [f (n)log2f (n)].

Theorem (The Space Hierarchy Theorem)

If f (n) ≥ n is a proper complexity function, then SPACE [f (n)] is
strictly contained within SPACE [f (n)log f (n)].

By Space and Time Hierarchy Theorems:

1 L (PSPACE and NL (NPSPACE

2 P (EXPTIME and NP (NEXPTIME

Descriptive Complexity: Preliminaries from Complexity 11 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Useful Inclusions and Relationships

Theorem

Suppose that f (n) is a proper complexity function. Then:

1 DSPACE [f (n)] ⊆ NSPACE [f (n)],
DTIME [f (n)] ⊆ NTIME [f (n)].

2 NTIME [f (n)] ⊆ DSPACE [f (n)].

3 NSPACE [f (n)] ⊆ DTIME [2O(f (n))].

L ⊆ NL and P ⊆ NP

NP ⊆ PSPACE

NL ⊆ P and NPSPACE ⊆ EXPTIME

Descriptive Complexity: Preliminaries from Complexity 12 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Useful Inclusions and Relationships

Theorem (Savitch’s Theorem)

For any proper complexity function f (n) ≥ logn,
NSPACE [f (n)] ⊆ DSPACE [f 2(n)].

In particular,

1 L ⊆ NL ⊆ DSPACE [log2n]

2 PSPACE = NPSPACE

Descriptive Complexity: Preliminaries from Complexity 13 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Useful Inclusions and Relationships

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

Descriptive Complexity: Preliminaries from Complexity 14 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Descriptive Complexity: Preliminaries from Complexity 15 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Turing reductions

Definition

Given two boolean queries A, B and a complexity class C.
We say that A is C-Turing reducible to B, symb. A ≤T

C B,
iff there exists an oracle Turing machine M such that MB :

1 runs in complexity class C and

2 L(MB) = A

An example is the polynomial-time Turing reduction, ≤T
P .

Descriptive Complexity: Preliminaries from Complexity 16 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

An example of a Turing reduction

Let τgk = 〈E 2, k〉.
1 The boolean query Clique, decides if a given τgk -structure G

has a clique of size k .

2 The query Max-Clique computes the size of the largest
clique in a given τgk -structure G .

3 Max-Cliqueb =
{(G , i , a)| bit i of bin(Max-Clique(G)) is “a”}.

Max-Cliqueb ≤T
P Clique: Given (G , i , a) perform binary search

using an oracle for Clique to determine the size s of the
maximum clique for G . After logn queries to the oracle, s has been
computed. Accept iff bit i of s is “a”.

Descriptive Complexity: Preliminaries from Complexity 17 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Many-One reductions

Recall that a boolean query I : STRUC [σ]→ {0, 1} can be
considered as a subset of STRUC [σ].

Definition

Let C be a complexity class, and A ⊆ STRUC [σ], B ⊆ STRUC [τ]
be boolean queries.
We say that the query I : STRUC[σ]→ STRUC[τ] is a
C-many-one reduction from A to B iff I is in Q(C) with the
property that for any A ∈ STRUC [σ],

A ∈ A⇔ I (A) ∈ B

We say that A is C-many-one reducible to B, symb. A ≤C B.

Descriptive Complexity: Preliminaries from Complexity 18 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Many-One reductions

Examples:

1 If I is a first order query, then it is a first-order reduction,
symb. ≤fo .

2 If I ∈ Q(L), then it is a logspace reduction, symb. ≤log .

3 If I ∈ Q(P), then it is a polynomial-time reduction, symb. ≤p.

A many-one reduction is a special case of a Turing reduction: To
decide whether A ∈ A, compute I (A) and ask the oracle whether
I (A) is in B.

Descriptive Complexity: Preliminaries from Complexity 19 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

An example of a first-order reduction

1 Parity is the boolean query on binary strings that is true iff
a given string has an odd number of ones.

2 Mult is the multiplicative query that maps a pair of n-length
binary strings to their 2n-length product.

3 Multb is a boolean query on structures of
τabcd = 〈A1,B1, c , d〉 that is true iff bit c of the product A ·B
is “d”.

Descriptive Complexity: Preliminaries from Complexity 20 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

An example of a first-order reduction

Parity ≤fo Multb

The first-order reduction IPM : STRUC [τs]→ STRUC [τabcd] is
given by the following formulas:

φA(x , y) ≡ y = max ∧ S(x)

φB(x , y) ≡ y = max

IPM ≡ λxy 〈true, φA, φB , 〈0,max〉, 〈0, 1〉〉

A ∈ Parity⇔ IPM(A) ∈Multb

Descriptive Complexity: Preliminaries from Complexity 21 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Completeness for C

Definition

Let A be a boolean query, C be a complexity class and ≤ be a
reducibility relation.
We say that A is complete for C with respect to ≤ iff

1 A ∈ C and

2 for all B ∈ C, B ≤ A.

We prove later that if a problem is complete with respect to
first-order reductions, then it is complete with respect to logspace
and polynomial-time reductions.

Descriptive Complexity: Preliminaries from Complexity 22 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Complete problems

Complete for L:

Cycle : Given an undirected graph, does it contain a cycle?

Reachd : Given a directed graph, is there a deterministic path
from vertex s to vertex t?

Complete for NL:

Reach: Given a directed graph, is there a path from vertex s
to vertex t?

2-Sat: Given a boolean formula in conjunctive normal form
with only two literals per clause, is it satisfiable?

Descriptive Complexity: Preliminaries from Complexity 23 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Complete problems

Complete for P:

CircuitValueProblem: Given an acyclic boolean circuit,
with inputs specified, does its output gate have value one?

NetworkFlow: Given a directed graph, with capacities on
its edges, and a value V , is it possible to achieve a
steady-state flow of value V through the graph?

Descriptive Complexity: Preliminaries from Complexity 24 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Complete problems

Complete for NP:

Sat: Given a boolean formula, is it satisfiable?

3-Sat: Given a boolean formula in conjunctive normal form
with only three literals per clause, is it satisfiable?

Clique: Given an undirected graph and a value k , does the
graph have a complete subgraph with k vertices?

Complete for PSPACE:

QSat: Given a quantified boolean formula, is it satisfiable?

Go: Given a position in the game go, is there a forced win for
the player whose move it is?

Descriptive Complexity: Preliminaries from Complexity 25 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The reductions ≤fo , ≤log , ≤p are transitive.

Let ≤r be a transitive many-one reducibility relation and A be
complete for C with respect to ≤r .
Let T be any boolean query.
We can show that T is complete for C with respect to ≤r by
showing that

T ∈ C and A ≤r T .

Descriptive Complexity: Preliminaries from Complexity 26 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Overview

1 Preliminary Definitions

2 Reductions and Complete Problems

3 Alternation

Descriptive Complexity: Preliminaries from Complexity 27 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Alternating Turing Machines

A configuration c of a Turing machine consists of the machine’s
state, work-tape contents and head positions.

Definition

An alternating Turing machine (ATM) is a Turing machine the
states of which are divided into two groups: the existential states
and the universal states.
The ATM in a given configuration c accepts iff

1 c is in a final accepting state, or

2 c is in an existential state and there exists a successor
configuration c’ that accepts, or

3 c is in a universal state, and all the successor configurations
accept.

Descriptive Complexity: Preliminaries from Complexity 28 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Definition

We define ATIME [t(n)] (ASPACE [s(n)]) to be the set of boolean
queries accepted by alternating Turing machines using O(t(n))
time (O(s(n)) space respectively).

Definition

We define AP =
∞⋃
k=1

ATIME [nk] and AL = ASPACE [logn].

Descriptive Complexity: Preliminaries from Complexity 29 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Definition

A boolean circuit is a directed acyclic graph (DAG)

C = (V ,E ,G∧,G∨,G¬, I , r) ∈ STRUC [τc]

where τc = 〈E 2,G 1
∧,G

1
∨,G

1
¬, I

1, r〉.
Internal node w is:

an and-gate iff G∧(w) holds

an or-gate iff G∨(w) holds

a not-gate iff G¬(w) holds

called a leaf iff it has no incoming edges and leaf w is one iff
I (w) holds

Define Circuit Value Problem (CVP) to consist of those circuits
the root gate of which evaluate to one.

Descriptive Complexity: Preliminaries from Complexity 30 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

The Monotone Circuit Value Problem (MCVP) is the subset
of CVP in which no negation gates occur.

MCVP is in AL

Proof. For a node a of a monotone circuit define EVAL(a) as
follows:

if I (a) then accept

if not I (a) and a has no outgoing edges then reject

if G∧(a) then in a universal state choose a child b of a and
call EVAL(b)

if G∨(a) then in an existential state choose a child b of a and
call EVAL(b)

The ATM calls EVAL(r) where r is the root gate.
The machine requires logspace.

Descriptive Complexity: Preliminaries from Complexity 31 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

Definition

The quantified satisfiability problem (QSAT) is the set of true
formulas of the following form:

ψ = (Q1x1)(Q2x2)...(Qrxr)φ

where φ is a boolean formula and each Qi is either ∀ or ∃ and
x1, ...xr are the boolean variables occuring in φ.

Descriptive Complexity: Preliminaries from Complexity 32 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

QSAT is in ATIME [n]

Proof. For the formula

Φ = (∃x1)(∀x2)...(Qrxr)φ(−→x)

the alternating machine

writes down a boolean value for x1 in an existential state

then it writes down a boolean value for x2 in a universal state
and so on

Eventually the machine evaluates the quantifier-free boolean
formula φ given the nondeterministic choices for x1, x2, ...xr .

Descriptive Complexity: Preliminaries from Complexity 33 / 34

Preliminary Definitions Reductions and Complete Problems Alternation

AP = PSPACE

AL = P

These are special cases of the following theorem:

Theorem

For s(n) ≥ logn, and for t(n) ≥ n,

1

∞⋃
k=1

ATIME [(t(n))k] =
∞⋃
k=1

DSPACE [(t(n))k]

2 ASPACE [s(n)] =
∞⋃
k=1

DTIME [ks(n)]

Descriptive Complexity: Preliminaries from Complexity 34 / 34

	Preliminary Definitions
	Reductions and Complete Problems
	Alternation

