Descriptive Complexity: First Order Reductions

Stathis Zachos, Petros Potikas, Ioannis Kokkinis and Aggeliki Chalki

ALMA

INTER-INSTITUTIONAL GRADUATE PROGRAM "ALGORITHMS, LOGIC AND DISCRETE MATHE-MATICS"

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

Overview

1 $FO \subseteq L$

- 2 NL-Completeness
- 3 L-Completeness
- 4 P-Completeness
- 5 On FO-Reductions

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
●000000000000		00000	0000000	00000

Overview

- 2 NL-Completeness
- 3 *L*-Completeness
- 4 P-Completeness
- 5 On FO-Reductions

<i>FO ⊆ L</i> o●ooooooooooo	<i>NL</i> -Completeness	L-Completeness	P-Completeness	On <i>FO</i> -Reductions 00000

Goal of the Section

FO is the set of boolean queries expressible in first order logic.

<i>FO ⊆ L</i> o●ooooooooooo	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

Goal of the Section

FO is the set of boolean queries expressible in first order logic.

L is the set of boolean queries computable by a deterministic Turing machine using at most logarithmic space.

<i>FO ⊆ L</i> o●ooooooooooo	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

Goal of the Section

FO is the set of boolean queries expressible in first order logic.

L is the set of boolean queries computable by a deterministic Turing machine using at most logarithmic space.

The goal of this section is to show that $FO \subseteq L$.

P-Completeness

On FO-Reductions

Logspace Turing Machines

A logspace-Turing Machine

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

has a read-only input tape,

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

- has a read-only input tape,
- has a write-only output tape,

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

- has a read-only input tape,
- has a write-only output tape,
- has a read-write work tape that contains $\mathcal{O}(\log n)$ bits.

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

- has a read-only input tape,
- has a write-only output tape,
- has a read-write work tape that contains $\mathcal{O}(\log n)$ bits.

Thus, it typically can:

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

- has a read-only input tape,
- has a write-only output tape,
- has a read-write work tape that contains $\mathcal{O}(\log n)$ bits.

Thus, it typically can:

store a *logn*-bit number that points to a position in the input,

P-Completeness

On *FO*-Reductions

Logspace Turing Machines

A logspace-Turing Machine

- has a read-only input tape,
- has a write-only output tape,
- has a read-write work tape that contains $\mathcal{O}(\log n)$ bits.

Thus, it typically can:

- store a *logn*-bit number that points to a position in the input,
- work on strings (numbers etc) of size $O(\log n)$ on the work tape.

P-Completeness

On FO-Reductions

Addition in Logarithmic Space

The simple school algorithm works!

P-Completeness

On *FO*-Reductions

Addition in Logarithmic Space

The simple school algorithm works!

The logspace Turing Machine examines the input positions and produces the output bits one by one from right to left.

P-Completeness

On *FO*-Reductions

Addition in Logarithmic Space

	01011
+	00110
	10001

The simple school algorithm works!

The logspace Turing Machine examines the input positions and produces the output bits one by one from right to left.

Only a the single bit carry has to be stored.

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (1/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
r	1	0	0	1	0	

Again the school algorithm works, however we need some observations.

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (1/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
r	1	0	0	1	0	

Again the school algorithm works, however we need some observations.

If we forget the carries, the sum of column i is

$$\sum_{j+k=i+1}a_jb_k$$

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (1/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
r	1	0	0	1	0	

Again the school algorithm works, however we need some observations.

If we forget the carries, the sum of column i is

$$\sum_{j+k=i+1} a_j b_k$$

E.g. for column 3 we have:

$$\sum_{j+k=4} a_j b_k = 1+1+0 = 10.$$

P-Completeness

On FO-Reductions

Multiplication in Logarithmic Space (2/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (2/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

From the column sums we can compute the result bit and the carry at each position:

L-Completeness

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (2/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

From the column sums we can compute the result bit and the carry at each position:

L-Completeness

P-Completeness

On FO-Reductions

Multiplication in Logarithmic Space (2/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
с		1	1	0	0	0
r	1	0	0	1	0	

From the column sums we can compute the result bit and the carry at each position:

 $c_0 = 0$ $c_i = \left\lfloor \frac{c_{i-1} + \sum_{j+k=i+1} a_j b_k}{2} \right\rfloor$

 $r_i = \left(c_{i-1} + \sum_{j+k=i+1} a_j b_k\right) \mod 2.$

L-Completeness

P-Completeness

On FO-Reductions

Multiplication in Logarithmic Space (2/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

From the column sums we can compute the result bit and the carry at each position:

 $r_i = \left(c_{i-1} + \sum_{j+k=i+1} a_j b_k\right) \mod 2.$

The carry is not necessary a single-bit!

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (3/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1 0	0	
		1	1	0		
	0	0	0			
с		1	1	0	0	0
r	1	0	0	1	0	

All we need to compute the previous sums are indices for the input bits and storing the previous element of the recurrence.

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (3/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

All we need to compute the previous sums are indices for the input bits and storing the previous element of the recurrence.

It is easy to see that $\sum_{j+k=i+1}^{k}a_jb_k\leq n.$

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (3/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
С		1	1	0	0	0
r	1	0	0	1	0	

All we need to compute the previous sums are indices for the input bits and storing the previous element of the recurrence.

It is easy to see that $\sum_{j+k=i+1}^{k}a_jb_k\leq n.$

Inductively we can show that $c_i \leq 2n$.

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (3/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
с		1	1	0	0	0
r	1	0	0	1	0	

All we need to compute the previous sums are indices for the input bits and storing the previous element of the recurrence.

It is easy to see that $\sum_{j+k=i+1}^{k} a_j b_k \leq n.$

Inductively we can show that $c_i \leq 2n$.

Indeed if $c_{i-1} \leq 2 \cdot n$ then $c_i = \frac{c_{i-1} + \sum\limits_{j+k=i+1} a_j b_k}{2} \leq \frac{3n}{2} \leq 2n$.

P-Completeness

On *FO*-Reductions

Multiplication in Logarithmic Space (3/3)

	5	4	3	2	1	0
b			1	1	0	
а	×		0	1	1	
			1	1	0	
		1	1	0		
	0	0	0			
с		1	1	0	0	0
r	1	0	0	1	0	

All we need to compute the previous sums are indices for the input bits and storing the previous element of the recurrence.

It is easy to see that $\sum_{j+k=i+1}^{k}a_jb_k\leq n.$

Inductively we can show that $c_i \leq 2n$.

Indeed if $c_{i-1} \leq 2 \cdot n$ then $c_i = \frac{c_{i-1} + \sum\limits_{j+k=i+1} a_j b_k}{2} \leq \frac{3n}{2} \leq 2n$. Hence all the numbers we need can be stored in $\mathcal{O}(\log n)$ bits.

Binary Encoding of a Structure

$$G = \langle V, E, R, 0, 3 \rangle$$

$$n = 4$$

$$E = \{(1, 2), (2, 3)\}$$

$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of G is:

Binary Encoding of a Structure

$$G = \langle V, E, R, 0, 3 \rangle$$

$$n = 4$$

$$E = \{(1, 2), (2, 3)\}$$

$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of G is:

Binary Encoding of a Structure

$$G = \langle V, E, R, 0, 3 \rangle$$

$$n = 4$$

$$E = \{(1, 2), (2, 3)\}$$

$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of G is:

Observe that E(1,2) corresponds to bit

$$1 \cdot n + 2 + 1 = 1 \cdot 4 + 2 + 1 = 6.$$

Also
$$|\operatorname{bin}(G)| = n^2 + n^2 + \lceil \log n \rceil + \lceil \log n \rceil$$
.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

Proof

Let
$$\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$$
.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

Proof

Let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$. A boolean *FO*-query is determined by a sentence $\phi \in \mathcal{L}(\sigma)$.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

Proof

Let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$. A boolean *FO*-query is determined by a sentence $\phi \in \mathcal{L}(\sigma)$. Let $\mathcal{A} \in \mathsf{STRUCT}(\sigma)$.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

Theorem

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

Proof

Let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$. A boolean *FO*-query is determined by a sentence $\phi \in \mathcal{L}(\sigma)$. Let $\mathcal{A} \in \mathsf{STRUCT}(\sigma)$. We will construct a logspace deterministic Turing machine M, such that:

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

Theorem

The set of boolean queries describable in first order logic can be computed in deterministic logspace, i.e. $FO \subseteq L$.

Proof

Let $\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$. A boolean *FO*-query is determined by a sentence $\phi \in \mathcal{L}(\sigma)$. Let $\mathcal{A} \in \mathsf{STRUCT}(\sigma)$. We will construct a logspace deterministic Turing machine M, such that:

$$\mathcal{A} \models \phi \Longleftrightarrow \mathcal{M}(\mathsf{bin}(\mathcal{A})) \downarrow .$$

<i>FO ⊆ L</i> 000000000000000	NL-Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

First we to compute the size of the universe.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A. Hence M's input length is

$$f(n) = n^{a_1} + \ldots + n^{a_r} + s \cdot \lceil \log n \rceil$$

for some *n*.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A. Hence M's input length is

$$f(n) = n^{a_1} + \ldots + n^{a_r} + s \cdot \lceil \log n \rceil$$

for some n. This n can be calculated as follows:

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A. Hence M's input length is

$$f(n) = n^{a_1} + \ldots + n^{a_r} + s \cdot \lceil \log n \rceil$$

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until *M* computes an f(j) that is equal to the size of *M*'s input. This *j* is the required *n*.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A. Hence M's input length is

$$f(n) = n^{a_1} + \ldots + n^{a_r} + s \cdot \lceil \log n \rceil$$

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until *M* computes an f(j) that is equal to the size of *M*'s input. This *j* is the required *n*. $\lceil \log j \rceil$ is simply the length of *j*'s binary representation so it can easily be computed from *j*.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000		00000	0000000	00000

First we to compute the size of the universe. M knows that its input is of the form bin(A) for some A. Hence M's input length is

$$f(n) = n^{a_1} + \ldots + n^{a_r} + s \cdot \lceil \log n \rceil$$

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until M computes an f(j) that is equal to the size of M's input. This j is the required n.

 $\lceil \log j \rceil$ is simply the length of j's binary representation so it can easily be computed from j.

Also it is easy to see that $\log f(n) = O(\log n)$.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

<i>FO ⊆ L</i> 000000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

$$\blacksquare R_i(c_{j_1},\ldots,c_{j_{a_i}})$$

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

■
$$R_i(c_{j_1},...,c_{j_{a_i}})$$

■ $i \le j$

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

■
$$R_i(c_{j_1},...,c_{j_{a_i}})$$

■ $i \le j$
■ $BIT(i,j)$

<i>FO ⊆ L</i> 00000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

•
$$R_i(c_{j_1},...,c_{j_{a_i}})$$

• $i \le j$
• $BIT(i,j)$
• $c_i \approx c_j$

<i>FO ⊆ L</i> 000000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions

We assume that ϕ is in prenex normal form:

$$\phi = (\exists x_1)(\forall x_2)\dots(Q_k x_k)\alpha(x_1,\dots,x_k)$$

where $\alpha(x1, \ldots, x_k)$ is quantifier free. We will construct the Turing machine by induction on k.

Induction Base: ϕ is quantifier-free sentence, i.e. it is a boolean combination of the following:

$$R_i(c_{j_1}, \dots, c_{j_{a_i}})$$

$$i \leq j$$

$$BIT(i, j)$$

$$c_i \approx c_i$$

In that case M can test whether $\mathcal{A} \models \phi$ by only using a pointer in the input (which is of the form $bin(\mathcal{A})$).

<i>FO</i> ⊆ 0000	L 0000000000	NL-Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions
	Proof				
	Induction E	Base (Cont'd): As test the validit	ssume for examply of $R_3(c_2, \max)$		s to

<i>FO</i> ⊆ ००००	L 000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
	Proof				
	Induction B		-	$, c_1)$. Then M h	

<i>FO</i> ⊆ 0000	L 000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions
	Proof				
	Induction B			$, c_1)$. Then M h	
		$\underbrace{n^{a_1}+n^{a_2}}_{\text{bits for }R_1 \text{ and }}$		$n \cdot (n-1) + c_1 - c_1$ n of $R_3(c_2, \max, c_1)$	+ 1.
		The above bit	is '1' iff $\mathcal{A} \models R_{2}$	$_{3}(c_{2}, \max, c_{1}).$	

<i>FO</i> ⊆ 0000	L 000000000	<i>NL</i> -Completeness	L-Completeness 00000	P-Completeness 0000000	On <i>FO</i> -Reductions
	Proof	ase (Cont'd): As test the validity move its input-	sume for examp y of $R_3(c_2, \max,$ head to bit nun	le that M want c_1). Then M hober:	s to as to
		bits for <i>R</i> ₁ and The above bit	$\int_{ R_2} + \underbrace{n^2 \cdot c_2 + n}_{\text{position}}$ is '1' iff $\mathcal{A} \models R_3$ is whether $\mathcal{A} \models$	of $R_3(c_2, \max, c_1)$ $R_3(c_2, \max, c_1)$. T	

<i>FO</i> ⊆ 0000	L 000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions
	Proof				
	Induction B	ase (Cont'd): As	sume for examp	le that <i>M</i> want	s to
		test the validity	y of <i>R</i> ₃ (<i>c</i> ₂ , max,	c_1). Then M h	as to
		move its input-	head to bit nun	nber:	
		$n^{a_1} + n^{a_2}$	$+ n^2 \cdot c_2 + n^2$	$(n-1) + c_1 + c_$	⊢1.
				$r \cdot (n-1) + c_1 $	
		bits for R_1 and	R ₂ position	of $R_3(c_2, \max, c_1)$	
		T I I I.		/ \ -	
				$_{3}(c_{2}, \max, c_{1}).$	his
		way, M can tes	st whether $\mathcal{A} \models$	ϕ .	
	Induction H	ypothesis: Assun	ne that all <i>FO</i> -c	ueries with <i>k</i> –	1
		51	logspace-compu	•	
		quantineis are	logopuee compa		
		$\phi - 1$	$(\forall x_2) \dots (Q_k x_k)$	$\alpha(\mathbf{x}^2 - \mathbf{x}_1)$	
		$\varphi = 0$	(\mathbf{v}_{k})	$\alpha(\lambda 2, \ldots, \lambda_k)$	

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

Induction Step: Our goal is to show that all *FO*-queries with *k* quantifiers are logspace computable.

$FO \subseteq L$	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

Induction Step: Our goal is to show that all FO-queries with k quantifiers are logspace computable. Assume that

 $\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

Induction Step: Our goal is to show that all FO-queries with k quantifiers are logspace computable. Assume that

$$\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$$

In order to compute $\exists x_1\psi(x_1)$ the Turing Machine *M* has to simply create all possible constants *c* in its work tape

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000

Induction Step: Our goal is to show that all FO-queries with k quantifiers are logspace computable. Assume that

$$\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$$

In order to compute $\exists x_1\psi(x_1)$ the Turing Machine M has to simply create all possible constants c in its work tape and check for each one of them, whether $\psi(c)$ holds.

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions

Induction Step: Our goal is to show that all *FO*-queries with *k* quantifiers are logspace computable. Assume that

$$\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$$

In order to compute $\exists x_1\psi(x_1)$ the Turing Machine M has to simply create all possible constants c in its work tape and check for each one of them, whether $\psi(c)$ holds. M can do this, since each possible constant can be represented by log n bits and $\psi(c)$ is an FO-sentence with k - 1 quantifiers,

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness 000000000	<i>L</i> -Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions

Induction Step: Our goal is to show that all *FO*-queries with *k* quantifiers are logspace computable. Assume that

$$\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$$

In order to compute $\exists x_1\psi(x_1)$ the Turing Machine M has to simply create all possible constants c in its work tape and check for each one of them, whether $\psi(c)$ holds. M can do this, since each possible constant can be represented by log n bits and $\psi(c)$ is an *FO*-sentence with k - 1 quantifiers, thus it is logspace computable by i.h.

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions

Induction Step: Our goal is to show that all *FO*-queries with *k* quantifiers are logspace computable. Assume that

$$\psi(x_1) = (\forall x_2) \dots (Q_k x_k) \alpha(x_1, x_2, \dots, x_k).$$

In order to compute $\exists x_1\psi(x_1)$ the Turing Machine M has to simply create all possible constants c in its work tape and check for each one of them, whether $\psi(c)$ holds. M can do this, since each possible constant can be represented by log n bits and $\psi(c)$ is an FO-sentence with k - 1 quantifiers, thus it is logspace computable by i.h. A universal quantifier is handled in a similar way.

<i>FO ⊆ L</i>	NL-Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000	●000000000	00000	0000000	00000

Overview

1 $FO \subseteq L$

- 2 NL-Completeness
- 3 *L*-Completeness
- 4 P-Completeness
- 5 On FO-Reductions

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		00000	0000000	00000

Let M be a logspace bounded Turing Machine that can only accept or reject its input (thus the output tape is not important).

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000	○●○○○○○○○○	00000	0000000	

 $(q, i, w_1, w_2),$

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions 00000

 $(q, i, w_1, w_2),$

where

q is M's current state

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000		00000	0000000	00000

 $(q, i, w_1, w_2),$

- *q* is *M*'s current state
- *i* is the position of the cursor in the read-only input

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		00000	000000	00000

 $(q, i, w_1, w_2),$

- *q* is *M*'s current state
- *i* is the position of the cursor in the read-only input
- w₁ are the contents of the work tape until and including the work tape cursor

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000	○●○○○○○○○		0000000	00000

 $(q, i, w_1, w_2),$

- *q* is *M*'s current state
- *i* is the position of the cursor in the read-only input
- w₁ are the contents of the work tape until and including the work tape cursor
- *w*₂ are the rest of the work tapes' contents

All the configurations of M can be seen as nodes in a graph.

P-Completenes

On *FO*-Reductions

All the configurations of M can be seen as nodes in a graph.

P-Completeness

On *FO*-Reductions

All the configurations of M can be seen as nodes in a graph.

An edge (C, C') corresponds to a transition. I.e. on configuration C, based on what M sees on the input tape and the work tape, M moves the cursors and possibly writes something to the output tape that leads to configuration C'.

P-Completeness

All the configurations of M can be seen as nodes in a graph.

- An edge (C, C') corresponds to a transition. I.e. on configuration C, based on what M sees on the input tape and the work tape, M moves the cursors and possibly writes something to the output tape that leads to configuration C'.
- Since configurations look like (q, i, w_1, w_2) , there are at most $|Q| \cdot n \cdot |\Sigma|^{2 \log n} = \mathcal{O}(n^c)$ nodes in the graph.

P-Completeness

All the configurations of M can be seen as nodes in a graph.

- An edge (C, C') corresponds to a transition. I.e. on configuration C, based on what M sees on the input tape and the work tape, M moves the cursors and possibly writes something to the output tape that leads to configuration C'.
- Since configurations look like (q, i, w_1, w_2) , there are at most $|Q| \cdot n \cdot |\Sigma|^{2 \log n} = \mathcal{O}(n^c)$ nodes in the graph.
- *M* accepts its input iff the accepting configuration (*C_A*) is reachable from the initial configuration (*C_I*).

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000		00000	0000000	00000

The previous discussion indicates that every space complexity class should have some form of reachability problem as a natural complete problem.

The previous discussion indicates that every space complexity class should have some form of reachability problem as a natural complete problem.

We define the following problem:

 $\mathsf{REACH} = \{(G, s, t) \mid G \text{ is directed and there is path from } s \text{ to } t\}.$

The previous discussion indicates that every space complexity class should have some form of reachability problem as a natural complete problem.

We define the following problem:

 $\mathsf{REACH} = \{(G, s, t) \mid G \text{ is directed and there is path from } s \text{ to } t\}.$

We will show that REACH is *NL*-complete via *FO*-reductions.

<i>FO ⊆ L</i> ००००००००००००	<i>NL</i> -Completeness 0000●00000	L-Completeness 00000	<i>P</i> -Completeness	On <i>FO</i> -Reductions
$REACH \in I$	VL			
The follow REACH.	ing simple non-o	determinstic log	space algorithm	solves

<i>FO ⊆ L</i> 0000000000000	<i>NL</i> -Completeness 0000●00000	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions 00000
$REACH \in \Lambda$	IL			

The following simple non-determinstic logspace algorithm solves REACH.

<i>FO ⊆ L</i> ००००००००००००	<i>NL</i> -Completeness 0000●00000	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
$REACH\in\Lambda$	IL			

The following simple non-determinstic logspace algorithm solves REACH.

The above algorithm needs only store a and b, which have size log n.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		00000	0000000	00000

Theorem

REACH is complete for NL via FO-reductions.

P-Completeness

On FO-Reductions 00000

Theorem

REACH is complete for NL via FO-reductions.

Proof

•
$$\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$$

P-Completeness

On FO-Reductions 00000

Theorem

REACH is complete for NL via FO-reductions.

Proof

$$\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$$

• $\tau_g = \langle E^2, s, t \rangle$ (i.e. the vocabulary of directed graphs with two specified nodes)

P-Completeness

On FO-Reductions

Theorem

REACH is complete for NL via FO-reductions.

Proof

$$\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$$

- $\tau_g = \langle E^2, s, t \rangle$ (i.e. the vocabulary of directed graphs with two specified nodes)
- Let N be the logspace nondeterministic Turing Machine that accepts a subset of STRUCT[σ]

P-Completeness

On FO-Reductions

Theorem

REACH is complete for NL via FO-reductions.

Proof

$$\sigma = \langle R_1^{a_1}, \ldots, R_r^{a_r}, c_1, \ldots, c_s \rangle$$

- $\tau_g = \langle E^2, s, t \rangle$ (i.e. the vocabulary of directed graphs with two specified nodes)
- Let N be the logspace nondeterministic Turing Machine that accepts a subset of STRUCT[σ]

• We will construct an *FO*-reduction $I : STRUCT[\sigma] \rightarrow STRUCT[\tau_g]$ such that for all $\mathcal{A} \in STRUCT[\sigma]$

 $N(\operatorname{bin}(\mathcal{A}))\downarrow \iff I(\mathcal{A}) \in \mathsf{REACH}.$

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
00000000000000	000000●000	00000		00000

• Assume that N uses at most $c \cdot \log n$ bits of work tape

- Assume that N uses at most $c \cdot \log n$ bits of work tape
- Remember that the number of N's states and the number of the relations and constants in σ are constants that do not depend on the input size.

- Assume that N uses at most $c \cdot \log n$ bits of work tape
- Remember that the number of N's states and the number of the relations and constants in σ are constants that do not depend on the input size.

• Let
$$a = max\{a_i \mid 1 \le i \le r\}$$
 and $k = 1 + a + c$

- Assume that N uses at most $c \cdot \log n$ bits of work tape
- Remember that the number of N's states and the number of the relations and constants in σ are constants that do not depend on the input size.
- Let $a = max\{a_i \mid 1 \le i \le r\}$ and k = 1 + a + c
- The reduction I will be a k-ary FO-query. I.e. the universe of I(A) will consist of k-tuples from A's elements.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000	0000000●00	00000	0000000	00000

A configuration of N can be encoded in a k-tuple of variables,
 i.e. C = (p, r₁,..., r_a, w₁,..., w_c), where p and all the r_i's and w_i's are elements of the universe, i.e. log n-bit numbers.

<i>FO ⊆ L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions

- A configuration of N can be encoded in a k-tuple of variables,
 i.e. C = (p, r₁,..., r_a, w₁,..., w_c), where p and all the r_i's and w_i's are elements of the universe, i.e. log n-bit numbers.
- N is looking at an 1 in the binary representation of relation R_i iff $\mathcal{A} \models R_i(r_1, \dots, r_a)$

<i>FO ⊆ L</i>	NL-Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000	0000000●00	00000	0000000	

- A configuration of N can be encoded in a k-tuple of variables,
 i.e. C = (p, r₁,..., r_a, w₁,..., w_c), where p and all the r_i's and w_i's are elements of the universe, i.e. log n-bit numbers.
- N is looking at an 1 in the binary representation of relation R_i iff $\mathcal{A} \models R_i(r_1, \dots, r_a)$
- The w_i's contain the contents of N's worktape

$FO \subseteq L$	NL-Completeness	L-Completeness	P-Completeness	On FO-Reductions
000000000000	0000000000	00000	000000	

- A configuration of N can be encoded in a k-tuple of variables,
 i.e. C = (p, r₁,..., r_a, w₁,..., w_c), where p and all the r_i's and w_i's are elements of the universe, i.e. log n-bit numbers.
- N is looking at an 1 in the binary representation of relation R_i iff $\mathcal{A} \models R_i(r_1, \dots, r_a)$
- The w_i's contain the contents of N's worktape
- p encodes the current state of N, which R_i or which c_i the input head is looking at and a pointer for the work tape

$FO \subseteq L$ N	IL-Completeness	L-Completeness	P-Completeness	On FO-Reductions
000000000000000000000000000000000000000	0000000000			

- A configuration of N can be encoded in a k-tuple of variables,
 i.e. C = (p, r₁,..., r_a, w₁,..., w_c), where p and all the r_i's and w_i's are elements of the universe, i.e. log n-bit numbers.
- N is looking at an 1 in the binary representation of relation R_i iff $A \models R_i(r_1, ..., r_a)$
- The w_i's contain the contents of N's worktape
- p encodes the current state of N, which R_i or which c_i the input head is looking at and a pointer for the work tape
- since the number of states, relations and constants is independent of the input size and a pointer for the work tape needs O(log log n) bits, p has enough space to store all the necessary information (for large enough n).

<i>FO ⊆ L</i> 0000000000000	NL-Completeness 00000000●0	L-Completeness	P-Completeness	On <i>FO</i> -Reductions 00000

Now we build the desired k-ary FO-reduction

$$I = \lambda_{C,C'} \langle true, \phi_N, \alpha, \omega \rangle.$$

- True in the above relation means that the set of nodes in the graph I(A) is equal to the set of all possible configurations
- Formulas φ_N, α and ω represent the edge relation, the source node s and the target node t in the created graph
- $\mathcal{A} \models \alpha(\mathcal{C})$ iff \mathcal{C} is the unique initial configuration of N
- $\mathcal{A} \models \omega(\mathcal{C})$ iff \mathcal{C} is the unique accepting configuration

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000	00000000●	00000	000000	00000

A ⊨ φ_N(C, C') iff there is a valid move of N from C to C'. A move from C to C' has the following meaning:

A ⊨ φ_N(C, C') iff there is a valid move of N from C to C'. A move from C to C' has the following meaning:

"if on configuration C we examine the input bit b then the input head moves to direction d_i , the work head moves to direction d_w and we write bit b' on the work tape."

A ⊨ φ_N(C, C') iff there is a valid move of N from C to C'. A move from C to C' has the following meaning:

"if on configuration C we examine the input bit b then the input head moves to direction d_i , the work head moves to direction d_w and we write bit b' on the work tape."

The above information can be extracted from the *k* variables $p, r_1, \ldots, r_a, w_1, \ldots, w_c$ that describe *C* and *C'*.

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	<i>L</i> -Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		●0000	0000000	00000

Overview

1 $FO \subseteq L$

- 2 NL-Completeness
- 3 L-Completeness
- 4 P-Completeness
- 5 On FO-Reductions

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000000		○●○○○	000000	00000

A slight modification of REACH gives us a natural complete problem for L.

A slight modification of REACH gives us a natural complete problem for L.

The deterministic version of REACH is the following problem:

 $\mathsf{REACH}_d = \{(G, s, t) \mid G \text{ is directed and there is a} \\ \text{deterministic path from } s \text{ to } t\}.$

The path P is deterministic if for every $(x, y) \in P$, (x, y) is the unique edge leaving x.

P-Completeness

On FO-Reductions

Difference Between REACH and REACH_d

It holds that $(G, s, t) \in \mathsf{REACH}$ but $(G, s, t) \notin \mathsf{REACH}_d$

FO ⊆ L 0000000000000	NL-Completeness	L-Completeness 000€0	P-Completeness	On <i>FO</i> -Reductions 00000
$REACH_d \in$	L			

The following logspace algorithm answers $REACH_d$:

$$b := s; i := 0; n = |G|;$$

while $\left[(b \neq t) \land (i < n) \land (\exists!a)E(b,a) \right]$ do {
 $b :=$ the unique *a* for which $E(b,a)$
 $i := i + 1$
}
if $b = t$ then accept else reject.

$REACH_d$ is a Natural Complete Problem for L

The definition of $REACH_d$ was made such that the following theorem holds.

$REACH_d$ is a Natural Complete Problem for L

The definition of REACH_d was made such that the following theorem holds.

Theorem

 $REACH_d$ is complete for L via FO-reductions.

REACH_d is a Natural Complete Problem for L

The definition of REACH_d was made such that the following theorem holds.

Theorem

 $REACH_d$ is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and NL.

REACH_d is a Natural Complete Problem for L

The definition of REACH_d was made such that the following theorem holds.

Theorem

 $REACH_d$ is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and *NL*. The only difference is that the Turing Machine is now a deterministic one,

$REACH_d$ is a Natural Complete Problem for L

The definition of REACH_d was made such that the following theorem holds.

Theorem

 $REACH_d$ is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and *NL*. The only difference is that the Turing Machine is now a deterministic one, thus every configuration has a unique next configuration,

$REACH_d$ is a Natural Complete Problem for L

The definition of REACH_d was made such that the following theorem holds.

Theorem

 $REACH_d$ is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and *NL*. The only difference is that the Turing Machine is now a deterministic one, thus every configuration has a unique next configuration, which implies that every node in the constructed graph has a unique edge that leaves it.

<i>FO ⊆ L</i> 0000000000000	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness ●000000	On <i>FO</i> -Reductions 00000

Overview

1 $FO \subseteq L$

- 2 NL-Completeness
- 3 *L*-Completeness
- 4 P-Completeness
- 5 On FO-Reductions

Using similar ideas we construct a natural complete problem for $P = ASPACE[\log n]$.

Using similar ideas we construct a natural complete problem for $P = ASPACE[\log n]$.

Definition

An alternating graph is a structure $G = \langle V, E, A, s, t \rangle$, where the edges are directed and the vertices are labelled universal (A) or existential ($V \setminus A$).

Using similar ideas we construct a natural complete problem for $P = ASPACE[\log n]$.

Definition

An alternating graph is a structure $G = \langle V, E, A, s, t \rangle$, where the edges are directed and the vertices are labelled universal (A) or existential ($V \setminus A$).

Let G be an alternating graph. P^G is the smallest binary relation that satisfies the following:

$$\bullet P^G(x,x)$$

P-Completeness 0●00000 On *FO*-Reductions

Using similar ideas we construct a natural complete problem for $P = ASPACE[\log n]$.

Definition

An alternating graph is a structure $G = \langle V, E, A, s, t \rangle$, where the edges are directed and the vertices are labelled universal (A) or existential $(V \setminus A)$.

Let G be an alternating graph. P^G is the smallest binary relation that satisfies the following:

- $\bullet P^G(x,x)$
- If x is existential and for some edge (x, z) we have P^G(z, y), then P^G(x, y)

P-Completeness 0●00000 On *FO*-Reductions

Using similar ideas we construct a natural complete problem for $P = ASPACE[\log n]$.

Definition

An alternating graph is a structure $G = \langle V, E, A, s, t \rangle$, where the edges are directed and the vertices are labelled universal (A) or existential ($V \setminus A$).

Let G be an alternating graph. P^G is the smallest binary relation that satisfies the following:

- $\bullet P^G(x,x)$
- If x is existential and for some edge (x, z) we have P^G(z, y), then P^G(x, y)
- If x is universal, x has at least one outgoing edge and for all edges (x, z) we have P^G(z, y), then P^G(x, y)

<i>FO</i> ⊆ <i>L</i> 000000000000	<i>NL</i> -Completeness	L-Completeness 00000	P-Completeness 00●0000	On <i>FO</i> -Reductions

Universal Nodes: s and a

P ^G	s	а	b	с	d	е	t
S	1	0	0	0	0	0	1
а	0	1	0	0	0	1	0
b	0	0	1	0	0	0	1
с	0	0	0	1	0	1	1
d	0	0	0	0	1	1	0
е	0	0	0	0	0	1	0
t	0	0	0	0	0	0	1

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		00000	000●000	00000

Alternating Reachability

We define $\text{REACH}_a = \{(G, s, t) \mid P^G(s, t)\}.$

The previous graph G with nodes s and t is a yes instance for $REACH_a$.

FO ⊆ L	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
000000000000		00000	0000●00	00000
$REACH_a \in I$	 D			

```
make QUEUE empty; mark(t); insert t into QUEUE;
while QUEUE not empty do {
    remove first element, x, from QUEUE;
    for each unmarked vertex y such that E(y,x) do {
        delete edge (y,x);
        if y is existential or y has no outgoing edges then
        { mark(y); insert y into QUEUE}
        }
    };
    if s is marked then accept else reject;
```

Remember: t is the target node, s is the source node and we wish to test whether there is an alternating path from s to t.

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

Existential Nodes: b, c, d, t, e

• *t* is marked, added in QUEUE and then removed

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

- *t* is marked, added in QUEUE and then removed
- (b, t) and (c, t) are deleted and b, c are marked and added in QUEUE

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

- t is marked, added in QUEUE and then removed
- (b, t) and (c, t) are deleted and b, c are marked and added in QUEUE
- b is removed from QUEUE and (s, b) is deleted

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

- t is marked, added in QUEUE and then removed
- (b, t) and (c, t) are deleted and b, c are marked and added in QUEUE
- b is removed from QUEUE and (s, b) is deleted
- c is removed from QUEUE and (a, c) and (s, c) are deleted

P-Completeness 00000●0 On FO-Reductions

A Run of the Algorithm on G

Universal Nodes: s and a

- t is marked, added in QUEUE and then removed
- (b, t) and (c, t) are deleted and b, c are marked and added in QUEUE
- b is removed from QUEUE and (s, b) is deleted
- c is removed from QUEUE and (a, c) and (s, c) are deleted
- s is marked and added in QUEUE (success!)

P-Completeness

On FO-Reductions

A Natural Complete Problem for ASPACE[log n]

As before, $REACH_a$ was defined such that the following theorem holds.

P-Completeness

On *FO*-Reductions

A Natural Complete Problem for ASPACE[log n]

As before, $REACH_a$ was defined such that the following theorem holds.

Theorem

REACH_a is complete for P via FO-reductions.

A Natural Complete Problem for ASPACE[log n]

As before, $REACH_a$ was defined such that the following theorem holds.

Theorem

REACH_a is complete for P via FO-reductions.

Proof Sketch.

The same construction as before works. The *L*-Turing machine is now an *ASPACE* [log n]-Turing Machine. We have to make sure that the universal states are mapped to universal nodes.

<i>FO ⊆ L</i> 0000000000000	NL-Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions ●0000

Overview

1 $FO \subseteq L$

- 2 NL-Completeness
- 3 *L*-Completeness
- 4 *P*-Completeness
- 5 On FO-Reductions

P-Completeness

On *FO*-Reductions

Closure under FO-reductions

Let *C* be a complexity class and \mathcal{L} be a language that we use to express problems (e.g. $FO, SO\exists$).

P-Completeness

On *FO*-Reductions

Closure under FO-reductions

Let C be a complexity class and \mathcal{L} be a language that we use to express problems (e.g. $FO, SO\exists$).

C is closed under FO-reductions if whenever $B \in C$ and $A \leq_{fo} B$ then $A \in C$.

P-Completeness

On *FO*-Reductions

Closure under FO-reductions

- Let C be a complexity class and \mathcal{L} be a language that we use to express problems (e.g. $FO, SO\exists$).
- C is closed under FO-reductions if whenever $B \in C$ and $A \leq_{fo} B$ then $A \in C$.
- \mathcal{L} is closed under *FO*-reductions if whenever *B* is expressible in \mathcal{L} and $A \leq_{fo} B$ then *A* is expressible in \mathcal{L} too.

The Power of FO-reductions

As we have seen the complexity of queries expressible in *FO*-logic is relative low.

The Power of FO-reductions

As we have seen the complexity of queries expressible in *FO*-logic is relative low.

Thus the intuitive meaning of $A \leq_{fo} B$ is that A is not more difficult than B.

P-Completeness

On *FO*-Reductions

The Power of FO-reductions

As we have seen the complexity of queries expressible in *FO*-logic is relative low.

Thus the intuitive meaning of $A \leq_{fo} B$ is that A is not more difficult than B.

Despite the limited power of FO-logic almost all the complexity classes and languages that we will consider are closed under FO-reductions.

P-Completeness

On *FO*-Reductions

The Power of FO-reductions

As we have seen the complexity of queries expressible in *FO*-logic is relative low.

Thus the intuitive meaning of $A \leq_{fo} B$ is that A is not more difficult than B.

Despite the limited power of *FO*-logic almost all the complexity classes and languages that we will consider are closed under *FO*-reductions.

At least for complexity classes one should suspect that, since almost all of them are closed under logspace reductions and $FO \subseteq L$.

P-Completeness

On *FO*-Reductions

Methodology for Finding the Descriptive Analogue of a Complexity Class

Let \mathcal{L} be a language and let C be a complexity class.

Let \mathcal{L} be a language and let C be a complexity class. In order to show that $\mathcal{L} = C$, i.e. that a query belongs in C if and only if it is expressible in \mathcal{L} , we do the following:

1 Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.
- **3** Show that \mathcal{L} is closed under *FO*-reductions.

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.
- **3** Show that \mathcal{L} is closed under *FO*-reductions.
- 4 Express T in \mathcal{L} .

Let \mathcal{L} be a language and let C be a complexity class. In order to show that $\mathcal{L} = C$, i.e. that a query belongs in C if and only if it is expressible in \mathcal{L} , we do the following:

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.
- **3** Show that \mathcal{L} is closed under *FO*-reductions.
- 4 Express T in \mathcal{L} .

From 2-4 we can show that $C \subseteq \mathcal{L}$.

Let \mathcal{L} be a language and let C be a complexity class. In order to show that $\mathcal{L} = C$, i.e. that a query belongs in C if and only if it is expressible in \mathcal{L} , we do the following:

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.
- **3** Show that \mathcal{L} is closed under *FO*-reductions.
- 4 Express T in \mathcal{L} .

From 2-4 we can show that $C \subseteq \mathcal{L}$. Indeed, let $A \in C$.

Let \mathcal{L} be a language and let C be a complexity class. In order to show that $\mathcal{L} = C$, i.e. that a query belongs in C if and only if it is expressible in \mathcal{L} , we do the following:

- **1** Create a *C*-algorithm that can test for every \mathcal{L} -sentence ϕ and every \mathcal{L} -structure \mathcal{A} , whether $\mathcal{A} \models \phi$. This shows that $\mathcal{L} \subseteq C$.
- 2 Find a boolean query T that is complete for C via FO-reductions.
- **3** Show that \mathcal{L} is closed under *FO*-reductions.
- 4 Express T in \mathcal{L} .

From 2-4 we can show that $C \subseteq \mathcal{L}$. Indeed, let $A \in C$. Then $A \leq_{fo} T$, hence A is expressible in \mathcal{L} .

<i>FO ⊆ L</i> 0000000000000	<i>NL</i> -Completeness	L-Completeness 00000	P-Completeness	On <i>FO</i> -Reductions 0000●

Today we've seen

<i>FO ⊆ L</i>	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness	On <i>FO</i> -Reductions
0000000000000		00000	0000000	0000●

Today we've seen :

• $FO \subseteq L$

<i>FO ⊆ L</i> 00000000000000	NL-Completeness	L-Completeness 00000	P-Completeness	On <i>FO</i> -Reductions 0000●

Today we've seen :

- $FO \subseteq L$
- Reachability problems are typically the natural complete problems for space complexity classes.

<i>FO ⊆ L</i> 0000000000000	NL-Completeness	L-Completeness	P-Completeness	On <i>FO</i> -Reductions 0000●

Today we've seen :

• $FO \subseteq L$

- Reachability problems are typically the natural complete problems for space complexity classes.
- The natural complete problems for NL, L and P are REACH, REACH_d and REACH_a respectively.

<i>FO ⊆ L</i> 0000000000000	<i>NL</i> -Completeness	L-Completeness	<i>P</i> -Completeness 0000000	On <i>FO</i> -Reductions 0000●

Today we've seen :

• $FO \subseteq L$

- Reachability problems are typically the natural complete problems for space complexity classes.
- The natural complete problems for NL, L and P are REACH, REACH_d and REACH_a respectively.
- A strategy for finding the descriptive analogues of complexity classes.