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Goal of the Section

FO is the set of boolean queries expressible in first order logic.
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FO is the set of boolean queries expressible in first order logic.

L is the set of boolean queries computable by a deterministic
Turing machine using at most logarithmic space.
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Goal of the Section

FO is the set of boolean queries expressible in first order logic.

L is the set of boolean queries computable by a deterministic
Turing machine using at most logarithmic space.

The goal of this section is to show that FO C L.
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Logspace Turing Machines

A logspace-Turing Machine
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A logspace-Turing Machine
m has a read-only input tape,
m has a write-only output tape,

m has a read-write work tape that contains O(log n) bits.
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Logspace Turing Machines

A logspace-Turing Machine

m has a read-only input tape,

m has a write-only output tape,

m has a read-write work tape that contains O(log n) bits.
Thus, it typically can:

m store a logn-bit number that points to a position in the input,
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Logspace Turing Machines

A logspace-Turing Machine
m has a read-only input tape,
m has a write-only output tape,
m has a read-write work tape that contains O(log n) bits.
Thus, it typically can:
m store a logn-bit number that points to a position in the input,

m work on strings (numbers etc) of size O(log n) on the work
tape.
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Addition in Logarithmic Space

The simple school algorithm works!
01011

+ 00110
10001
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Addition in Logarithmic Space

The simple school algorithm works!

01011 _ . .
+ 00110 The logspace Turing Machine examines
T 10001 the input positions and produces the out-

put bits one by one from right to left.
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Addition in Logarithmic Space

The simple school algorithm works!

01011 _ . .
+ 00110 The logspace Turing Machine examines
T 10001 the input positions and produces the out-

put bits one by one from right to left.

Only a the single bit carry has to be stored.
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Multiplication in Logarithmic Space (1/3)

Again the school algorithm

5141321110
b TT110 works, however we need some
3 1 x 0111 observations.
1/11]0
1110
01010
r| 1 ]0|0]1]0
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Multiplication in Logarithmic Space (1/3)

Again the school algorithm

514(3]2(11|0
b TT110 works, however we need some
3 T 0111 observations.
1110 If we forget the carries, the sum
11110 of column i is
0[0|O
by .
r 10010 2 b
Jjt+k=i+1
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Multiplication in Logarithmic Space (1/3)

Again the school algorithm

514(3]2]|1]0
b TT110 works, however we need some
3 T 0111 observations.
1110 If we forget the carries, the sum
11110 of column i is
0[0|O
by .
100 |1]0 >, b

jtk=i+1
E.g. for column 3 we have:

> ajbe=1+1+0=10.
Jj+k=4
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Multiplication in Logarithmic Space (2/3)

5(14(3|2|1|0
b 11110
a| x 0j1 |1
1{11]0
11110
0(0]0
c 1/1/0(0]0
r{1(0[0]|1]0
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Multiplication in Logarithmic Space (2/3)

5141321110 From the column sums we can
b 11110 compute the result bit and the
a | x 0ol111 carry at each position:

1110
11110

0(0]0
c 1/1/0(0]0
r{1(0[0|1]0
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Multiplication in Logarithmic Space (2/3)

5141321110 From the column sums we can
b 11110 compute the result bit and the
a | x 0ol111 carry at each position:
1 1 (1) ’ ¢ =0
ololo Ci—1+ _ Z ajby
c 1/1][0]0]0 G = AR
r{1[0[0]|1]0 2
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Multiplication in Logarithmic Space (2/3)

5141321110 From the column sums we can
b 11110 compute the result bit and the
a | x 0ol111 carry at each position:
17110
1110 ¢ =0
ololo Ci—1+ Z ajbk
+k=i+1
c 1/1][0]0]0 ¢ = J*; s
r{1[0[0]|1]0
ri=1\¢-1+ Z ajbk mod 2.

jtk=i+1
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Multiplication in Logarithmic Space (2/3)

5141321110 From the column sums we can
b 11110 compute the result bit and the
a | x 0ol111 carry at each position:
17110
1110 ¢ =0
000 G-1t+ 2. ajbk
+k=i+1
c 1/1][0]0]0 ¢ = ”g s
r{1[0[0]|1]0
ri=1\¢-1+ Z ajbk mod 2.

jtk=i+1

The carry is not necessary a single-bit!

Descriptive Complexity: First Order Reductions



FOC L
0000008000000

Multiplication in Logarithmic Space (3/3)

0 All we need to compute the pre-

51413211 ) - .
b 11110 vious sums are indices for thg in-
3 x 011 put bits and storing the previous
TT110 element of the recurrence.
1/1110
0100
c 1/1/0]0|0
r{ 110|010
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Multiplication in Logarithmic Space (3/3)

0 All we need to compute the pre-

51413121 ) - .
b 11110 vious sums are indices for the in-
3 x 011 put bits and storing the previous
TT110 element of the recurrence.
11110 It is easy to see that
000 L b=
c i/1/o0/ojo| 777
r{1[0[0]|1]0
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Multiplication in Logarithmic Space (3/3)

0 All we need to compute the pre-

514131211 _ ~on _
b 11110 vious sums are indices for the in-
3 | x o111 put bits and storing the previous
11170 element of the recurrence.
11110 It is easy to see that
0l0/|o0 , kZ lajbkgn.
JHk=i+
< 1 (1) é (1) 8 0 Inductively we can show that
' Cj S 2n.
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Multiplication in Logarithmic Space (3/3)

0 All we need to compute the pre-

51413121 . o )
vious sums are indices for the in-
b 17110 . . .
put bits and storing the previous
a| x 0111
TT110 element of the recurrence.
11110 It is easy to see that
000 > ajbe=n.
J+k=i+1
¢ 1111000 Inductively we can show that
ri1]0]0]1|0
Cj S 2n.
ci-1t > ajbk
Indeed if c;_1 < 2-nthen ¢ = ”"2:'“ < % < 2n.
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Multiplication in Logarithmic Space (3/3)

0 All we need to compute the pre-

514131211 ) . .
vious sums are indices for the in-
b 1110 : . .
put bits and storing the previous
a| X 0111
TT110 element of the recurrence.
11110 It is easy to see that
0]0]o0 > abe<n.
J+k=i+1
¢ 111]0]0]0 Inductively we can show that
ri1]0]0]|1|0
¢ < 2n.
ci-1t > ajbk
Indeed if ¢c;_1 < 2-nthen ¢ = % < % < 2n. Hence

all the numbers we need can be stored in O(log n) bit

4
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Binary Encoding of a Structure

G =(V,E,R,0,3)
n=4
T l E = {(1,2),(2,3)}
(0) R ={(0,1),(0,2),(3,1)}

The binary encoding of G is:
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Binary Encoding of a Structure

G=(V,E,R,0,3)
n=4
T l E={(1,2),(23)}
(0) R =1{(0,1),(0,2),(3,1)}
The binary encoding of G is:
E R 0o 3

A~
bin(G) = 00000010000101000110000000000100 00 11 .
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Binary Encoding of a Structure

G=(V,E,R,0,3)
n=4
T l E={(1,2),(23)}
(0) R =1{(0,1),(0,2),(3,1)}
The binary encoding of G is:
E R 0o 3

bin(G) = 00000010000101000110000000000100 00 ,.1/1\
Observe that E(1,2) corresponds to bit
1-n4+241=1-442+1=6.
Also |bin(G)| = n? + n? + [log n] + [log n].
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The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.
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The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.

Let o = (R{*,...,R?,c1,...,Cs).
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The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.

Proof
Let 0 = (R{*,...,R?,c1,...,¢s). A boolean FO-query is
determined by a sentence ¢ € L(0).
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On FO-Reductions

The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.

Proof
Let 0 = (R{*,...,R?,c1,...,¢s). A boolean FO-query is
determined by a sentence ¢ € L(0). Let A € STRUCT(0).
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The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.

Proof

Let 0 = (R{*,...,R?,c1,...,¢s). A boolean FO-query is
determined by a sentence ¢ € L(0). Let A € STRUCT(0). We
will construct a logspace deterministic Turing machine M, such

that:
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The set of boolean queries describable in first order logic can be
computed in deterministic logspace, i.e. FO C L.

Proof

Let 0 = (R{*,...,R?,c1,...,¢s). A boolean FO-query is
determined by a sentence ¢ € L(0). Let A € STRUCT(0). We
will construct a logspace deterministic Turing machine M, such

that:
A= ¢ <= M(bin(A)) | .
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First we to compute the size of the universe.
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First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A.
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First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A. Hence M's input length is

f(n)=n"+...4+n" +s-[logn]

for some n.

Descriptive Complexity: First Order Reductions



FOCL I eteness -Completeness

0000000008000

First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A. Hence M's input length is

f(n)=n"+...4+n" +s-[logn]

for some n. This n can be calculated as follows:
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0000000008000

First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A. Hence M's input length is

f(n)=n"+...4+n" +s-[logn]

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until M computes an f(j)
that is equal to the size of M's input. This j is the required n.
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0000000008000

First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A. Hence M's input length is

f(n)=n"+...4+n" +s-[logn]

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until M computes an f(j)
that is equal to the size of M's input. This j is the required n.

[logj]| is simply the length of j's binary representation so it can
easily be computed from j.
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0000000008000

First we to compute the size of the universe. M knows that its
input is of the form bin(.A) for some A. Hence M's input length is

f(n)=n"+...4+n" +s-[logn]

for some n. This n can be calculated as follows:

M computes iteratively f(1), f(2), etc. until M computes an f(j)
that is equal to the size of M's input. This j is the required n.

[logj]| is simply the length of j's binary representation so it can
easily be computed from j.

Also it is is easy to see that log f(n) = O(log n).
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free.
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Descriptive Complexity: First Order Reductions 13 /42



FOCL

0000000000800

We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean
combination of the following:
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Vx2) . .. (Quexk)eu(x, - - -, Xk)
where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean
combination of the following:

L] R,'(le, ceey Cja,-)
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean
combination of the following:

L] R,'(le, .. '7Cja;)
mi<
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean
combination of the following:
L R,'(le, ceey Cja,-)
. i<
m BIT(/,))
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.
Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean
combination of the following:
L] R,'(le, ceey Cjai)
. i<
m BIT(/,))

B G RG
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We assume that ¢ is in prenex normal form:

¢ = (Ix1)(Yx2) . . . (Quxw)a(x1, - - -, Xk)

where a(x1, ..., xx) is quantifier free. We will construct the
Turing machine by induction on k.

Induction Base: ¢ is quantifier-free sentence, i.e. it is a boolean

combination of the following:

L] R,'(le, ceey Cjai)

. i<

= BIT(i, )

NG R G
In that case M can test whether A = ¢ by only using
a pointer in the input (which is of the form bin(.A)).
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Induction Base (Cont'd): Assume for example that M wants to
test the validity of R3(cz, max, c1).
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Induction Base (Cont'd): Assume for example that M wants to
test the validity of R3(c2, max, c1). Then M has to
move its input-head to bit number:
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Induction Base (Cont'd): Assume for example that M wants to
test the validity of R3(c2, max, c1). Then M has to
move its input-head to bit number:

nL4+n2 0. o+n-(n—1)+c+1.

. Vv
bits for Ry and R; position of R3(c2,max,c1)

The above bit is '1" iff A = R3(c2, max, c).
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Induction Base (Cont'd): Assume for example that M wants to
test the validity of R3(c2, max, c1). Then M has to
move its input-head to bit number:

nL4+n2 0. o+n-(n—1)+c+1.

. Vv
bits for Ry and R; position of R3(c2,max,c1)

The above bit is '1" iff A = R3(c2, max, ¢1). This
way, M can test whether A |= ¢.

Descriptive Complexity: First Order Reductions 14 /42
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Induction Base (Cont'd): Assume for example that M wants to
test the validity of R3(c2, max, c1). Then M has to
move its input-head to bit number:

nL4+n2 0. o+n-(n—1)+c+1.

. Vv
bits for Ry and R; position of R3(c2,max,c1)

The above bit is '1" iff A = R3(c2, max, ¢1). This
way, M can test whether A |= ¢.

Induction Hypothesis: Assume that all FO-queries with k — 1
quantifiers are logspace-computable:

o= (Vx2) ... (Quxk)a(x2, ..., xk)
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable.

Descriptive Complexity: First Order Reductions



FOCL I eteness -Completeness

000000000000 e

Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

@D(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

@D(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).

In order to compute Ix3¢(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

@D(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).

In order to compute Ix3¢(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape and check for each one of them, whether

¥(c) holds.
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

@D(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).

In order to compute Ix3¢(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape and check for each one of them, whether
1(c) holds. M can do this, since each possible
constant can be represented by log n bits and v (c) is
an FO-sentence with k — 1 quantifiers,
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

w(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).

In order to compute Ix3¢(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape and check for each one of them, whether
1(c) holds. M can do this, since each possible
constant can be represented by log n bits and v (c) is
an FO-sentence with k — 1 quantifiers, thus it is
logspace computable by i.h.

Descriptive Complexity: First Order Reductions 15 /42
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Induction Step: Our goal is to show that all FO-queries with k
quantifiers are logspace computable. Assume that

w(Xl) = (VXz) PN (Qka)Oé(Xl, 225000 ,Xk).

In order to compute Ix3¢(x1) the Turing Machine M
has to simply create all possible constants c in its
work tape and check for each one of them, whether
1(c) holds. M can do this, since each possible
constant can be represented by log n bits and v (c) is
an FO-sentence with k — 1 quantifiers, thus it is
logspace computable by i.h. A universal quantifier is
handled in a similar way. O
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Overview

NL-Completeness
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Let M be a logspace bounded Turing Machine that can only
accept or reject its input (thus the output tape is not important).
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Let M be a logspace bounded Turing Machine that can only
accept or reject its input (thus the output tape is not important).
A configuration of M looks like:

(q7 i7 Wy, W2)7

where
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where

m g is M's current state
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accept or reject its input (thus the output tape is not important).
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m / is the position of the cursor in the read-only input
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Let M be a logspace bounded Turing Machine that can only
accept or reject its input (thus the output tape is not important).
A configuration of M looks like:

(q7 i7 Wy, W2)7

where
m g is M's current state
m / is the position of the cursor in the read-only input

m w; are the contents of the work tape until and including the
work tape cursor
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Let M be a logspace bounded Turing Machine that can only
accept or reject its input (thus the output tape is not important).
A configuration of M looks like:

(q7 i7 Wy, W2)7

where
m g is M's current state
m / is the position of the cursor in the read-only input

m w; are the contents of the work tape until and including the
work tape cursor

B wy are the rest of the work tapes’ contents
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All the configurations of M can bee seen as nodes in a graph.
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ONG

Descriptive Complexity: First Order Reductions



NL-Completeness
00®0000000

All the configurations of M can bee seen as nodes in a graph.

@ .G
o

m An edge (C, C’) corresponds to a transition. l.e. on
configuration C, based on what M sees on the input tape and
the work tape, M moves the cursors and possibly writes
something to the output tape that leads to configuration C'.
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All the configurations of M can bee seen as nodes in a graph.

@ .G
o

m An edge (C, C’) corresponds to a transition. l.e. on
configuration C, based on what M sees on the input tape and
the work tape, M moves the cursors and possibly writes
something to the output tape that leads to configuration C'.

m Since configurations look like (g, i, w1, ws), there are at most
|Q| - n-|X|?'°8" = O(n°) nodes in the graph.
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All the configurations of M can bee seen as nodes in a graph.

@ .G
o

m An edge (C, C’) corresponds to a transition. l.e. on
configuration C, based on what M sees on the input tape and
the work tape, M moves the cursors and possibly writes
something to the output tape that leads to configuration C'.

m Since configurations look like (g, i, w1, ws), there are at most
|Q| - n-|X|?'°8" = O(n°) nodes in the graph.

m M accepts its input iff the accepting configuration (Ca) is
reachable from the initial configuration ().
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The previous discussion indicates that every space complexity class
should have some form of reachability problem as a natural
complete problem.
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The previous discussion indicates that every space complexity class
should have some form of reachability problem as a natural
complete problem.

We define the following problem:

REACH = {(G,s,t) | G is directed and there is path from s to t}.
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The previous discussion indicates that every space complexity class
should have some form of reachability problem as a natural
complete problem.

We define the following problem:

REACH = {(G,s,t) | G is directed and there is path from s to t}.

We will show that REACH is NL-complete via FO-reductions.

Descriptive Complexity: First Order Reductions



NL-Completeness
0000@00000

REACH € NL

The following simple non-determinstic logspace algorithm solves
REACH.
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REACH € NL

The following simple non-determinstic logspace algorithm solves

REACH.

b:= s;

while (not (b = t)) do {
a := b;

nondeterministically choose new b;
if (not E(a,b)) then reject;
b

accept;
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REACH € NL

The following simple non-determinstic logspace algorithm solves

REACH.

b:= s;

while (not (b = t)) do {
a := b;

nondeterministically choose new b;
if (not E(a,b)) then reject;
b

accept;

The above algorithm needs only store a and b, which have size
log n.

Descriptive Complexity: First Order Reductions



NL-Completeness
0000080000

REACH is complete for NL via FO-reductions.
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REACH is complete for NL via FO-reductions.

_ /pa
mo=(R",...,R,cL,...,Cs)
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mo=(R",...,R,cL,...,Cs)

m 7, = (E2 s, t) (i.e. the vocabulary of directed graphs with
two specified nodes)
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REACH is complete for NL via FO-reductions.

_ /pa
mo=(R",...,R,cL,...,Cs)

m 7, = (E2 s, t) (i.e. the vocabulary of directed graphs with
two specified nodes)

m Let NV be the logspace nondeterministic Turing Machine that
accepts a subset of STRUCT o]
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REACH is complete for NL via FO-reductions.

_ /pa
mo=(R",...,R,cL,...,Cs)

m 7, = (E2 s, t) (i.e. the vocabulary of directed graphs with
two specified nodes)

m Let NV be the logspace nondeterministic Turing Machine that
accepts a subset of STRUCT o]

m We will construct an FO-reduction
I : STRUCT[o] — STRUCT[7,] such that for all
A € STRUCT[o]

N(bin(A)) |<= I(A) € REACH.
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Proof Sketch

m Assume that N uses at most ¢ - log n bits of work tape
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Proof Sketch

m Assume that N uses at most ¢ - log n bits of work tape

m Remember that the number of N'’s states and the number of
the relations and constants in o are constants that do not
depend on the input size.
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On FO-Reductions

Proof Sketch

m Assume that N uses at most ¢ - log n bits of work tape

m Remember that the number of N's states and the number of
the relations and constants in ¢ are constants that do not
depend on the input size.

mleta=max{aj |1 <i<r}tandk=1+4+a+c
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Proof Sketch

m Assume that N uses at most ¢ - log n bits of work tape

m Remember that the number of N'’s states and the number of
the relations and constants in o are constants that do not
depend on the input size.

mleta=max{aj |1 <i<r}tandk=1+4+a+c

m The reduction / will be a k-ary FO-query. l.e. the universe of
I1(A) will consist of k-tuples from A's elements.
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Proof Sketch

m A configuration of N can be encoded in a k-tuple of variables,
ie. C=(p,r,...,ra,wa,...,wc), where p and all the r;'s
and w;'s are elements of the universe, i.e. log n-bit numbers.
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Proof Sketch

m A configuration of N can be encoded in a k-tuple of variables,
ie. C=(p,r,...,ra,wa,...,wc), where p and all the r;'s
and w;'s are elements of the universe, i.e. log n-bit numbers.

m N is looking at an 1 in the binary representation of relation R;

iff A ): R,-(rl, Seley ra)
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Proof Sketch

m A configuration of N can be encoded in a k-tuple of variables,
ie. C=(p,r,...,ra,wa,...,wc), where p and all the r;'s
and w;'s are elements of the universe, i.e. log n-bit numbers.

m N is looking at an 1 in the binary representation of relation R;

iff A ): R,-(rl, Seley ra)

m The w;'s contain the contents of N's worktape
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Proof Sketch

m A configuration of N can be encoded in a k-tuple of variables,
ie. C=(p,r,...,ra,wa,...,wc), where p and all the r;'s
and w;'s are elements of the universe, i.e. log n-bit numbers.

m N is looking at an 1 in the binary representation of relation R;

iff A ): R,-(rl, Seley ra)
m The w;'s contain the contents of N's worktape

m p encodes the current state of N, which R; or which ¢; the
input head is looking at and a pointer for the work tape
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Proof Sketch

m A configuration of N can be encoded in a k-tuple of variables,
ie. C=(p,r,...,ra,wa,...,wc), where p and all the r;'s
and w;'s are elements of the universe, i.e. log n-bit numbers.

m N is looking at an 1 in the binary representation of relation R;
iff A ): R,-(rl, Seley ra)

m The w;'s contain the contents of N's worktape

m p encodes the current state of N, which R; or which ¢; the
input head is looking at and a pointer for the work tape

m since the number of states, relations and constants is
independent of the input size and a pointer for the work tape

needs O(loglog n) bits, p has enough space to store all the
necessary information (for large enough n).
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NL-Completeness L-Completeness ’-Co eness On FO-Reductions

00000000 e0

Proof Sketch

m Now we build the desired k-ary FO-reduction

| = )\Qc/(true, N, a,w).

m True in the above relation means that the set of nodes in the
graph I(.A) is equal to the set of all possible configurations

m Formulas ¢p, a and w represent the edge relation, the source
node s and the target node t in the created graph

m A= oC) iff C is the unique initial configuration of N
m A E w(C) iff C is the unique accepting configuration
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Proof Sketch.

m AE on(C, C') iff there is a valid move of N from C to C'. A
move from C to C’ has the following meaning:
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Proof Sketch.

m AE on(C, C') iff there is a valid move of N from C to C'. A
move from C to C’ has the following meaning:

“if on configuration C we examine the input bit b then the
input head moves to direction d;, the work head moves to
direction d,, and we write bit b’ on the work tape.”
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Proof Sketch.

m AE on(C, C') iff there is a valid move of N from C to C'. A
move from C to C’ has the following meaning:

“if on configuration C we examine the input bit b then the
input head moves to direction d;, the work head moves to
direction d,, and we write bit b’ on the work tape.”

The above information can be extracted from the k variables
Py ..., Wi,...,we that describe C and C’. []
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Overview

L-Completeness
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A slight modification of REACH gives us a natural complete
problem for L.
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A slight modification of REACH gives us a natural complete
problem for L.

The deterministic version of REACH is the following problem:

REACHy = {(G, s, t) | G is directed and there is a

deterministic path from s to t}.

The path P is deterministic if for every (x,y) € P, (x,y) is the
unique edge leaving x.
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Difference Between REACH and REACH

It holds that (G, s, t) € REACH but (G, s, t) ¢ REACH4
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REACH, € L

The following logspace algortihm answers REACH,:

b:=s; i:=0; n=|G|;
while [(b;«é £) A (i < n) A (31a)E(b, a)] do {
b := the unique a for which E(b, a)
i=i+1
}

if b =t then accept else reject.
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.

REACHy is complete for L via FO-reductions.
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.

Theorem

REACHy is complete for L via FO-reductions.

We repeat the same construction as we did for REACH and NL.
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.

REACHy is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and NL.
The only difference is that the Turing Machine is now a
deterministic one,
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.

REACHy is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and NL.
The only difference is that the Turing Machine is now a
deterministic one, thus every configuration has a unique next
configuration,
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REACH, is a Natural Complete Problem for L

The definition of REACH, was made such that the following
theorem holds.

REACHy is complete for L via FO-reductions.

Proof.

We repeat the same construction as we did for REACH and NL.
The only difference is that the Turing Machine is now a
deterministic one, thus every configuration has a unique next
configuration, which implies that every node in the constructed
graph has a unique edge that leaves it. [
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Overview

P-Completeness
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Using similar ideas we construct a natural complete problem for
P = ASPACE[log n].
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Using similar ideas we construct a natural complete problem for
P = ASPACE[log n].

Definition
An alternating graph is a structure G = (V| E, A, s, t), where the

edges are directed and the vertices are labelled universal (A) or
existential (V' \ A).
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Using similar ideas we construct a natural complete problem for
P = ASPACE[log n].

Definition

An alternating graph is a structure G = (V| E, A, s, t), where the
edges are directed and the vertices are labelled universal (A) or
existential (V' \ A).

Let G be an alternating graph. P¢ is the smallest binary relation
that satisfies the following:

m PC(x,x)
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Using similar ideas we construct a natural complete problem for
P = ASPACE[log n].

Definition

An alternating graph is a structure G = (V| E, A, s, t), where the
edges are directed and the vertices are labelled universal (A) or
existential (V' \ A).

Let G be an alternating graph. P¢ is the smallest binary relation
that satisfies the following:

m PC(x,x)

m If x is existential and for some edge (x, z) we have P¢(z,y),
then PC(x,y)

Descriptive Complexity: First Order Reductions



P-Completeness
0®00000

Using similar ideas we construct a natural complete problem for
P = ASPACE[log n].

Definition
An alternating graph is a structure G = (V| E, A, s, t), where the

edges are directed and the vertices are labelled universal (A) or
existential (V' \ A).

Let G be an alternating graph. P¢ is the smallest binary relation
that satisfies the following:
m PC(x,x)
m If x is existential and for some edge (x, z) we have P¢(z,y),
then PC(x,y)

m If x is universal, x has at least one outgoing edge and for all
edges (x,z) we have P¢(z,y), then PC(x,y)
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Universal Nodes: s and a

©

Existential Nodes: b,c,d, t, e

Ciﬁ@

P¢|s|la|blc|d|elt
s |[1]/]0|0j0]0|0]1
a |0j1]0|0|0O]1]O
b |[0|0|1|0]|0|0]|1
c |[0J0|0O|1]0O|1]|1
d [0|0]O|0O|1]1]|O
e |0]0]O0O|O|0O]1]O
t |0|]0|0|0]0|0]|1
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Alternating Reachability

We define REACH, = {(G,s, t) ’ PS(s, t)}.
The previous graph G with nodes s and t is a yes instance for
REACH,.
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REACH, € P

make QUEUE empty; mark(t); insert t into QUEUE;
while QUEUE not empty do {
remove first element, x, from QUEUE:;
for each unmarked vertex y such that E(y,x) do {
delete edge (y,x);
if y is existential or y has no outgoing edges then
{ mark(y); insert y into QUEUE}
}
%

if s is marked then accept else reject;

Remember: t is the target node, s is the source node and we wish
to test whether there is an alternating path from s to t.
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A Run of the Algorithm on G

e Universal Nodes: s and a

° Existential Nodes: b, c,d, t,e
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A Run of the Algorithm on G

e Universal Nodes: s and a

° Existential Nodes: b, c,d, t,e

m t is marked, added in QUEUE and then removed
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A Run of the Algorithm on G

e Universal Nodes: s and a

e Existential Nodes: b, c,d, t,e

m t is marked, added in QUEUE and then removed
m (b, t) and (c, t) are deleted and b, ¢ are marked and added in
QUEUE
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A Run of the Algorithm on G

e Universal Nodes: s and a

e Existential Nodes: b, c,d, t,e

m t is marked, added in QUEUE and then removed

m (b, t) and (c, t) are deleted and b, ¢ are marked and added in
QUEUE

m b is removed from QUEUE and (s, b) is deleted
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A Run of the Algorithm on G

e Universal Nodes: s and a

e Existential Nodes: b, c,d, t,e

m t is marked, added in QUEUE and then removed

m (b, t) and (c, t) are deleted and b, ¢ are marked and added in
QUEUE

m b is removed from QUEUE and (s, b) is deleted

m c is removed from QUEUE and (a, ¢) and (s, ¢) are deleted
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A Run of the Algorithm on G

e Universal Nodes: s and a

Existential Nodes: b, c,d, t,e

m t is marked, added in QUEUE and then removed

m (b, t) and (c, t) are deleted and b, ¢ are marked and added in
QUEUE

m b is removed from QUEUE and (s, b) is deleted

m c is removed from QUEUE and (a, ¢) and (s, ¢) are deleted

m s is marked and added in QUEUE (success!)
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A Natural Complete Problem for ASPACE[log n]

As before, REACH, was defined such that the following theorem
holds.
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A Natural Complete Problem for ASPACE[log n]

As before, REACH, was defined such that the following theorem
holds.

Theorem

REACH, is complete for P via FO-reductions.
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A Natural Complete Problem for ASPACE[log n]

As before, REACH, was defined such that the following theorem
holds.

Theorem
REACH, is complete for P via FO-reductions.

Proof Sketch.

The same construction as before works. The L-Turing machine is
now an ASPACE [log n]-Turing Machine. We have to make sure
that the universal states are mapped to universal nodes. O
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On FO-Reductions
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Closure under FO-reductions

Let C be a complexity class and £ be a language that we use to
express problems (e.g. FO,503).
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Closure under FO-reductions

Let C be a complexity class and £ be a language that we use to
express problems (e.g. FO,503).

C is closed under FO-reductions if whenever B € C and A <z, B
then A € C.
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Closure under FO-reductions

Let C be a complexity class and £ be a language that we use to

express problems (e.g. FO,503).

C is closed under FO-reductions if whenever B € C and A <z, B
then A € C.

L is closed under FO-reductions if whenever B is expressible in £
and A <y, B then A is expressible in L too.
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The Power of FO-reductions

As we have seen the complexity of queries expressible in FO-logic
is relative low.
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The Power of FO-reductions

As we have seen the complexity of queries expressible in FO-logic
is relative low.

Thus the intuitive meaning of A <z, B is that A is not more
difficult than B.
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The Power of FO-reductions

As we have seen the complexity of queries expressible in FO-logic
is relative low.

Thus the intuitive meaning of A <z, B is that A is not more
difficult than B.

Despite the limited power of FO-logic almost all the complexity
classes and languages that we will consider are closed under
FO-reductions.
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The Power of FO-reductions

As we have seen the complexity of queries expressible in FO-logic
is relative low.

Thus the intuitive meaning of A <z, B is that A is not more
difficult than B.

Despite the limited power of FO-logic almost all the complexity
classes and languages that we will consider are closed under
FO-reductions.

At least for complexity classes one should suspect that, since

almost all of them are closed under logspace reductions and
FO C L.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.

Show that L is closed under FO-reductions.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.

Show that L is closed under FO-reductions.
Express T in L.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.

Show that L is closed under FO-reductions.
Express T in L.

From 2-4 we can show that C C L.
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show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.

Show that L is closed under FO-reductions.
Express T in L.

From 2-4 we can show that C C L. Indeed, let A € C.
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Methodology for Finding the Descriptive Analogue of a
Complexity Class

Let £ be a language and let C be a complexity class. In order to
show that £ =C, i.e. that a query belongs in C if and only if it is
expressible in £, we do the following:

Create a C-algorithm that can test for every L-sentence ¢ and
every L-structure A, whether A |= ¢. This shows that £ C C.

Find a boolean query T that is complete for C via
FO-reductions.

Show that L is closed under FO-reductions.
Express T in L.

From 2-4 we can show that C C L. Indeed, let A€ C. Then
A <g T, hence A is expressible in L.
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problems for space complexity classes.
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Summary

Today we've seen :

mFOCL

m Reachability problems are typically the natural complete
problems for space complexity classes.

m The natural complete problems for NL, L and P are REACH,
REACH, and REACH, respevtively.

m A strategy for finding the descriptive analogues of complexity
classes.
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