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Reflexive and transitive closure
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m The transitive closure of a relation is not first-order definable.

m Let 7, = (E2 s, t). To define the transitive closure ET, we
first define the following first-order formula:

dec(R,x,y) = E(x,y) V EIZ(E(X,Z) A R(z,y))

where R ia a binary relation symbol.

You can see this formula as an inductive definition of
transitive closure:

Et(x,y) = E(x,y) V3z(E(x,z) NET(2,y)).
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For every structure A € STRUC[7,], the formula ¢ induces an
operator Fy, : P(JA?) — P(|.A|?) defined as follows:

F¢tc(X) = {(‘37 b) | A ): ¢tc(X/R7 4, b)}

where X/R means that R is interpreted as X in ¢c.
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©
Fs..(0) = {(a, b)| A |= E(a, b) v Iz(E(a, 2) A R(//f;;)}
Fe..(0) ={(0,1),(1,2),(2,3),(2,4),(3,0), (4,2)}

Fy..(0) = {(a, b) € | A]? | distance(a, b) = 1}
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/ Fo(Fou(9))

F2 (0)={(a,b) | A= E(a,b) Vv 3z(E(a,z) A R(jzb))}

F)

c

F2.0) ={(0,1),(1,2),(2,3),(2,4),(3,0), (4,2),
(0,2),(1,3),(1,4),(2,0),(2,2), (3, 1), (4,3), (4, 4)}

F;tc(@) = {(a,b) € |A|? | d(a,b) =1 or d(a, b) = 2}
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Fo(F3.(0)) = F3,(0) =
F()
{(a,b) | A = E(a,b) Vv Iz(E(a,z) A R¢z,b))}
F3 @) - {(07 1)7 (]-7 2)7 (27 3)7 (27 4)7 (37 0)’ (47 2)7
(0,2),(1,3),(1,4),(2,0),(2,2),(3,1),(4,3), (4, 4),
(0,3),(0,4),(1,0),(2,1),(3,2),(4,0)}

F3 (0) = {(a,b) € |A]2 | 1 < d(a, b) < 3}
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3
d)t ( c
{(0,1),(1,2), (273),( 4),(3,0),(4,2),
(0,2),(1,3),(1,4),(2,0),(2,2),(3,1),(4,3), (4, 4),
(0,3),(0,4),(1,0),(2,1),(3,2),(4,0)
(0,0),(1,1),(3,3),(3,4), (4, 1)}

thc(@) = {(av b) S |A|2 | 1< d(a, b) < 4}

Here F}_(0) = A%, so F3_(0) = F}_(0) = | AP
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Thus for n = ||A||, then
Fj_(0) = E* = the least fixed point of Fy,.
In other words, FJ (@) is the minimal relation T such that

Fs (T)=T.
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m Let R be a new relation symbol of arity k.

m Let ¢(R, x1,...,xx) be a first-order formula that induces a
monotone operator Fy, i.e.

X CY = Fy(X) C F4(Y)

Theorem

Let (R, x1, ..., xx) be a first-order formula that induces a
monotone operator Fg.

For any structure A, the least fixed point of Fy, symb. ifp(Fy),
exists.

It is equal to F[(D) where r is minimum so that F(0)) = Fr ().
Furthermore, r < nk, where n = || A|.
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Proof. Consider the sequence
0 C Fy(0) € F2(0) C F30) € ..

The inclusions hold because of monotonicity of Fy.

If Fq’;’l((b) ¢ Fi(0), then Fq’fl(@) contains at least one new k-tuple
from |AX.

Since there are n¥ such k-tuples, for some r < nk,

F(0) = Fs(F5(0)) = F; (D), i.e. Fj(0) is a fixed point of Fy.
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Proof. Let S be any other fixed point of Fy.
We show by induction that Fj(0)) C S for every i.

Base case: F(g(@) =0CS.
Suppose that Fé)(@) C S. Since Fy is monotone,

FIF () = Fy(Fi(0) € Fa(S) C S.

Thus, F7(0) € S and F/(0) is the least fixed point of Fy. O
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Lemma

Testing if Fy is monotone is undecidable for FO formulas ¢.

Proof. Let ® be an arbitrary FO sentence and consider the formula
#(S,x) = (S(x) = ®).

m Suppose ¢ is valid. Then ¢(S,x) is always true and Fy is
monotone for every structure A.

m Suppose that there is a non-empty structure A such that
A= ~®. Then, ¢(S, x) is equivalent to =5(x) over A, so F,
is not monotone.

Therefore, Fy is monotone iff @ is valid, which is undecidale by
Trakhtenbrot’s theorem. O
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m Given a formula ¢ that contains R, we say that an ocurrence
of R is negative if it is under the scope of an odd number of
negations and is positive if it is under the scope of an even
number of negations.

m In Ix=R(x) V =VyVz=(R(y) A =R(2)), the first and the last
occurrence of R are negative and the second occurrence of R
is positive.

m A formula is positive in R if there are no negative occurrences
of R in it.

If ¢(R, X) is positive in R, then F4 is monotone.
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The logic FO(LFP)

The logic FO(LFP) extends FO with the following formation rule:

m if ¢(R, 7) is a formula positive in R, where R is a k-ary
relationiymbol and t is a tuple of terms, such that
|X| = || =k, then

%
ifpr 2 (R, X)I(t)
is a formula the free variables of which are those of _t>

The semantics is defined as follows:

A [fpr»¢(R, X)(T) iff T € Ifp(Fy).
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Examples of queries definable in FO(LFP)

Acyclicity: Let 7, = (E2) and a structure A € STRUC|[7,].
Consider the formula «(S,x) = Yy (E(y,x) = S(y)).

Fo(0) = {a € |A| | ais a node of in-degree 0} = {1}
F2(0) = Fo(0) U {a € | A| | ais a node that has incoming edges
only from nodes of F,(0)} = {1,2}

F3(0) = F2(0) U {a € | A| | ais a node that has incoming edges
only from nodes of F2(())} = {1,2,3}

F4(0) = F3(0) U {a € | A| | ais a node that has incoming edges
only from nodes of F3(0)} = {1,2,3,4}
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Examples of queries definable in FO(LFP)

Acyclicity: Let 7, = (E2) and a structure A € STRUC|[7,].
Consider the formula «(S,x) = Yy (E(y,x) = S(y)).

Fo(0) = {a € |A] | ais a node of in-degree 0} = {1}
F2(0) = {a € |A| | ais a node that all paths ending in a
have length at most 1} = {1,2}

F3(0) = {a € |A| | ais a node that all paths ending in a
have length at most 2} = {1, 2,3}

F4(®) = {a € |A| | ais a node that all paths ending in a
have length at most 3} = {1,2,3,4}
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Examples of queries definable in FO(LFP)

Acyclicity:

m F/(0) = {ac|A|| aisanode that all paths ending in a
have length at most / — 1}

o A [ips,0(S.0))(2) <
all the paths of A ending in a are of finite length

m A= Vullfps ,a(S, x)](u) <= the graph represented by
the structure A is acyclic.

Question: How many times do we have to apply F, to obtain Ifp(F.)?
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Examples of queries definable in FO(LFP)

Arithmetic on Successor Structures: Let 75, = (Succ?,0).
Let a structure
A={0,1,..,n—1}{(/,i+1) |1 <i+1<n—1},0).

We define + = {(i,j, k) | i +j = k}.

x+0=x
x+(y+1)=(x+y)+1
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Examples of queries definable in FO(LFP)

Arithmetic on Successor Structures:
x+0=x
x+(y+1)=(x+y)+1

Let R be a ternary relation symbol and 5, (R, x,y, z) be
(y =0Az=x)V3Iudv(R(x,u,v) A Succ(u,y) A Succ(v, z))

x+0=x X+u=v y=u+1 z=v+1
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Examples of queries definable in FO(LFP)

Arithmetic on Successor Structures:

(y =0Az=x)V3udv(R(x,u,v) A Succ(u,y) A Succ(v, z))

x+0=x X+u=v y=u+1 z=v+1

Fa, (0) = {(i,j, k) |(i,j, k) is of the form (x,0,x) for some x € | A|}

F5.(0) ={(i,j. k) | (i.j, k) is of the form (x,0,x) or (x,1,x + 1)
for some x € |A|}

Question 1: What is F3, (0)?
Question 2: How many times do we have to apply Fs, to obtain the least fixed
point of (Fg,)?
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Examples of queries definable in FO(LFP)

A Game on Graphs: Let G be a graph and s be a distinguished
start node. There are also two players: player I and player Il.
At round /:

m player | selects a node b;,
m player Il selects a node ¢;
such that (a, b1) and (b, ¢;), (ci, bi+1) are edges of the graph for

every I.

The player that cannot make a legal move loses the game.

Descriptive Complexity: Inductive Definitions



Inductive Definitions
000000000000 00000000000e000000

Examples of queries definable in FO(LFP)

A Game on Graphs: Let 7, = (E?) and A € STRUC|[r,].
Let S be a unary relation and (S, x) be

Vy(E(X,y) — HZ(E(y,z) A 5(2))>

Fy(0) = {u | uis a node of out-degree 0}
Fé(@) = Fy(0) U {u | for every move from u there is a move to

a node with out-degree 0}
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Examples of queries definable in FO(LFP)

A Game on Graphs:

Reformulating this,

Fy(0) = {u | if the game starts from u then player | loses}
Fi(@) = {u | if the game starts from u then player | loses}U

{u | for every move of player | from u there is a move of

player Il such that player I loses}
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Examples of queries definable in FO(LFP)

A Game on Graphs:

m In general, Fj(X) is the set of nodes u such that no matter
where player I moves from u, then player Il can move to some
node in X.

m F;(0) consists of the nodes from which player Il has a
winning strategy in at most / — 1 rounds.

m A= [fps (S, x)](s) iff player Il has a winning strategy
from node s in A.
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Examples of queries definable in FO(LFP)

Alternating Reachability:
Let 725 = (E2,V,s,t) and G € STRUC[7,,].

PY is the smallest binary relation that satisfies the following:
m PY(x,x)
m If x is existential and for some edge (x, z) we have PY(z, y),
then PY(x, y)

m If x is universal, x has at least one outgoing edge and for all
edges (x,z) we have P9(z,y), then P9(x,y)
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Examples of queries definable in FO(LFP)

Alternating Reachability:
Let P be a binary relation symbol and ¢, be

xX=yV <HZ(E(X7Z) A P(z,y)) A (‘v’(x) — VZ(E(X./ z) — P(z,y))))

Universal Nodes: s and a

Existential Nodes: b, c,d,t, e

ONO
& ©
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Examples of queries definable in FO(LFP)

xX=yV <HZ(E(X,Z) A P(z,y)) A (‘v’(x) — VZ(E(X./ z) — P(z,y))))

Universal Nodes: s and a

Existential Nodes: b,c,d, t, e

Fo.p(0) = {(x,x) | x € V}

F.,(0) = {(x,x) | x € VIU{(b,1),(c, 1), (c,e),(d, e)}

(
F3(0) = {(x,x) | x € V}U{(b, ), (c,t),(c,e),(d,e)}
U {(s,t),(a,€)
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Examples of queries definable in FO(LFP)

Alternating Reachability:

Let P be a binary relation symbol and ¢, be

x=yV <HZ(E(X,Z) AP(z,y)) A (V(x) = Vz(E(x,z) — P(z,y))))

G = Mfpp .y Pap(P, x, ¥)I(s, t) iff
there is an alternating path from sto t in G
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Proposition

FO(LFP) is closed under first order reductions.

For any two queries A and B such that B € FO(LFP) and A <¢, B
we have that A € FO(LFP).
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Theorem

Over finite, ordered structures,

FO(LFP) = P

Proof. (FO(LFP) C P): Let A be an input structure, let n = ||A]|
and let [ifpg 2 &(R, 7)](?) be a least fixed point formula.

To decide if A |= [Ifpg 3 ¢(R, X)|(F), we have to find Ifp(Fy).
So, we have to evaluate the first order query defined by ¢ at most
n times.

First order queries can be evaluated in L, so in P as well.
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Proof. (P C FO(LFP)):

FO(LFP) includes the query REACH,, which is complete for
the class P under first-order reductions.

FO(LFP) is closed under first-order reductions.

From 1 and 2, for any polynomial-time query A, we have that
A € FO(LFP). O
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Normal Form Theorem

Corollary

Let ¢ be any formula in FO(LFP). Then there exists a first-order
formula ¢ and a tuple of constants ¢ such that over finite, ordered
structures,

¢ = [Ifpy](c)
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m The use of ordering is required in the proof that REACH, is
P-complete under first order reductions.

m If we consider FO(LFP) on unordered structures then it does
not define all polynomial-time properties.

m For NP and coNP we have logics that capture them over all
structures.

m Is there a logic that captures P without the additional
restriction to ordered structures?

Gurevich's Conjecture

There is no logic that captures P over the class of all finite
structures.

This conjecture is stronger than the P # NP conjecture!
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Definition

Let R be a k-ary relation symbol, let ¢(R, X) be a formula which
is positive in R and let A be a structure of size n.
Define the depth of ¢ in A, symb. |¢*|, to be the minimum r such

that
At (Fo(0) < F(0))

Definition

Define the depth of ¢, symb. |¢|, as a function of n equal to the
maximum depth of ¢ in A for any structure A of size n:

|#](n) = {ch““l}

IIAII
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Example

m Let 7, = (E2). Then the formula

(Zsrtc(RvX?y) = X:y\/HZ(E(X,Z)/\R(Z,y))

defines inductively the reflexive transitive closure, E*, of E.

un ‘¢rtc‘(”) =n
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Example

m Consider the following alternate inductive definition of E*:
o*(R,x,y) = x=yV E(x,y)V3z(R(x,z) AR(z,y)).

m |¢"[(n) = [logn] +1
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Let IND[t(n)] be the subset of FO(LFP) in which only fixed points
of first-order formulas ¢ for which |¢| is O(t(n)) are included.

FO(LFP):G IND[n].
k=1
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Proposition

NL C IND[logn]

Proof.

m REACH is expressible as [ifpg . ,¢*(R, x,y)](s, t) and is
thus in IND[logn].

m REACH is NL-complete under first-order reductions.

m IND[logn] is closed under first order reductions.
Hence NL C IND[logn]. O
Remark. In chaprer 5, the depth of nesting of recursive calls is

connected to the parallel time needed to evaluate such a recursive
definition. In particular IND[logn] = AC.
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Overview

FO(PFP)=PSPACE
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m Consider an arbitrary operator F : P(|.AX|) — P(].AX)).
m Consider the sequence F(0), F2(0), F3(0),...
m There are two possibilities
The sequence reaches a fixed point, i.e. for some n € N we
have F"(0) = F"*1(0) and thus for all m > n, F™(0) = F"(0).
In this case n < 2lIAMI
The sequence does not reach a fixed point.

m We define the partial fixed point of F as

Fr(0), if F7(0) = F™1(0)

Pip(F) = {@, if F1(0) # FrH1(0) for all n < 2/M“I
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The logic FO(PFP)

The logic FO(PFP) extends FO with the following formation rule:

m if (R, %) is a formula, where R is a k-ary relation symbol
and t is a tuple of terms, such that | X| = |_t>| = k, then

[pfpg 5 (R, X)I(T)

is a formula the free variables of which are those of t .

The semantics is defined as follows:

A [pfpr 2 d(R, X))(7) iff T € pfp(Fy).
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Over finite, ordered structures,

FO(PFP) = PSPACE
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