Descriptive Complexity: Preliminaries from

Complexity

Stathis Zachos, Petros Potikas, loannis Kokkinis and Aggeliki
Chalki

Aoyied] kar Aaegerd

N &

ALMA

INTER-INSTITUTIONAL GRADUATE PROGRAM
"ALGORITHMS, LOGIC AND DISCRETE MATHE-
MATICS”

oCAPY

Tpappa <A hydprlio
aroe-=gisenlge

Qd[] g¥miknisn1a

=

Overview

Preliminary Definitions

Reductions and Complete Problems

Alternation

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000000000

Overview

Preliminary Definitions

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000000000

m The language accepted by a Turing machine M is denoted by
L(M) = {w € {0,1}*|M(w) 1},

m Everything that a Turing machine does can be considered as a
query from binary strings to binary strings.

m For each vocabulary 7, we define an encoding query,
bin. : STRUC[1] — STRUC]|14]

where 75 = (S1) is the vocabulary of boolean strings.

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
[e]e] lelelelelele]ele]e)

The binary encoding of structures

mLet 7= (R, ...,R, c1y...y Cs) be a vocabulary and
A={0,....n—1},RA, ..., RA cft, ...,) be an ordered
T-structure.

m Each R,-A can be encoded as a binary string of length a;:

m We order the elements of |.4]% lexicographically.

m The j-th b|t of the binary string that encodes RA is 1 iff
R(x{, <.y xb), where x{, ..., xJ_is the j-th element in the defined
ordering.

m Each constant c,-A can be encoded as a binary string of length

[logn].

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000800000000

The binary encoding of structures

m The binary encoding of the structure A is the concatenation
bin.(A) = bin*(Ry)...bin"(R,)bin™(cy)...bin™(cs)

which has length A, = n® + ... + n? + s[logn].

The coding bin,(A) presupposes an ordering on the universe!

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000080000000

Let / : STRUC[o] — STRUC]7] be a query and T be a Turing machine.

We say that T computes the query | iff for any A € STRUC|[o],

T(bin(A)) = bin(I(A)).

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000008000000

Complexity Classes

B We use the notation

DTIME([t(n)], NTIME[t(n)], DSPACE[s(n)], NSPACE[s(n)]
to denote the set of boolean queries that are computable by a TM in

deterministic time O(t(n)), nondeterministic time O(t(n)),
deterministic space O(s(n)), nondeterministic space O(s(n))
respectively.

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000800000

Complexity Classes

m L = DSPACE(logn|
m NL = NSPACE][logn]

P = | J DTIME[n"]
k=1

o
= NP = | J NTIME[n*]
k=1

PSPACE = |_J DSPACE[n"]
k=1

EXPTIME = | | DTIME[2"]
k=1

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000080000

The Queries computable in C

Definition

Let / : STRUC[o] — STRUC]|7] be a query.

We say that | is computable in C iff the boolean query I, is in C,
where

I, = {(A, i,a)| the i*N bit of bin(I(A)) is “a"}.

We define Q(C) = CU {/|l, € C} to be the set of all queries

computable in C.

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
0000000 0e000

Useful Inclusions and Relationships

Theorem (The Time Hierarchy Theorem)

If f(n) > n is a proper complexity function, then the class
TIME[f(n)] is strictly contained within TIME[f(n)log?f(n)].

Theorem (The Space Hierarchy Theorem)
If f(n) > n is a proper complexity function, then SPACE[f(n)] is
strictly contained within SPACE([f(n)log f(n)].

By Space and Time Hierarchy Theorems:
L € PSPACE and NL C NPSPACE
P C EXPTIME and NP C NEXPTIME

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000000800

Useful Inclusions and Relationships

Suppose that f(n) is a proper complexity function. Then:

m DSPACE[f(n)] C NSPACE[f(n)],
= DTIME[f(n)] € NTIME[f(n)].

NTIME[f(n)] € DSPACE[f(n)].
NSPACE[f(n)] € DTIME[2°(f(M)].

m LCNLand PC NP
m NP C PSPACE
m NL C P and NPSPACE C EXPTIME

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
000000000080

Useful Inclusions and Relationships

Theorem (Savitch’'s Theorem)

For any proper complexity function f(n) > logn,
NSPACE[f(n)] € DSPACE[f?(n)].

In particular,
L C NL C D5PACE[Iog2n]
PSPACE = NPSPACE

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions
00000000000

Useful Inclusions and Relationships

L € NL € P C NP C PSPACE = NPSPACE C EXPTIME

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
€00000000000

Overview

Reductions and Complete Problems

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
0®0000000000

Turing reductions

Given two boolean queries A, B and a complexity class C.
We say that A is C-Turing reducible to B, symb. A SCT B,
iff there exists an oracle Turing machine M such that M5:

runs in complexity class C and
L(MB) = A

. T
An example is the polynomial-time Turing reduction, <.

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
00@000000000

An example of a Turing reduction

Let 7z = (E2, k).
The boolean query CLIQUE, decides if a given 7,-structure G
has a clique of size k.

The query MAX-CLIQUE computes the size of the largest
clique in a given 7,-structure G.

MAX-CLIQUE, =
{(G,i,a)| bit i of bin(MAX-CLIQUE(G)) is “a"

MAX-CLIQUE, < CLIQUE: Given (G, i,a) perform binary search
using an oracle for CLIQUE to determine the size s of the
maximum clique for G. After logn queries to the oracle, s has been

computed. Accept iff bit j of sis “a".

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000@00000000

Many-One reductions

Recall that a boolean query / : STRUC[o] — {0,1} can be
considered as a subset of STRUC|o].

Definition

Let C be a complexity class, and A C STRUC[s], B C STRUC|T]
be boolean queries.

We say that the query | : STRUC[o] — STRUC[T] is a
C-many-one reduction from A to B iff / is in Q(C) with the
property that for any A € STRUC|[o],

AcA=1(A)eB

We say that A is C-many-one reducible to B, symb. A <¢ B.

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
0000@0000000

Many-One reductions

Examples:
If I is a first order query, then it is a first-order reduction,
symb. <.
If I € Q(L), then it is a logspace reduction, symb. <.
If I € Q(P), then it is a polynomial-time reduction, symb. <.

A many-one reduction is a special case of a Turing reduction: To
decide whether A € A, compute /(A) and ask the oracle whether
I(A) is in B.

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000008000000

An example of a first-order reduction

PARITY is the boolean query on binary strings that is true iff
a given string has an odd number of ones.

MuLt is the multiplicative query that maps a pair of n-length
binary strings to their 2n-length product.

MUuLT}, is a boolean query on structures of
Tabed = (AL, B, ¢, d) that is true iff bit c of the product A- B
is “d".

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000800000

An example of a first-order reduction

PARITY <7, MULT)
The first-order reduction Ipy : STRUC[1s] — STRUC[Taped] is
given by the following formulas:
B Pa(x,y) =y = max A S(x)
= 6(x,y) = y = max
B Ipy = Ay (true, ¢4, ¢, (0, max), (0,1))

A € PARITY < Ippy(A) € MULT,,

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000080000

Completeness for C

Definition
Let A be a boolean query, C be a complexity class and < be a

reducibility relation.
We say that A is complete for C with respect to < iff

H AcCand
A for all Be C, B <A.

We prove later that if a problem is complete with respect to
first-order reductions, then it is complete with respect to logspace
and polynomial-time reductions.

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000008000

Complete problems

Complete for L:
m CYCLE : Given an undirected graph, does it contain a cycle?
m REACH4: Given a directed graph, is there a deterministic path
from vertex s to vertex t?
Complete for NL:
m REACH: Given a directed graph, is there a path from vertex s
to vertex t?

m 2-SAT: Given a boolean formula in conjunctive normal form
with only two literals per clause, is it satisfiable?

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000000800

Complete problems

Complete for P:
m CIRCUITVALUEPROBLEM: Given an acyclic boolean circuit,
with inputs specified, does its output gate have value one?
m NETWORKFLOW: Given a directed graph, with capacities on
its edges, and a value V/, is it possible to achieve a
steady-state flow of value V' through the graph?

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000000080

Complete problems

Complete for NP:
m SAT: Given a boolean formula, is it satisfiable?

m 3-SAT: Given a boolean formula in conjunctive normal form
with only three literals per clause, is it satisfiable?

m CLIQUE: Given an undirected graph and a value k, does the
graph have a complete subgraph with k vertices?

Complete for PSPACE:
m QSAT: Given a quantified boolean formula, is it satisfiable?

m GO: Given a position in the game go, is there a forced win for
the player whose move it is?

Descriptive Complexity: Preliminaries from Complexity

Reductions and Complete Problems
000000000008

m The reductions <g,, <jog, <p are transitive.

m Let <, be a transitive many-one reducibility relation and A be
complete for C with respect to <,.
Let T be any boolean query.
We can show that T is complete for C with respect to <, by
showing that
TeCand AL, T.

Descriptive Complexity: Preliminaries from Complexity

Alternation
©0000000

Overview

Alternation

Descriptive Complexity: Preliminaries from Complexity

Prelimina c s omplete Problems Alternation

0@000000

Alternating Turing Machines

|
A configuration c of a Turing machine consists of the machine’s
state, work-tape contents and head positions.

Definition

An alternating Turing machine (ATM) is a Turing machine the
states of which are divided into two groups: the existential states
and the universal states.

The ATM in a given configuration c accepts iff

c is in a final accepting state, or

c is in an existential state and there exists a successor
configuration ¢’ that accepts, or

c is in a universal state, and all the successor configurations
accept.

Descriptive Complexity: Preliminaries from Complexity

Alternation
00@00000

Definition

We define ATIME([t(n)] (ASPACE[s(n)]) to be the set of boolean
queries accepted by alternating Turing machines using O(t(n))
time (O(s(n)) space respectively).

Definition

We define AP = |] ATIME[n*] and AL = ASPACE|logn].
k=1

Descriptive Complexity: Preliminaries from Complexity

efinitions Re Complete Problems Alternation

000@0000

Definition

A boolean circuit is a directed acyclic graph (DAG)
C=(V,E,Gp,Gy,G., 1, r) e STRUC[T]

where 7. = (E?, G}, GL, G, 1L, r).
Internal node w is:
m an and-gate iff Go(w) holds
m an or-gate iff Gy(w) holds
m a not-gate iff G.(w) holds
]

called a leaf iff it has no incoming edges and leaf w is one iff
I(w) holds

Define Circuit Value Problem (CVP) to consist of those circuits
the root gate of which evaluate to one.

Descriptive Complexity: Preliminaries from Complexity

Alternation
0000@000

m The Monotone Circuit Value Problem (MCVP) is the subset
of CVP in which no negation gates occur.

|
MCVP is in AL

Proof. For a node a of a monotone circuit define EVAL(a) as
follows:
m if /(a) then accept
m if not /(a) and a has no outgoing edges then reject
m if Go(a) then in a universal state choose a child b of a and
call EVAL(b)
m if Gy(a) then in an existential state choose a child b of a and
call EVAL(b)

The ATM calls EVAL(r) where r is the root gate.
The machine requires logspace.

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions

Reductions and Complete Problems Alternation
[e] [e]ee]e]e] lele)

Definition
The quantified satisfiability problem (QSAT) is the set of true
formulas of the following form:

= (Qix1)(Q2x2)...(Qrxr)

where ¢ is a boolean formula and each Q; is either V or 3 and
X1, ...X, are the boolean variables occuring in ¢.

Descriptive Complexity: Preliminaries from Complexity

Alternation
00000000

|
QSAT is in ATIME[n]

Proof. For the formula
® = (Ix1)(Vx2)...(Qrx,) (X))

the alternating machine
m writes down a boolean value for x; in an existential state
m then it writes down a boolean value for x> in a universal state
and so on

Eventually the machine evaluates the quantifier-free boolean
formula ¢ given the nondeterministic choices for xi, x2, ...x;.

Descriptive Complexity: Preliminaries from Complexity

Preliminary Definitions

Complete Problems Alternation
)O000000 00000008

m AP = PSPACE
m AL="P

These are special cases of the following theorem:

Theorem
For s(n) > logn, and for t(n) > n,

G ATIME[(t(n))¥] = Cj DSPACE((t(n))]
k=1 k=1

ASPACE[s(n)] = |] DTIME[K*("]
k=1

Descriptive Complexity: Preliminaries from Complexity

	Preliminary Definitions
	Reductions and Complete Problems
	Alternation

