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Goal of the Section

FO is the set of boolean queries expressible in first order logic.

L is the set of boolean queries computable by a deterministic
Turing machine using at most logarithmic space.

The goal of this section is to show that FO ⊆ L.
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Logspace Turing Machines

A logspace-Turing Machine

has a read-only input tape,

has a write-only output tape,

has a read-write work tape that contains O(log n) bits.

Thus, it typically can:

store a logn-bit number that points to a position in the input,

work on strings (numbers etc) of size O(log n) on the work
tape.
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Addition in Logarithmic Space

01011
+ 00110

10001

The simple school algorithm works!

The logspace Turing Machine examines
the input positions and produces the out-
put bits one by one from right to left.

Only a the single bit carry has to be stored.
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Multiplication in Logarithmic Space (1/3)

5 4 3 2 1 0

b 1 1 0

a × 0 1 1

1 1 0
1 1 0

0 0 0

r 1 0 0 1 0

Again the school algorithm
works, however we need some
observations.

If we forget the carries, the sum
of column i is∑

j+k=i+1

ajbk .

E.g. for column 3 we have:∑
j+k=4

ajbk = 1 + 1 + 0 = 10.
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Multiplication in Logarithmic Space (2/3)

5 4 3 2 1 0

b 1 1 0

a × 0 1 1

1 1 0
1 1 0

0 0 0

c 1 1 0 0 0

r 1 0 0 1 0

From the column sums we can
compute the result bit and the
carry at each position:

c0 = 0

ci =

ci−1 +
∑

j+k=i+1

ajbk

2



ri =

ci−1 +
∑

j+k=i+1

ajbk

 mod 2.

The carry is not necessary a single-bit!
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Multiplication in Logarithmic Space (3/3)

5 4 3 2 1 0

b 1 1 0

a × 0 1 1

1 1 0
1 1 0

0 0 0

c 1 1 0 0 0

r 1 0 0 1 0

All we need to compute the pre-
vious sums are indices for the in-
put bits and storing the previous
element of the recurrence.

It is easy to see that∑
j+k=i+1

ajbk ≤ n.

Inductively we can show that
ci ≤ 2n.

Indeed if ci−1 ≤ 2 · n then ci =
ci−1+

∑
j+k=i+1

ajbk

2 ≤ 3n
2 ≤ 2n. Hence

all the numbers we need can be stored in O(log n) bits.
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Binary Encoding of a Structure

0 1

2 3 G = 〈V ,E ,R, 0, 3〉
n = 4

E = {(1, 2), (2, 3)}
R = {(0, 1), (0, 2), (3, 1)}

The binary encoding of G is:

bin(G ) =

E︷ ︸︸ ︷
0000001000010100

R︷ ︸︸ ︷
0110000000000100

0︷︸︸︷
00

3︷︸︸︷
11 .

Observe that E (1, 2) corresponds to bit

1 · n + 2 + 1 = 1 · 4 + 2 + 1 = 6.

Also |bin(G )| = n2 + n2 + dlog ne+ dlog ne.
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Theorem

The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO ⊆ L.

Proof

Let σ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉. A boolean FO-query is

determined by a sentence φ ∈ L(σ). Let A ∈ STRUCT(σ). We
will construct a logspace deterministic Turing machine M, such
that:

A |= φ⇐⇒ M(bin(A)) ↓ .
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Proof

First we to compute the size of the universe.

M knows that its
input is of the form bin(A) for some A. Hence M’s input length is

f (n) = na1 + . . .+ nar + s · dlog ne

for some n. This n can be calculated as follows:

M computes iteratively f (1), f (2), etc. until M computes an f (j)
that is equal to the size of M’s input. This j is the required n.

dlog je is simply the length of j ’s binary representation so it can
easily be computed from j .

Also it is is easy to see that log f (n) = O(log n).
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Proof

We assume that φ is in prenex normal form:

φ = (∃x1)(∀x2) . . . (Qkxk)α(x1, . . . , xk)

where α(x1, . . . , xk) is quantifier free.

We will construct the
Turing machine by induction on k.

Induction Base: φ is quantifier-free sentence, i.e. it is a boolean
combination of the following:

Ri (cj1 , . . . , cjai )
i ≤ j
BIT(i , j)
ci ≈ cj

In that case M can test whether A |= φ by only using
a pointer in the input (which is of the form bin(A)).
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Proof

Induction Base (Cont’d): Assume for example that M wants to
test the validity of R3(c2,max, c1).

Then M has to
move its input-head to bit number:

na1 + na2︸ ︷︷ ︸
bits for R1 and R2

+ n2 · c2 + n · (n − 1) + c1 + 1︸ ︷︷ ︸
position of R3(c2,max,c1)

.

The above bit is ’1’ iff A |= R3(c2,max, c1). This
way, M can test whether A |= φ.

Induction Hypothesis: Assume that all FO-queries with k − 1
quantifiers are logspace-computable:

φ = (∀x2) . . . (Qkxk)α(x2, . . . , xk)
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Proof.

Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable.

Assume that

ψ(x1) = (∀x2) . . . (Qkxk)α(x1, x2, . . . , xk).

In order to compute ∃x1ψ(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape and check for each one of them, whether
ψ(c) holds. M can do this, since each possible
constant can be represented by log n bits and ψ(c) is
an FO-sentence with k − 1 quantifiers, thus it is
logspace computable by i.h. A universal quantifier is
handled in a similar way.
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Let M be a logspace bounded Turing Machine that can only
accept or reject its input (thus the output tape is not important).

A configuration of M looks like:

(q, i ,w1,w2),

where

q is M’s current state

i is the position of the cursor in the read-only input

w1 are the contents of the work tape until and including the
work tape cursor

w2 are the rest of the work tapes’ contents
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All the configurations of M can bee seen as nodes in a graph.

C2

. . .

. . . CA

CI C1

An edge (C ,C ′) corresponds to a transition. I.e. on
configuration C , based on what M sees on the input tape and
the work tape, M moves the cursors and possibly writes
something to the output tape that leads to configuration C ′.

Since configurations look like (q, i ,w1,w2), there are at most
|Q| · n · |Σ|2 log n = O(nc) nodes in the graph.

M accepts its input iff the accepting configuration (CA) is
reachable from the initial configuration (CI ).
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The previous discussion indicates that every space complexity class
should have some form of reachability problem as a natural
complete problem.

We define the following problem:

REACH = {(G , s, t) | G is directed and there is path from s to t}.

We will show that REACH is NL-complete via FO-reductions.
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REACH ∈ NL

The following simple non-determinstic logspace algorithm solves
REACH.

b:= s;

while (not (b = t)) do {

a := b;

nondeterministically choose new b;

if (not E(a,b)) then reject;

}

accept;

The above algorithm needs only store a and b, which have size
log n.
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Theorem

REACH is complete for NL via FO-reductions.

Proof

σ = 〈Ra1
1 , . . . ,R

ar
r , c1, . . . , cs〉

τg = 〈E 2, s, t〉 (i.e. the vocabulary of directed graphs with
two specified nodes)

Let N be the logspace nondeterministic Turing Machine that
accepts a subset of STRUCT[σ]

We will construct an FO-reduction
I : STRUCT[σ]→ STRUCT[τg ] such that for all
A ∈ STRUCT[σ]

N(bin(A)) ↓⇐⇒ I (A) ∈ REACH.
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Proof Sketch

Assume that N uses at most c · log n bits of work tape

Remember that the number of N’s states and the number of
the relations and constants in σ are constants that do not
depend on the input size.

Let a = max{ai | 1 ≤ i ≤ r} and k = 1 + a + c

The reduction I will be a k-ary FO-query. I.e. the universe of
I (A) will consist of k-tuples from A’s elements.
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Proof Sketch

A configuration of N can be encoded in a k-tuple of variables,
i.e. C = (p, r1, . . . , ra,w1, . . . ,wc), where p and all the ri ’s
and wi ’s are elements of the universe, i.e. log n-bit numbers.

N is looking at an 1 in the binary representation of relation Ri

iff A |= Ri (r1, . . . , ra)

The wi ’s contain the contents of N’s worktape

p encodes the current state of N, which Ri or which ci the
input head is looking at and a pointer for the work tape

since the number of states, relations and constants is
independent of the input size and a pointer for the work tape
needs O(log log n) bits, p has enough space to store all the
necessary information (for large enough n).
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Proof Sketch

Now we build the desired k-ary FO-reduction

I = λC ,C ′〈true, φN , α, ω〉.

True in the above relation means that the set of nodes in the
graph I (A) is equal to the set of all possible configurations

Formulas φN , α and ω represent the edge relation, the source
node s and the target node t in the created graph

A |= α(C ) iff C is the unique initial configuration of N

A |= ω(C ) iff C is the unique accepting configuration
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Proof Sketch.

A |= φN(C ,C ′) iff there is a valid move of N from C to C ′. A
move from C to C ′ has the following meaning:

“if on configuration C we examine the input bit b then the
input head moves to direction di , the work head moves to

direction dw and we write bit b′ on the work tape.”

The above information can be extracted from the k variables
p, r1, . . . , ra,w1, . . . ,wc that describe C and C ′.
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Overview

1 FO ⊆ L

2 NL-Completeness

3 L-Completeness

4 P-Completeness

5 On FO-Reductions
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A slight modification of REACH gives us a natural complete
problem for L.

The deterministic version of REACH is the following problem:

REACHd = {(G , s, t) | G is directed and there is a

deterministic path from s to t}.

The path P is deterministic if for every (x , y) ∈ P, (x , y) is the
unique edge leaving x .
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Difference Between REACH and REACHd

s t

It holds that (G , s, t) ∈ REACH but (G , s, t) /∈ REACHd
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REACHd ∈ L

The following logspace algortihm answers REACHd :

b := s; i := 0; n = |G |;

while
[
(b 6= t) ∧ (i < n) ∧ (∃!a)E (b, a)

]
do {

b := the unique a for which E (b, a)

i := i + 1

}
if b = t then accept else reject.
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REACHd is a Natural Complete Problem for L

The definition of REACHd was made such that the following
theorem holds.

Theorem

REACHd is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and NL.
The only difference is that the Turing Machine is now a
deterministic one, thus every configuration has a unique next
configuration, which implies that every node in the constructed
graph has a unique edge that leaves it.
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Using similar ideas we construct a natural complete problem for
P = ASPACE [log n].

Definition

An alternating graph is a structure G = 〈V ,E ,A, s, t〉, where the
edges are directed and the vertices are labelled universal (A) or
existential (V \ A).

Let G be an alternating graph. PG is the smallest binary relation
that satisfies the following:

PG (x , x)

If x is existential and for some edge (x , z) we have PG (z , y),
then PG (x , y)

If x is universal, x has at least one outgoing edge and for all
edges (x , z) we have PG (z , y), then PG (x , y)
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s

a

b

c

d

t

e

Universal Nodes: s and a

Existential Nodes: b, c , d , t, e

PG s a b c d e t

s 1 0 0 0 0 0 1

a 0 1 0 0 0 1 0

b 0 0 1 0 0 0 1

c 0 0 0 1 0 1 1

d 0 0 0 0 1 1 0

e 0 0 0 0 0 1 0

t 0 0 0 0 0 0 1
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Alternating Reachability

We define REACHa =
{

(G , s, t)
∣∣∣ PG (s, t)

}
.

The previous graph G with nodes s and t is a yes instance for
REACHa.
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REACHa ∈ P

make QUEUE empty; mark(t); insert t into QUEUE;
while QUEUE not empty do {

remove first element, x, from QUEUE;
for each unmarked vertex y such that E(y,x) do {

delete edge (y,x);
if y is existential or y has no outgoing edges then
{ mark(y); insert y into QUEUE}
}

};
if s is marked then accept else reject;

Remember: t is the target node, s is the source node and we wish
to test whether there is an alternating path from s to t.
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A Run of the Algorithm on G

s

a

b

c

d

t

e

Universal Nodes: s and a

Existential Nodes: b, c , d , t, e

t is marked, added in QUEUE and then removed
(b, t) and (c , t) are deleted and b, c are marked and added in
QUEUE
b is removed from QUEUE and (s, b) is deleted
c is removed from QUEUE and (a, c) and (s, c) are deleted
s is marked and added in QUEUE (success!)
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A Natural Complete Problem for ASPACE [log n]

As before, REACHa was defined such that the following theorem
holds.

Theorem

REACHa is complete for P via FO-reductions.

Proof Sketch.

The same construction as before works. The L-Turing machine is
now an ASPACE [log n]-Turing Machine. We have to make sure
that the universal states are mapped to universal nodes.
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1 FO ⊆ L
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Closure under FO-reductions

Let C be a complexity class and L be a language that we use to
express problems (e.g. FO,SO∃).

C is closed under FO-reductions if whenever B ∈ C and A ≤fo B
then A ∈ C .

L is closed under FO-reductions if whenever B is expressible in L
and A ≤fo B then A is expressible in L too.
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The Power of FO-reductions

As we have seen the complexity of queries expressible in FO-logic
is relative low.

Thus the intuitive meaning of A ≤fo B is that A is not more
difficult than B.

Despite the limited power of FO-logic almost all the complexity
classes and languages that we will consider are closed under
FO-reductions.

At least for complexity classes one should suspect that, since
almost all of them are closed under logspace reductions and
FO ⊆ L.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let L be a language and let C be a complexity class.

In order to
show that L =C , i.e. that a query belongs in C if and only if it is
expressible in L, we do the following:

1 Create a C -algorithm that can test for every L-sentence φ and
every L-structure A, whether A |= φ. This shows that L ⊆ C .

2 Find a boolean query T that is complete for C via
FO-reductions.

3 Show that L is closed under FO-reductions.

4 Express T in L.

From 2-4 we can show that C ⊆ L. Indeed, let A ∈ C . Then
A ≤fo T , hence A is expressible in L.
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Summary

Today we’ve seen

:

FO ⊆ L

Reachability problems are typically the natural complete
problems for space complexity classes.

The natural complete problems for NL, L and P are REACH,
REACHd and REACHa respevtively.

A strategy for finding the descriptive analogues of complexity
classes.

Descriptive Complexity: First Order Reductions 42 / 42



FO ⊆ L NL-Completeness L-Completeness P-Completeness On FO-Reductions

Summary

Today we’ve seen :

FO ⊆ L

Reachability problems are typically the natural complete
problems for space complexity classes.

The natural complete problems for NL, L and P are REACH,
REACHd and REACHa respevtively.

A strategy for finding the descriptive analogues of complexity
classes.

Descriptive Complexity: First Order Reductions 42 / 42



FO ⊆ L NL-Completeness L-Completeness P-Completeness On FO-Reductions

Summary

Today we’ve seen :

FO ⊆ L

Reachability problems are typically the natural complete
problems for space complexity classes.

The natural complete problems for NL, L and P are REACH,
REACHd and REACHa respevtively.

A strategy for finding the descriptive analogues of complexity
classes.

Descriptive Complexity: First Order Reductions 42 / 42



FO ⊆ L NL-Completeness L-Completeness P-Completeness On FO-Reductions

Summary

Today we’ve seen :

FO ⊆ L

Reachability problems are typically the natural complete
problems for space complexity classes.

The natural complete problems for NL, L and P are REACH,
REACHd and REACHa respevtively.

A strategy for finding the descriptive analogues of complexity
classes.

Descriptive Complexity: First Order Reductions 42 / 42



FO ⊆ L NL-Completeness L-Completeness P-Completeness On FO-Reductions

Summary

Today we’ve seen :

FO ⊆ L

Reachability problems are typically the natural complete
problems for space complexity classes.

The natural complete problems for NL, L and P are REACH,
REACHd and REACHa respevtively.

A strategy for finding the descriptive analogues of complexity
classes.

Descriptive Complexity: First Order Reductions 42 / 42


	
	-Completeness
	-Completeness
	-Completeness
	On -Reductions

